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Introduction

The topic of interprocess communication techniques is broad, challenging and 

dynamic. All but the most basic operating systems provide methods for processes 

communication. Early on, UNIX supported a number of rudimentary process 

communication constructs (such as lock files, signals and pipes). In the early 1980s, 

facilities such as message queues, semaphores, and shared memory were added to 

the mix by AT&T with its release of UNIX System V. Somewhat concurrently, the 

Berkeley Software Distribution added support for Internet protocols (4.3BSD) and the 

socket interface as a communication construct. By the mid-1990s, threads and 

multithreaded programming techniques were making significant, permanent inroads 

into the UNIX mainstream.

Along the way, UNIX spawned innumerable UNIX-like operating systems. One such 

operating system was MINIX. MINIX, written by Andrew S. Tanenbaum, is a small 

(about twelve thousand lines) PC version of UNIX. MINIX was presented as a 

pedagogical tool to permit the user to gain a better understanding of the inner working 

of a UNIX-like operating system. As all of the operating system source code was 



provided, the user could tinker with the code and refine its functionality. As a university 

student, Linus Torvalds' exposure to MINIX led him to develop a more robust 

UNIX-like operating system called Linux. In brief, Linux is a freely distributed hybrid 

version of UNIX. Linux system administration is BSD-like while its programming 

environment has a definite AT&T flavor. A number of commercial versions of Linux 

populate the market. These versions bundle Linux with a variety of other operating 

system related utilities and software packages. One of the more widely distributed 

commercial versions is Red Hat Linux. Red Hat Linux includes Richard Stallman's 

GNU project C (gcc) and C++ (g++) compilers.

This text explores the intricacies of interprocess communications as supported by Red 

Hat Linux version 7.3 and 8.0. It is assumed that the reader has a working knowledge 

of C/C++ programming. It is further assumed that while not being an expert, the 

reader has worked in a UNIX type environment and is reasonably familiar with 

generating and editing text using an editor such as vi or pico (available from the 

University of Washington). This text makes extensive references to specific system 

calls and predefined library functions. The reader is encouraged to read the manual 

pages for each system call/library function as it is encountered. As in UNIX, the 

manual pages in Linux are an unparalleled source of information. Appendix A covers 

the format and use of manual pages.

All programming references and examples were generated on a PC Pentium-based 

platform running Red Hat Linux 7.3, using the GNU C/C++ compiler version 2.96. With

the release of Red Hat Linux 8.0 and GNU 3.2 the examples were revisited and 

tweaked where necessary. Many of the examples and most of the exercises have also

been compiled and run in a Solaris 2.8 setting using GNU 2.95. Most often, few if any 

modifications were needed to generate clean, executable code in this alternate 

environment.

Each example is a complete standalone program. Command line examples, except 

where noted, are Korn shell based. In any setting, IPC (interprocess communication) 

support must be available for the user to pursue the materials covered in the chapters 

on semaphores, message queues, and shared memory. When Linux is installed, 

usually IPC support is enabled (check the /proc directory for the presence of the sysvipc

directory). If it is not present you may need to modify system configuration files and 

recompile the kernel. There are a number of places that one can peruse for 

information on how this might be done. One source of information is the Configure.help



file that resides in the /usr/src/linuxXXXX/Documentation subdirectory (where XXXX is the 

version of Linux). A second source is the URL http://www.tldp.org/docs.html. However, 

unless you are the system administrator, you most likely will want to seek help when 

doing this. To work with threads, a POSIX compliant thread library (such as 

LinuxThreads) must be available. Fortunately, most new versions of Linux come with 

thread libraries that are distributed with the GNU compiler (check the /usr/lib directory 

for files names containing pthread, e.g., libpthread.a or libpthread.so). The URL 

http://sources.redhat.com/glibc/ provides a web page with additional information on 

glibc the GNU libc program.

Works of any complexity are never completely finished. Your comments, suggestions, 

corrections, and exercise solutions are welcome. I can be contacted at 

gray@cs.hartford.edu. Program examples can be obtained at www.phptr.com/gray.
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1.1 Introduction

Fundamental to all operating systems is the concept of a process. A process is a 

dynamic entity scheduled and controlled by the operating system. While somewhat 

abstract, a process consists of an executing (running) program, its current values, 

state information, and the resources used by the operating system to manage the 

process. In a UNIX-based operating system, such as Linux, at any given point in time, 

multiple processes appear to be executing concurrently. From the viewpoint of each of 

the processes involved, it appears they have access to and control of all system 

resources as if they were in their own standalone setting. Both viewpoints are an 

illusion. The majority of operating systems run on platforms that have a single 

processing unit capable of supporting many active processes. However, at any point 

in time, only one process is actually being worked upon. By rapidly changing the 

process it is currently executing, the operating system gives the appearance of 

concurrent process execution. The ability of the operating system to multiplex its 

resources among multiple processes in various stages of execution is called 

multiprogramming (or multitasking). Systems with multiple processing units, which by 

definition can support true concurrent processing, are called multiprocessing.

As noted, part of a process consists of the execution of a program. A program is an 

inactive, static entity consisting of a set of instructions and associated data.

If a program is invoked multiple times, it can generate multiple processes. We can 

consider a program to be in one of two basic formats:

source program— A source program is a series of valid statements for a

specific programming language (such as C or C++). The source program is

stored in a plain ASCII text file. For purposes of our discussion we will consider

a plain ASCII text file to be one that contains characters represented by the

ASCII values in the range of 32–127. Such source files can be displayed to the

screen or printed on a line printer. Under most conditions, the access

permissions on the source file are set as nonexecutable. A sample C++

language source program is shown in Program 1.1.
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executable program— An executable program is a source program that, by

way of a translating program such as a compiler, or an assembler, has been

put into a special binary format that the operating system can execute (run).

The executable program is not a plain ASCII text file and in most cases is not

displayable on the terminal or printed by the user.

Program 1.1 A source program in C++.

File : p1.1.cxx

  |     /*

  |              Display Hello World 3 times

  |      */

  |     #include <iostream>

  +     #include <unistd.h>                      // needed for write

  |     #include <cstring>                       // needed for strcpy

  |     #include <cstdlib>                       // needed for exit

  |     using namespace std;

  |     char           *cptr = "Hello World\n";  // static by placement

 10     char            buffer1[25];

  |     int main( ){

  |       void            showit(char *);        // function prototype

  |       int             i = 0;                 // automatic variable

  |       strcpy(buffer1, "A demonstration\n");  // library function

  +       write(1, buffer1, strlen(buffer1)+1);  // system call

  |       for ( ; i < 3; ++i)

  |         showit(cptr);                        // function call

  |       return 0;

  |     }

 20     void showit( char *p ){

  |       char           *buffer2;

  |       buffer2= new char[ strlen(p)+1 ];

  |       strcpy(buffer2, p);                    // copy the string

  |       cout << buffer2;                       // display string

  +       delete [] buffer2;                     // release location

  |     }
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1.2 Library Functions

Programs of any complexity make use of functions. A function is a collection of 

declarations and statements that carries out a specific action and/or returns a value. 

Functions are either defined by the user or have been previously defined and made 

available to the user. Previously defined functions that have related functionality or are 

commonly used (e.g., math or graphics routines) are stored in object code format in 

library (archive) files. Object code format is a special file format that is generated as an 

intermediate step when an executable program is produced. Like executable files, 

object code files are also not displayed to the screen or printed. Functions stored in 

library files are often called library functions or runtime library routines.

The standard location for library files in most UNIX systems is the directory /usr/lib. 

Ancillary library files may also be found in the /usr/local/lib directory. Two basic types of

libraries are used in compilations—static libraries and shared object libraries. Static

libraries are collections of object files that are used during the linking phase of a

program. Referenced code is extracted from the library and incorporated in the

executable image. Shared libraries contain relocatable objects that can be shared by

more than one application. During compilation the object code from the library is not

incorporated in the executable code only a reference to the object is made. When the

executable that uses a shared object library is loaded into memory the appropriate

shared object library is loaded and attached to the image. If the shared object library is

already in memory this copy is referenced. As might be expected shared object

libraries are more complex than static libraries. In Linux, by default, shared object

libraries are used if present otherwise static libraries are used. Most, but not all,

compiler installations include both types of libraries. In the examples below we will

focus on the more ubiquitous static libraries.

By convention, the three-letter prefix for a library file is lib and the file extension for a 

static library is .a. The UNIX archive utility ar, which creates, modifies, and extracts 

members from an archive, can be used to examine library file contents.[1] For 

example, the command



[1] The archive utility is one of the many exceptions to the rule that all 

command-line options for system utilities begin with a hyphen (-).

linux$ ar t /usr/lib/libc.a | pr -4 -t

will pipe the table of contents (indicated by the t command-line option) of the standard 

C library file (libc.a) to the pr utility, which will display the output to the screen in a 

four-column format. The object code in this library is combined by default with all C 

programs when they are compiled. Therefore, in a C program when a reference is 

made to printf, the object code for the printf function is obtained from the /usr/lib/libc.a

library file. Similarly, the command

linux$ ar t /usr/lib/libstdc++-3-libc6.2-2-2.10.0.a | pr -4 -t

will display the table of contents of the C++ library file used by the gcc compiler. 

Remember that the versions (and thus the names) of library files can change when 

the compiler is updated.

Additional information can be extracted from library files using the nm utility. For 

example, the command

linux$ nm -C /usr/lib/libstdc++-3-libc6.2-2-2.10.0.a | grep 'bool operator=='

will find all the C++ equality operators in the referenced library file. The -C

command-line option for nm demangles the compiler-generated C++ function names 

and makes them a bit more readable.

The ar command can also be used to create a library. For example, say we have two 

functions. The first function, called ascii, is stored in a file called ascii.cxx. This function 

generates and returns an ASCII string when passed the starting and endpoint for the 

string. The second function, called change_case (stored in the file change_case.cxx), 

accepts a string and inverts the case of all alphabetic characters in the string. The 

listing for the two programs is shown in Figure 1.1.

Figure 1.1 Source code for two functions to be stored in archive libmy_demo.a.

File : ascii.cxx

  |     char *

  |     ascii( int start, int finish ){

  |      char *b = new char(finish-start+1);



  |      for (int i=start; i <= finish; ++i)

  +        b[i-start]=char( i );

  |      return b;

  |     }

____________________________________________________________________________________

File : change_case.cxx

  |     #include <ctype.h>

  |

  |     char *

  |     change_case( char *s ){

  +       char *t = &s[0];

  |       while ( *t ){

  |         if ( isalpha(*t) )

  |           *t += islower(*t) ? -32 : 32;

  |         ++t;

 10       }

  |       return s;

  |     }

Each file is compiled into object code, the archive libmy_demo.a generated, and the 

object code added to the archive with the following command sequence:

linux$ g++ -c change_case.cxx

linux$ g++ -c ascii.cxx

linux$ ar cr libmy_demo.a ascii.o change_case.o

The prototypes for the functions in the my_demo library are placed in a corresponding 

header file called my_demo.h. Preprocessor directives are used in this file to prevent it 

from being inadvertently included more than once. A small C++ program, main.cxx, is 

created to exercise the functions. With the "" notation for the include statement in 

main.cxx, the compiler will look for the my_demo.h header file in the current directory. 

The contents of the my_demo.h header file and the main.cxx program are shown in 

Figure 1.2.

Figure 1.2 Header file and test program for libmy_demo.a.

File : my_demo.h

  |     /*

  |        Prototypes for my_demo library functions

  |      */

  |     #ifndef MY_DEMO_H

  +     #define MY_DEMO_H

  |



  |     char * ascii( int, int );

  |     char * change_case( char * );

  |

 10     #endif

____________________________________________________________________________________

File : main.cxx

  |     #include <iostream>

  |     #include "my_demo.h"

  |     using namespace std;

  |     int

  +     main( ) {

  |       int start, stop;

  |       char b[20];                          // temp string buffer

  |

  |       cout << "Enter start and stop value for string: ";

 10       cin  >> start >> stop;

  |       cout << "Created string  : " << ascii(start, stop) << endl;

  |       cin.ignore(80,'\n');

  |       cout << "Enter a string  : ";

  |       cin.getline(b,20);

  +       cout << "Converted string: " << change_case( b ) << endl;

  |       return 0;

  |     }

The compilation shown below uses the -L command-line option to indicate that when 

the compiler searches for library files it should also include the current directory. The 

name of the library is passed using the -l command-line option. As source files are 

processed sequentially by the compiler, it is usually best to put linker options at the 

end of the command sequence to avoid the generation of any undefined reference 

errors.

linux$ g++ -o main main.cxx -L. -lmy_demo

A sample run of the main.cxx program is shown in Figure 1.3.

Figure 1.3 Sample run testing the archived functions.

linux$ main                                          <-- 1

Enter start and stop value for string: 56 68

Created string  : 89:;<=>?@ABCD

Enter a string  : This is a TEST!

Converted string: tHIS IS A test!



(1) If your distribution of Linux does not include "." as part of its login

path you will need to invoke the program as ./main.

If your system supports the apropos command, you may issue the following command 

to obtain a single-line synopsis of the entire set of predefined library function calls 

described in the manual pages on your system:

linux$ apropos '(3'

As shown, this command will search a set of system database files containing a brief 

description of system commands returning those that contain the argument passed. In 

this case, the '(3' indicates all commands in Section 3 of the manual should be 

displayed. Section 3 (with its several subsections) contains the subroutine and library 

function manual pages. The single quotes are used in the command sequence so the 

shell will pass the parenthesis on to the apropos command. Without this, the shell 

would attempt to interpret the parenthesis, which would then produce a syntax error.

Another handy utility that searches the same database used by the apropos command 

is the whatis command. The command

linux$ whatis exit

would produce a single-line listing of all manual entries for exit. If the database for 

these commands is not present, the command /usr/ sbin/makewhatis, providing you have 

the proper access privileges, will generate it.

A more expansive overview of the library functions may be obtained by viewing the 

intro manual page entry for Section 3. On most systems the command

linux$ man 3 intro

will return the contents of the intro manual page. In this invocation the 3 is used to 

notify man of the appropriate section. For some versions of the man command, the 

option -s3 would be needed to indicate Section 3 of the manual. Additional manual 

page information addressing manual page organization and use can be found in 

Appendix A, "Using Linux Manual Pages."

In addition to manual pages, most GNU/Linux systems come with a handy utility 



program called info. This utility displays documentation written in Info format as well as 

standard manual page documents. The information displayed is text-based and 

menu-driven. Info documents can support limited hypertext-like links that will bring the 

viewer to a related document when selected. When present, Info documentation is 

sometimes more complete than the related manual page. A few of the more 

interesting Info documents are listed in Table 1.1.

Table 1.1. Partial Listing of Info Documents.

Topic Description

as The GNU assembler.

binutils GNU binary utilities (such as ar).

fileutils GNU file manipulation utilities.

gcc The gcc (and g++) compiler. Look here for information on how to use the 

compiler, special C++ extensions, etc.

gdb How to use the GNU symbolic debugger.

info How to use the info system. Look here for all the gory details on how to use 

info and write Info type documentation.

ipc System V style interprocess communication constructs: message queues, 

semaphores, and shared memory.

libc The C library (as implemented by GNU). A good place to start for an 

overview on topics such as signals, pipes, sockets, and threads.

The info utility should be invoked on the command line and passed the item (a general

topic or a specific command—system call, library function, etc.) to be looked up. If an

Info document exists, it is displayed by the info utility. If no Info document exists but 

there is a manual page for the item, then it is displayed (at the top of the Info display 

will be the string *manpages* to notify you of the source of the information. If neither an 

Info document nor a manual page can be found, then info places the user in the info

utility at the topmost level. When in the info utility, use the letter q to quit or a ? to have 

info list the commands it knows. Entering the letter h will direct info to display a primer 

on how to use the utility.
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1.3 System Calls

Some previously defined functions used by programs are actually system calls. While 

resembling library functions in format, system calls request the operating system to 

directly perform some work on behalf of the invoking process. The code that is 

executed by the operating system lies within the kernel (the central controlling 

program that is normally maintained permanently in memory). The system call acts as 

a high/mid-level language interface to this code. To protect the integrity of the kernel, 

the process executing the system call must temporarily switch from user mode (with 

user privileges and access permissions) to system mode (with system/root privileges 

and access permissions). This switch in context carries with it a certain amount of 

overhead and may, in some cases, make a system call less efficient than a library 

function that performs the same task. Keep in mind many library functions (especially 

those dealing with input and output) are fully buffered and thus allow the system some 

control as to when specific tasks are actually executed.

Section 2 of the manual contains the pages on system calls. Issuing an apropos

command similar to the one previously discussed but using the value 2 in place of 3 

will generate synopsis information on all the system calls defined in the manual pages. 

It is important to remember that some library functions have embedded system calls. 

For example, << and >>, the C++ insertion and extraction operators, make use of the 

underlying system calls read and write.

The relationship of library functions and system calls is shown in Figure 1.4. The 

arrows in the diagram indicate possible paths of communication, and the dark circles 

indicate a context switch. As shown, executable programs may make use of system 

calls directly to request the kernel to perform a specific function. On the other hand, 

the executable programs may invoke a library function, which in turn may perform 

system calls.

Figure 1.4. Hardware and software layers.
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1.4 Linking Object Code

Code from library files, predefined or user-defined, is combined with object code from 

the source program at compile time on an as-needed basis. When programming in 

C/C++, additional library files containing the object code for system calls and library 

functions not contained in the standard library can be specified at compile time. This is 

done by using the -l compiler option, followed by the library name without the lib prefix 

and the .a extension. For example, the compilation command

linux$ gcc prgm.c -lm

indicates to the link-loader portion of the gcc compiler program that the math library 

object code found in libm.a should be combined with the object code created from the 

source program prgm.c. If a special library is needed that does not reside in the 

standard location, the compiler can be notified of this. The GNU compilers use the -L

option, followed by the additional directory (or directories) to be searched. The 

processing of files passed on the command line to the compiler are done sequentially. 

Thus, linker options are usually placed at the end of the command sequence to avoid 

any undefined (unresolved) reference errors.

Be aware that library functions often require the inclusion of additional header files in 

the source program. The header files contain such information as the requisite 

function prototypes, macro definitions, and defined constants. Without the inclusion of 

the proper header files, the program will not compile correctly. Conversely, the 

program will not compile correctly if you include the proper header file(s) and forget to 

link in the associated library containing the object code! Such omissions are often the 

source of cryptic compiler error messages. For example, attempting to compile a C 

program with gcc that uses a math function (such as pow) without linking in the math 

library generates the message

linux$ gcc m.c

/tmp/ccjKMi3A.o: In function 'main':

/tmp/ccjKMi3A.o(.text+0x15): undefined reference to 'pow'

collect2: ld returned 1 exit status
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The synopsis section of the manual page (see Appendix A) lists the names of header 

file(s) if they are required. When multiple inclusion files are indicated, the order in 

which they are listed in the source program should match the order specified in the 

manual pages. The order of the inclusion is important, as occasionally the inclusion of 

a specific header file will depend upon the inclusion of the previously referenced 

header file. This dependency relationship is most commonly seen as the need for 

inclusion of the <sys/types.h> header file prior to the inclusion of other system header 

files. The notation <sys/types.h> indicates that the header file types.h can be found in the 

usual place (most often /usr/include on a UNIX-based system) in the subdirectory sys.

1-1 EXERCISE

Examine the contents of the standard C library (/usr/lib/libc.a). How many 

printf-related functions are archived in the standard C library?

1-2 EXERCISE

Are there any library functions/system calls that occur in more than one 

library? If so, name one and explain why this might be done.

1-3 EXERCISE

Add a reverse function to the my_demo library discussed in Section 1.2. This 

function should reverse the contents of its character string argument. 

Provide evidence that your function works correctly.
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1.5 Managing Failures

In most cases,[2] if a system call or library function is unsuccessful, it returns a value of 

-1 and assigns a value to an external (global) variable called errno to indicate what the 

actual error is. The defined constants for all error codes can be found in the header file 

<sys/errno.h> (or in <asm/errno.h> on some systems). By convention, the defined 

constants are in uppercase and start with the letter E. It is a good habit to have the 

invoking program examine the return value from a system call or library function to 

determine if it was successful. If the invocation fails, the program should take an 

appropriate action. A common action is to display a short error message and exit

(terminate) the program. The library function perror can be used to produce an error 

message.

[2] This type of hedging is necessary, since system calls/library functions 

that return an integer value usually return a -1 on failure, while those 

that return a pointer return a NULL pointer. However, as these routines 

are written by a disjointed set of programmers with differing ideas on 

what should be done, a return value that does not meet this rule of 

thumb is occasionally encountered.

For each system call and library function discussed in detail in the text, a summary 

table is given. The summary table is a condensed version of manual page information. 

The format of a typical summary table (in this case the one for perror) is shown in 

Figure 1.5.

Figure 1.5. Explanation of the summary table format.
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The summary table for perror indicates the header file <stdio.h> must be included if we 

are to use perror. Notice that the header file <sys/errno.h>, which was mentioned 

previously, is not referenced in the summary table. The <sys/errno.h> file is included 

only if the defined constants for specific error codes are to be referenced. The perror

library function takes a single argument, which is a pointer to a character string 

constant (i.e., const char *). In addition, the perror library function does not return a value 

(as indicated by the data type void) and will not modify errno if it itself fails.

A program example using systems calls that provides some error checking by perror

and errno is shown in Program 1.2.

Program 1.2 Using errno and perror.

File : p1.2.cxx

  |     /*

  |        Checking errno and using perror

  |      */

  |     #include <iostream>

  +     #include <cstdio>                       // needed for perror

  |     #include <cstdlib>                      // needed for exit

  |     #include <unistd.h>                     // needed for read and write

  |     using namespace std;

  |     extern int errno;

 10     int

  |     main(int argc, char *argv[ ]) {

  |       int n_char = 0,                       // # of chars read

  |       buffer[10];                           // temporary buffer

  |

  +       // Initially n_char is set to 0 and errno is 0 by default

  |

  |       cout << "n_char = " << n_char << "\t errno = " << errno << endl;

  |

  |       // Display a prompt to stdout

 20



  |       n_char = write(1, "Enter a word: ", 15);

  |

  |       // Use the read system call to obtain 10 characters from stdin

  |

  +       n_char = read(0, buffer, 10);

  |       cout << "n_char = " << n_char << "\t errno = " << errno << endl;

  |

  |       if (n_char == -1) {                  // If the read has failed

  |         perror(argv[0]);

 30         exit(1);

  |       }

  |

  |       n_char = write(1, buffer, n_char);   // Display the characters read

  |       return 0;

  +     }

Notice that to use the errno variable it must first be declared as an external (extern) 

integer at the top of the program. If this program is run, the initial output indicates that 

both n_char and errno contain the value 0. Figure 1.6 shows the output if the user enters 

the word testing when prompted.

Figure 1.6 Initial run of Program 1.2 with no errors.

linux$ p1.2

n_char = 0     errno = 0

Enter a word: testing

n_char = 8     errno = 0

testing

In this case the read system call did not fail and has instead, as defined in the manual 

page, returned the number of characters read from standard input (the keyboard). 

Note, as we have used read in the program, not cin, the newline will be one of the 

characters that is read and counted. As there was no error, the value in errno was not 

modified and remained at 0. Figure 1.7 shows the output if we run the program again 

and input more than 10 characters when prompted (in hopes of generating an error).

Figure 1.7 Second run of Program 1.2 with additional keyboard input.

$ p1.2

n_char = 0    errno = 0

Enter a word: testing further

n_char = 10   errno = 0



testing fu$rther

rther: Command not found.

This time the program reads exactly 10 characters and displays them. The remaining 

characters are left in the input buffer and end up being processed by the operating 

system after the program finishes execution. This produces the output of the strange 

line testing fu$rther followed by the line rther: Command not found. The characters testing fu

are displayed by the program. The Command not found message is generated by the 

operating system when it attempts to execute the leftover input rther as a command. In

this case, providing more input values than needed (i.e., extra characters) does not 

cause the read system call to fail, and as a result errno is not changed.

However, if we change the file number for the read system call to 3 (a file number that 

has not been opened versus 0 [standard input] which is automatically opened for us by 

the operating system when the program runs), the read system call will fail. When run, 

the program output will be as shown in Figure 1.8.

Figure 1.8 Third run of Program 1.2 with an induced error.

linux$ p1.2

n_char = 0    errno = 0

Enter a word: n_char = -1    errno = 9

p1.2: Bad file descriptor

As expected, this time the return value from the read system call is -1. The external 

variable errno now contains the value 9 that is equivalent to the symbolic constant 

EBADF defined in the <sys/errno.h> file.[3] If we call perror with a NULL argument, "", the 

message "Bad file descriptor" will be displayed (the error message the system 

associates with error code 9). As noted, perror does take one argument: a character 

pointer. If passed a character pointer to a valid string, perror will display the referenced 

string followed by a colon (:) and then append its predefined error message. 

Programmers often use the argument to perror to qualify the error message (e.g., to 

pass the name of the executing program, as was done in the prior example) or in the 

case of file manipulation, pass the name of the current file. Unfortunately, perror issues 

a new line following the error message it produces, thus preventing the user from 

appending additional information to the perror display line. There are two ways around 

this oversight.



[3] Again, in some Linux environments you may find that this constant is 

actually defined in the errno.h include file located in the directory 

/usr/include/asm directory.

Associated with perror are two additional external variables. These variables are extern 

const char *sys_errlist[ ] and extern int sys_nerr. The external variable sys_nerr contains a 

value that is one greater than the largest error message number value, while sys_errlist

is a pointer to an external character array of error messages. In place of calling perror

to return the specific error, we may (if we have provided the proper declarations) use 

the value in errno to index the sys_errlist[ ] array to obtain the error message directly.

Another approach to error message generation is to use the library function strerror

(see Table 1.2).

Table 1.2. Summary of the strerror Library Function.

Include File(s) <string.h> Manual Section 3

Summary char *strerror(int errnum);

Return

Success Failure Sets errno

Reference to error message   

The strerror function maps the integer errnum argument (which is usually the errno value) 

to an error message and returns a reference to the message. The error message 

generated by strerror should be the same as the message generated by perror. If 

needed, additional text can be appended to the string returned by strerror.

Furthermore, Linux provides a command-line utility program called perror that returns 

the error message associated with a specific error code. A sample call of this utility 

follows:

linux$ perror 9

Error code  9: Bad file descriptor

Note that the system never clears the errno variable (even after a successful system 

call). It will always contain the value assigned by the system for the last failed call. 

Appendix B, "Linux Error Messages," contains additional information on error 



messages.

1-4 EXERCISE

Write a program to display all of the available system error messages in a 

numbered two-columns-per-line format.

1-5 EXERCISE

The first argument to the read/write system call is an integer value indicating 

the file descriptor. When a program executes, the operating system will 

automatically open three file descriptors: stdin (standard input, which defaults 

to the keyboard and is referenced by the value 0), stdout (standard output, 

which defaults to the terminal [screen] and is referenced by the value 1), and

stderr (standard error, which defaults to the console device and is referenced 

by the value 2). If the last write in Program 1.2 is written to 0 (standard

input—the keyboard), the program will still compile, run, produce output, and

not generate an error message. Why is this? One place to start to unravel 

this mystery might be the command apropos stdin.

1-6 EXERCISE

Write your own error messaging function that is called when a file 

manipulation failure occurs. The function should provide a more descriptive, 

user-friendly interface than perror. It might be helpful to examine the header 

file <sys/errno.h> (as noted previously, an alternate location for this file is the 

/usr/include/asm directory) and the manual page entry for intro in Section 2 (i.e., 

man 2 intro) prior to starting this assignment.
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1.6 Executable File Format

In a Linux environment, source files that have been compiled into an executable form 

to be run by the system are put into a special format called ELF (Executable and 

Linking Format). Files in ELF format contain a header entry (for specifying 

hardware/program characteristics), program text, data, relocation information, and 

symbol table and string table information. Files in ELF format are marked as 

executable by the operating system and may be run by entering their name on the 

command line. Older versions of UNIX stored executable files in a.out format 

(Assembler OUtpuT Format). While this format is little used today, its name is still tied 

to the compilation sequence. When C/C++ program files are compiled, the compiler, 

by default, places the executable file in a file called a.out.

1-7 EXERCISE

The layout of the header entry of an ELF format file is defined by the 

Elf32_Ehdr (or Elf64_Ehdr) structure found in the header file <elf.h>. Write a short 

C/C++ program that will read the name of a file passed on the command line 

and determine if the file named is in ELF format and, if so, on what 

architecture (hardware) type the file will run. You will need to include the 

header file <libelf/libelf.h> to access predefined ELF header routines, such as 

elf_begin (used to obtain the ELF descriptor). You must also link the ELF library 

(i.e., -lelf) when you compile your program. Note that the system utility file, 

which identifies file types, uses the information in the file /usr/share/magic to 

identify files. An alternate approach to this exercise is to use the 

/usr/share/magic information to identify an ELF file and the architecture on which 

it will execute.
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1.7 System Memory

In UNIX, when an executable program is read into system memory by the kernel and 

executed, it becomes a process. We can consider system memory to be divided into 

two distinct regions or spaces. First is user space, which is where user processes run. 

The system manages individual user processes within this space and prevents them 

from interfering with one another. Processes in user space, termed user processes, 

are said to be in user mode. Second is a region called kernel space, which is where 

the kernel executes and provides its services. As noted previously, user processes 

can only access kernel space through system calls. When the user process runs a 

portion of the kernel code via a system call, the process is known temporarily as a 

kernel process and is said to be in kernel mode. While in kernel mode, the process will 

have special (root) privileges and access to key system data structures. This change 

in mode, from user to kernel, is called a context switch.

In UNIX environments, kernels are reentrant, and thus several processes can be in 

kernel mode at the same time. If the system has a single processor, then only one 

process will be making progress at any given time while the others are blocked. The 

operating system uses a bit, stored in the program status word (PSW), to keep track 

of the current mode of the process.
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1.8 Process Memory

Each process runs in its own private address space. When residing in system memory, the user 

process, like Gaul, is divided into three segments or regions: text, data, and stack.

text segment— The text segment (sometimes called the instruction segment) contains the

executable program code and constant data. The text segment is marked by the operating

system as read-only and cannot be modified by the process. Multiple processes can share the

same text segment. Processes share the text segment if a second copy of the program is to be

executed concurrently. In this setting the system references the previously loaded text

segment rather than reloading a duplicate. If needed, shared text, which is the default when

using the C/C++ compiler, can be turned off by using the -N option on the compile line. In 

Program 1.1, the executable code for the functions main and showit would be found in the text 

segment.

data segment— The data segment, which is contiguous (in a virtual sense) with the text

segment, can be subdivided into initialized data (e.g., in C/C++, variables that are declared as

static or are static by virtue of their placement) and uninitialized data.[4] In Program 1.1, the 

pointer variable cptr would be found in the initialized area and the variable buffer1 in the 

uninitialized area. During its execution lifetime, a process may request additional data segment 

space. In Program 1.1 the call to the library routine new in the showit function is a request for 

additional data segment space. Library memory allocation routines (e.g., new, malloc, calloc, 

etc.) in turn make use of the system calls brk and sbrk to extend the size of the data segment. 

The newly allocated space is added to the end of the current uninitialized data area. This area 

of available memory is sometimes called the heap. In Figure 1.9 this region of memory is 

labeled as unmapped.

[4] Some authors use the term BSS segment for the unitialized data segment.

Figure 1.9. System and process memory.



stack segment— The stack segment is used by the process for the storage of automatic

identifiers, register variables, and function call information. The identifier i in the function main, 

buffer2 in the function showit, and stack frame information stored when the showit function is 

called within the for loop would be found in the stack segment. As needed, the stack segment 

grows toward the uninitialized data segment. The area beyond the stack contains the 

command-line arguments and environment variables for the process. The actual physical 

location of the stack is system-dependent.
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1.9 The u Area

In addition to the text, data, and stack segments, the operating system also maintains 

for each process a region called the u area (user area). The u area contains 

information specific to the process (e.g., open files, current directory, signal actions, 

accounting information) and a system stack segment for process use. If the process 

makes a system call (e.g., the system call to write in the function main in Program 1.1), 

the stack frame information for the system call is stored in the system stack segment. 

Again, this information is kept by the operating system in an area that the process 

does not normally have access to. Thus, if this information is needed, the process 

must use special system calls to access it. Like the process itself, the contents of the u

area for the process are paged in and out by the operating system.

The conceptual relationship of system and process memory is illustrated in Figure 1.9.
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1.10 Process Memory Addresses

The system keeps track of the virtual addresses[5] associated with each user process 

segment. This address information is available to the process and can be obtained by 

referencing the external variables etext, edata, and end. The addresses (not the 

contents) of these three variables correspond respectively to the first valid address 

above the text, initialized data, and uninitialized data segments. Program 1.3 shows 

how this information can be obtained and displayed.

[5] Logical addresses—calculated and used without concern as to their

actual physical location.

Program 1.3 Displaying segment address information.

File : p1.3.cxx

  |     /*

  |         Displaying process segment addresses

  |      */

  |     #include <iostream>

  +     extern int etext, edata, end;

  |     using namespace std;

  |     int

  |     main( ){

  |       cout << "Adr etext: " << hex << int(&etext) << "\t ";

 10       cout << "Adr edata: " << hex << int(&edata) << "\t ";

  |       cout << "Adr end: "   << hex << int(&end  ) << "\n";

  |       return 0;

  |     }

If we add a few lines of code to our original Program 1.1, we can verify the virtual 

address location of key identifiers in our program. Program 1.4 incorporates an inline 

function, SHW_ADR( ), to display the address of an identifier.

Program 1.4 Confirming Program 1.1 address locations.

File : p1.4.cxx



  |        /*

  |           Program 1.1 modified to display identifier addresses

  |         */

  |        #include <iostream>

  +        #include <unistd.h>                      // needed for write

  |        #include <cstring>                       // needed for strcpy

  |        #include <cstdlib>                       // needed for exit

  |        using namespace std;

  |        char           *cptr = "Hello World\n";  // static by placement

 10        char            buffer1[25];

  |

  |        inline void SHW_ADR(char *ID, int address){

  |        cout << "The id " << ID << "\t is at : "

  |             << hex << address << endl;

  +        }

  |        extern int etext, edata, end;

  |

  |        int main( ){

  |          void            showit(char *);        // function prototype

 20          int             i = 0;                 // automatic variable

  |                                                 // display addresses

  |          cout << "Adr etext: " << hex << int(&etext) << "\t ";

  |          cout << "Adr edata: " << hex << int(&edata) << "\t ";

  |          cout << "Adr end: "   << hex << int(&end ) << "\n";

  +          SHW_ADR("main", int(main));            // function addresses

  |          SHW_ADR("showit", int(showit));

  |          SHW_ADR("cptr", int(&cptr));           // static

  |          SHW_ADR("buffer1", int(&buffer1));

  |          SHW_ADR("i", int(&i));                 // automatic

 30

  |          strcpy(buffer1, "A demonstration\n");  // library function

  |          write(1, buffer1, strlen(buffer1)+1);  // system call

  |          showit(cptr);                          // function call

  |          return 0;

  +        }

  |     void showit( char *p ){

  |       char           *buffer2;

  |       SHW_ADR("buffer2", int(&buffer2));   // display address

  |

 40       if ((buffer2= new char[ strlen(p)+1 ]) != NULL){

  |         strcpy(buffer2, p);                // copy the string

  |         cout << buffer2;                   // display string

  |         delete [] buffer2;                 // release location

  |       } else {

  +         cerr << "Allocation error.\n";

  |         exit(1);



  |       }

  |     }

A run of this program produces output (Figure 1.10) that verifies our assertions 

concerning the range of addresses for identifiers of different storage types. Note the 

actual addresses displayed by the program are system-dependent. Note that the 

command-line nm utility program can also be used verify the addresses displayed by 

Program 1.4.

Figure 1.10 Output of Program 1.4.

Adr etext: 8048bca       Adr edata: 8049e18      Adr end: 8049ea8

The id main      is at : 8048890

The id showit    is at : 8048a44

The id cptr      is at : 8049c74

The id buffer1   is at : 8049e8c

The id i         is at : bffffc54

A demonstration

The id buffer2   is at : bffffc34

Hello World

The output of Program 1.4 is presented pictorially in Figure 1.11.

Figure 1.11. Address locations in Program 1.4.

For those with a further interest in this topic, many versions of Linux have an objdump

utility that provides additional information for a specified object file.



1-8 EXERCISE

When in the Bourne shell, investigate the commands ulimit -a and size. How 

does the information these commands report relate to the values of etext, 

edata, and end?
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1.11 Creating a Process

It is apparent that there must be some mechanism by which the system can create a 

new process. With the exception of some special initial processes generated by the 

kernel during bootstrapping (e.g., init), all processes in a Linux environment are 

created by a fork system call, shown in Table 1.3. The initiating process is termed the 

parent, and the newly generated process, the child.

Table 1.3. Summary of the fork System Call.

Include File(s)
<sys/types.h>

<unistd.h> Manual Section 2

Summary[*] pid_t fork ( void );

Return
Success Failure Sets errno

0 in child, child process ID in the parent -1 Yes

[*] The include file <sys/types.h> usually contains the definition of pid_t. 

However, in some environments the actual definition will reside in 

<bits/types.h>. Fortunately, in these environments the <sys/types.h>

contains an include statement for the alternate definition location, and 

all remains transparent to the casual user. The include file <unistd.h>

contains the declaration for the fork system call.

The fork system call does not take an argument. If the fork system call fails, it returns a 

-1 and sets the value in errno to indicate one of the error conditions shown in Table 1.4.



Table 1.4. fork Error Messages.
[6]

# Constant perror Message Explanation

11 EAGAIN Resource 

temporarily 

unavailable

The operating system was unable to allocate 

sufficient memory to copy the parent's page 

table information and allocate a task structure for 

the child.

12 ENOMEM Cannot allocate 

memory

Insufficient swap space available to generate 

another process.

[6] If the library function/system call sets errno and can fail in multiple

ways, an error message table will follow the summary table. This table 

will contain the error number (#), the equivalent defined constant, the 

message generated by a call to perror, and a brief explanation of the 

message in the current context.

Otherwise, when successful, fork returns the process ID (a unique integer value) of the 

child process to the parent process, and it returns a 0 to the child process. By 

checking the return value from fork, a process can easily determine if it is a parent or 

child process. A parent process may generate multiple child processes, but each child 

process has only one parent. Figure 1.12 shows a typical parent/child process 

relationship.

Figure 1.12. The parent/child process relationship.



As shown, process P1 gives rise to three child processes: C1, C2, and C3. Child 

process C1 in turn generates another child process (C4). As soon as a child process 

generates a child process of its own, it becomes a parent process.

1-9 EXERCISE

When you check the process status table on a Linux system (see the 

process status command ps), a number of processes with low process IDs 

(1,2,3, etc.) will be present (for example, init, keventd, kswapd). A search of the 

file system(s) will show that while there is a system program called init (most 

often found as /sbin/init), there is no system program file for these other 

processes. Why is this?

When a fork system call is made, the operating system generates a copy of the parent 

process, which becomes the child process. The operating system passes to the child 

process most of the parent's system information (e.g., open file descriptors, 

environment information). However, some information is unique to the child process:

The child has its own process ID (PID).

The child will have a different parent process ID (PPID) than its parent.

System-imposed process limits (amount of CPU time the process is allotted) 

are reset.

All record locks on files are reset.

The action to be taken when receiving signals is different.

A program that uses the fork system call is shown in Program 1.5.

Program 1.5 Generating a child process.



File : p1.5.cxx

  |     /*

  |         First example of a fork system call (no error check)

  |      */

  |     #include <iostream>

  +     #include <sys/types.h>

  |     #include <unistd.h>

  |     using namespace std;

  |     int

  |     main( ) {

 10       cout << "Hello\n";

  |       fork( );

  |       cout << "bye\n";

  |       return 0;

  |     }

The output of the program is listed in Figure 1.13.

Figure 1.13 Output of Program 1.5.

linux$ p1.5

Hello

bye

bye

Notice that the statement cout << "bye\n"; only occurs once in the program at line 12, but 

the run of the program produces the word "bye" twice—once by the parent process

and once by the child process. Once the fork system call at line 11 is executed there 

are two processes each of which executes the remaining program statements. A more

detailed description of the fork system call and its uses can be found in Chapter 3, 

"Using Processes."
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1.12 Summary

Processes are instances of executable programs that are run and managed by the 

operating system. Programs make use of predefined functions to implement their 

tasks. Some of these predefined functions are actually system calls. System calls 

request the kernel to directly perform a task for the process. Other predefined 

functions are library functions. Library functions, which may indirectly contain system 

calls, also perform tasks for the process, but in a less intrusive manner. The object 

code for system calls and library functions is stored in object code format in library 

files. The object code for system calls and library functions is included, on an 

as-needed basis, when a program is compiled.

When a system call or library function fails, the external variable errno can be 

examined to determine the reason for failure. The library functions perror or strerror can 

be used to generate a descriptive error message.

Executing programs are placed in system memory. The executable code and constant

data for the program are placed in a region known as the text segment. The initialized 

and uninitialized program data is placed in the data segment. The program stack 

segment is used to handle automatic program variables and function call data. In 

addition, the system will keep process-specific information and system call data in the 

user area (u area) of memory.

Processes are generated by the fork system call. A newly generated process inherits 

the majority of its state information from its parent.
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1.13 Key Terms and Concepts

a.out format

apropos command

ar command

child process

context switch

data segment

ELF format

errno variable

executable program

fork system call

function

heap

info command

kernel

kernel mode

kernel process

kernel space



library file

library function

man command

multiprocessing

multiprogramming

multitasking

nm command

object code

parent process

perror library function

process

program

runtime library routine

source program

stack segment

strerror library function

sys_errlist variable

sys_nerr variable

system call

system mode

text segment



u area

user mode

user process

user space

whatis command
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Chapter 2. Processing Environment
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2.1 Introduction

All processes have a processing environment (not to be confused with environment 

variables that are, as we will see, just one part of the processing environment). The 

processing environment consists of a unique set of information and conditions that is 

determined by the current state of the system and by the parent of the process. A 

process can access processing environment information and, in some cases, modify 

it. This is accomplished either directly or by using the appropriate system calls or 

library functions.
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2.2 Process ID

Associated with each process is a unique positive integer identification number called 

a process ID (PID). As process IDs are allocated sequentially, when a system is 

booted, a few system processes, which are initiated only once, will always be 

assigned the same process ID. For example, on a Linux system process 0 (historically 

known as swapper) is created from scratch during the startup process. This process 

initializes kernel data structures and creates another process called init. The init

process, PID 1, creates a number of special kernel threads[1] to handle system 

management. These special threads typically have low PID numbers.

[1] Threads are covered in detail in Chapter 11. Simplistically, a thread is 

the flow of control through a process. Operating systems vary on how 

they actually implement a thread. In Linux a thread is a special type of 

process that shares address space and resources with its parent 

process. A kernel thread, which runs only in kernel mode, is responsible 

for a single kernel function, such as flushing buffers to disk or 

reclaiming returned memory.

Other processes are assigned free PIDs of increasing value until the maximum 

system value for a PID is reached. The maximum value for PIDs can be found as the 

defined constant PID_MAX in the header file <linux/threads.h> (on older systems check 

<linux/tasks.h>). When the highest PID has been assigned, the system wraps around 

and begins to reuse lower PID numbers not currently in use.

The system call getpid can be used to obtain the PID (Table 2.1). The getpid system call 

does not accept an argument. If it is successful, it will return the PID number. If the 

calling process does not have the proper access permissions, the getpid call will fail,

returning a value of – 1 and setting errno to EPERM (1).
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Table 2.1. Summary of the getpid System Call.

Include File(s) <sys/types.h>

<unistd.h>
Manual Section 2

Summary pid_t getpid( void );

Return

Success Failure Sets errno

The process ID –1 Yes

A process can determine its own PID by use of the getpid system call, as shown in the 

following code segment:

cout << "My process ID is " << getpid() << endl;

The getpid system call is of limited use. Usually the PID will be different on each 

invocation of the program. The manual page entry for getpid notes that the most 

common use for this system call is the generation of unique temporary file names. 

However, for everyday use, the library function mkstemp is much better suited for the 

production of unique temporary file names.
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2.3 Parent Process ID

Every process has an associated parent process ID (PPID). The parent process is the 

process that forked (generated) the child process. The ID of the parent process can 

be obtained by using the system call getppid (Table 2.2).

Table 2.2. Summary of the getppid System Call.

Include File(s) <sys/types.h>

<unistd.h>
Manual Section 2

Summary Pid_t getppid( void );

Return

Success Failure Sets errno

The parent process ID –1 –Yes

Like the getpid system call, getppid does not require an argument. If it is successful, it 

will return the PID number of the parent process. The getppid call will fail, returning a 

value of -1 and setting errno to EPERM (1) if the calling process does not have the 

proper access permissions.

The following code segment displays the PPID:

cout << "My Parent Process ID is " << getppid( ) << endl;

Unfortunately, there is no system call that allows a parent process to determine the 

PIDs of all its child processes. If such information is needed, the parent process 

should save the returned child PID value from the fork system call as each child 

process is created.

2-1 EXERCISE
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The manual page entry for the getppid system call does not specifically 

indicate what is returned by getppid if the parent process is no longer present 

when the getppid call is made. Write a program that displays the value 

returned by getppid when such an event occurs (the parent predeceases the 

child). How did you assure that the parent process was not present when the 

child process made its getppid call?
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2.4 Process Group ID

Every process belongs to a process group that is identified by an integer process 

group ID value. When a process generates child processes, the operating system 

automatically creates a process group. The initial parent process is known as the 

process leader. The process leader's PID will be the same as its process group ID.[2]

Additional process group members generated by the process group leader inherit the 

same process group ID. The operating system uses process group relationships to 

distribute signals to groups of processes. For example, should a process group leader 

receive a kill or hang-up signal causing it to terminate, then all processes in its group 

will also be passed the same terminating signal. A process can find its process group 

ID from the system call getpgid. In some versions of Linux you may find the getpgid

system call absent. In these versions the system call getpgrp (which requires no PID 

argument) provides the same functionality as the getpgid system call. The getpgid

system call is defined in Table 2.3.

[2] Ah-ha—other than generating temporary file names, another use for

the getpid system call!

Table 2.3. Summary of the getpgid System Call.

Include File(s) <sys/types.h>

<unistd.h>
Manual Section 2

Summary pid_t getpgid( pid_t pid );

Return

Success Failure Sets errno

The process group ID –1 –Yes

If successful, this call will return the process group ID for the pid that is passed. If the 

value of pid is 0, the call is for the current process (eliminating the need for a separate 

call to getpid). If the getpgid system call fails, a – 1 is returned and the value in errno is 

set to one of the values in Table 2.4 to indicate the source of the error.
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Table 2.4. getpgid Error Messages.

# Constant perror Message Explanation

1 EPERM Not owner Invalid access permissions for the calling process.

3 ESRCH No such process No such process ID as pid.

A short program using the getpgid system call is shown in Program 2.1. Before looking 

over the program, a brief explanation concerning the compilation of the program is in 

order. As UNIX has evolved, developers have established a number of standards 

such as ANSI C, POSIX. 1, POSIX. 2, BSD, SVID, X/Open, and others. On occasion, 

system calls (such as getpgid) and library functions created under one standard (say, 

BSD) are modified slightly to meet the requirements for another standard (such as 

POSIX). When using the g++ compiler, defining the constant _GNU_SOURCE instructs 

the compiler to use the POSIX definition if there is a conflict.

Program 2.1 Displaying process group IDs.

File : p2.1.cxx

  |     /*

  |             Displaying process group ID information

  |      */

  |     #define _GNU_SOURCE

  +     #include <iostream>

  |     #include <sys/types.h>

  |     #include <unistd.h>

  |     using namespace std;

  |     int

 10     main(  ){

  |       cout << "\n\nInitial process \t PID " << getpid()

  |            << "\t PPID "<< getppid()

  |            << "\t GID " << getpgid(0)

  |            << endl << getpgid(pid_t(getppid())) << endl;

  +

  |       for (int i = 0; i < 3; ++i)

  |         if (fork( ) == 0)                  // Generate some processes

  |           cout << "New process      \t PID " << getpid()

  |                << "\t PPID "<< getppid()

 20                << "\t GID " << getpgid(0)

  |                << endl;



  |       return 0;

  |     }

Figure 2.1 displays the output of the program.

Figure 2.1 Program 2.1 output.

Initial process          PID 3350        PPID 3260       GID 3350

New process              PID 3351        PPID 3350       GID 3350

New process              PID 3352        PPID 3351       GID 3350

New process              PID 3353        PPID 3350       GID 3350

New process              PID 3356        PPID 3353       GID 3350

New process              PID 3355        PPID 3351       GID 3350

New process              PID 3354        PPID 3352       GID 3350

New process              PID 3357        PPID 3350       GID 3350

Note that the actual ID numbers change each time the program is run. The 

relationship of the processes within the process group is shown in Figure 2.2.

Figure 2.2. Process ID relationships.

All of the processes generated by the program indicate that they belong to the same 



process group: the process group of the initial process 3350. If the parent of a process 

dies[3] (terminates) before its child process(es), the process init (which is process ID 1) 

will inherit the child process and become its foster parent. The process group ID for a 

process does not change if this inheritance occurs.

[3] There seems to be no end to the anthropomorphic references for 

parent/child processes, even when they border on the macabre!

A process may change its process group by using the system call setpgid, which sets 

the process group ID (Table 2.5).

The setpgid system call sets the process group pid to that of pgid. If the value for pid is 0, 

the call refers to the current process. Otherwise, the call refers to the specified PID. 

The value for pgid represents the group to which the process will belong. If the value 

for pgid is 0, the pid referenced process will become the process leader. For this call to 

be successful, the invoking process must have the correct permissions to institute the 

requested change. The setpgid system call returns 0 if successful, or returns a –1 and

sets errno if it fails. The value errno is assigned when setpgid fails is given in Table 2.6.

Table 2.5. Summary of the setpgid System Call.

Include File(s) <sys/types.h>

<unistd.h>
Manual Section 2

Summary int setpgid(pid_t pid, pid_t pgid);

Return

Success Failure Sets errno

0 –1 Yes



Table 2.6. setpgid Error Messages.

# Constant perror Message Explanation

1 EPERM Operation not 

permitted Process pid already a session leader.

Process pid is not in same session as 

calling process.

Invalid process group specified.

3 ESRCH No such process No such process ID as pid.

22 EINVAL Invalid argument The pgid value is less than 0 or greater than

MAX_PID–1.

For those of us who talk fast or listen casually, it is easy to confuse the process group

ID with the process's group ID. A process's group ID is covered in Section 2.6.

In addition to process groups, UNIX also supports the concept of a session. A session 

is a collection of related and unrelated processes and process groups. As with 

process grouping, there are a number of system calls (e.g., setsid, getsid) that can be 

used to create and manipulate a session. The process calling setsid becomes the 

session leader as well as the process group leader. In this arrangement, there is no 

controlling tty (terminal device). Keep in mind a process inherits its controlling terminal 

from its parent. Certain input sequences, such as a quit (CTRL+\) or an interrupt 

(CTRL+C), received by a controlling terminal are automatically propagated to other 

processes in the session.

2-2 EXERCISE

Modify Program 2.1 so that each new process becomes its own group leader.
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2.5 Permissions

All UNIX files (executable and otherwise) have an associated set of owner permission 

bits that are used by the operating system to determine access. The permission bits 

are grouped into three sets of three bits each. Each bit within a set determines if a file 

can be read, written to, or executed. The three sets correspond to three classes of 

users: the file owner, those in the file owner's group and all other users. We can think 

of the nine permission bits as representing a three-digit octal number, as shown in 

Figure 2.3. This permission set would indicate that the file owner has read, write, and 

execute permission; group members have read and write permission; and all others 

have execute-only permission. The permissions for a file are part of the information 

stored by the operating system in an I-list (with one unique entry per file). When a file 

is accessed, its attributes are stored in a system inode table.

Figure 2.3. File permissions as octal values.

At a system level, the permissions of a file are modified using the chmod command. 

The permissions of a file can be listed with the ls command using the -l (long format) 

flag. For example, in the ls command output shown in Figure 2.4, the file owner (root) 

of the file (vi) has permission to read (r), write (w), and execute (x) the file. Members of 

the file owner's group can read and execute the file, as can users classified as other. 

In Linux, the group name for a file is shown by default when issuing the ls -l command. 

In some forms of UNIX (such as true-blue BSD), the -g flag must be added to the 

command (i.e., ls -lg) to obtain the group name.

Figure 2.4. File permissions displayed by ls.



The interpretation of the permission bits for directories is slightly different than for files. 

When the file is a directory, setting the read bit indicates the directory can be read or 

displayed. Setting the write bit indicates files or links can be added or removed from 

the directory, and setting execute permission indicates traversal permission is 

granted. If traversal permission is not set, the directory name can only be used as part 

of a path name but cannot be examined directly.

2-3 EXERCISE

Is the owner of a file also a member of the class "other"? If the file 

protections on a file are set so that only those in the class "other" have 

read/write/execute access, does the owner still have access to the file? Is 

this reasonable? Why?

When generating files in UNIX, such as by I/O redirection or compiling a source 

program into an executable, the operating system will assign permissions to the file. 

The default permissions assigned to the file are determined by a bitwise operation on 

two three-digit octal mask values. These mask values are the creation mask and the 

umask. Unless otherwise specified (such as when creating or opening a file within a 

program), the creation mask used by the system is 777 for executable and directory 

files and 666 for text files. The default umask value is set by the system administrator 

and is most commonly 022. If you want to change the value of umask and would like 

the value available to all your processes, insert the command umask nnn (where nnn is 

the new value for umask) in your startup .login (or .profile) file.

At a system level the current umask value may be displayed/modified by using the 

umask command. An example using the umask command is shown in Figure 2.5 (notice 

that leading 0s are displayed on some systems).

Figure 2.5 Using the umask command.



linux$ umask

22

linux$ umask 011

linux$ umask

11

When a new file is created, the system will exclusive OR (XOR) the creation mask for 

the file with the current umask value. The exclusive OR operation acts the same as a 

subtract (without any borrow) of the umask value from the creation mask. The net 

result determines the permissions for the new file. For example, generating a text file 

called foo using command-line I/O redirection, as shown in Figure 2.6.

Figure 2.6 Generating a plain text file using I/O redirection.

linux$ cat > foo

hello foo

^d

This will set the permissions for the text file foo to 644 (666 minus 022). This is verified 

by the output of the ls command using the –l option, as shown in Figure 2.7.

Figure 2.7 The default permissions of a plain text file.

linux$ ls -l foo

-rw-r--r--      1 gray     faculty        10 Jan  1 14:58 foo

If we generate a directory (or executable file such as a.out using the C/C++ compiler), 

the default permissions, using the 022 umask, will be 755 (777 minus 022). See 

Figure 2.8.

Figure 2.8 The default permission of a directory entry.

linux$ mkdir bar

linux$ ls -ld bar

drwxr-xr-x    2 gray     faculty      4096 Jan  1 15:00 bar

The use of system calls chmod, stat (file status information), and umask that allow a 

process access to this information is presented in Section 2.7.
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2.6 Real and Effective User and Group IDs

In UNIX, with the exception of a few special system processes, processes are 

generated by users (root and otherwise) who have logged on to the system. During 

the login process the system queries the password file[4] to obtain two identification 

(ID) numbers. The numbers the system obtains are in the third and fourth fields of the 

password entry for the user. These are, respectively, the real user ID (UID) and real 

group ID (GID) for the user. For example, in the sample password file entry

[4] In older versions of Linux the complete password file (passwd) was 

found in the /etc directory. In newer versions, for security reasons, the 

password file, while still present, may have some of its pertinent 

information stored elsewhere (such as in the file /etc/shadow). While the 

/etc/passwd file is readable by the ordinary user, supplemental password 

files usually are not.

ggluck:x:1025:1001:Garrett Gluck:/home/student/ggluck:/bin/tcsh

the user login ggluck has a real user ID of 1025 and a group ID of 1001. The real user 

ID should be (if the system administrator is on the ball) a unique integer value, while 

the real group ID (also an integer value) may be common to several logins. Group ID 

numbers should map to the group names stored in the file /etc/group.[5] In general, IDs 

of less than 500 usually (but not always) indicate user logins with special status.

[5] If, for some reason, there is no group name for the assigned group 

number, the system displays the group number when you issue the ls-l

command.

For every process the system also keeps a second set of IDs called effective IDs, the 

effective user ID (EUID) and effective group ID (EGID). The operating system uses the 

real IDs to identify the real user for things such as process accounting or sending mail, 

and the effective IDs to determine what additional permissions should be granted to 

the process. Most of the time the real and effective IDs for a process are identical. 
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However, there are occasions when nonprivileged users on a system must be allowed

to access/modify privileged files (such as the password file). To allow controlled 

access to key files, Linux has an additional set of file permissions, known as 

set-user-ID (SUID) and set-group-ID (SGID), that can be specified by the file's owner. 

When indicated, these permissions tell the operating system that when the program is 

run, the resulting process should have the privileges of the owner/group of the 

program (versus the real user/group privileges associated with the process). In these 

instances, the effective IDs for the process become those indicated for the file's 

owner. A listing for an suid program follows.

-r-s--x--x    1 root    root     13536 Jul 12  2000 /usr/bin/passwd

As shown, this passwd program (the executable for the system-level command passwd) 

has its owner permissions set to r-s. The letter s in the owner's category, found in place 

of the letter x, indicates that when this program is run, the process should have the 

privileges of the file owner (which is root). The set-user information is stored by the 

system in a tenth permission bit and can be modified using the system level 

command, chmod. The SUID setting for the passwd program allows the non-privileged 

user running it to temporarily have root (superuser) privileges. In this case, the user 

running the program will be able to modify the system password files, as the 

permissions on the password files indicate that they are owned and can only be 

modified by root. Needless to say, programs that have their SUID or SGID bit set 

should be carefully thought out, especially if the programs are owned by the superuser 

(root).

At a system level, the command id (as shown in Figure 2.9) displays the current user, 

group ID, and group affiliation information. Note that while a file can belong to only one

group, a user can belong to many groups.

Figure 2.9 Typical id information.

linux$ id

uid=500(gray) gid=1000(faculty) groups=1000(faculty)

In a programming environment, the system calls that return the user/group real and 

effective IDs for a process are given in Table 2.7.



Table 2.7. Summary of User/Group Real and Effective ID Calls System.

Include File(s) <sys/types.h>

<unistd.h>
Manual Section 2

Summary uid_t getuid( void ); uid_t geteuid( void );

gid_t getgid( void ); gid_t getegid( void );

Return

Success Failure Sets errno

The requested ID   

There are corresponding system calls that can be passed ID values to set (change) 

the user/group real and effective IDs. Additionally, Linux implements a file system user 

ID used by the kernel to limit a user's access to a given file system. The file system ID 

is set with the setfsuid system call. The use of setfsuid and the calls to set user/group 

real and effective IDs are beyond the scope of this text.
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2.7 File System Information

In addition to process ID information, the process environment contains file system 

information. Associated with each open file is an integer file descriptor value that the 

operating system uses as an index to a 1,024-entry file descriptor table located in the 

u (user) area for the process. The per-process file descriptor table references a 

system file table, which is located in kernel space. In turn, the system file table maps 

to a system inode table that contains a reference to a more complete internal 

description of the file.

When a child process is generated, it receives a copy of its parent's file descriptor

table (this includes the three descriptors—stdin, stdout, and stderr) with the file pointer 

offset associated with each open file. If a file is marked as shareable, the operating 

system will need to save each file pointer offset separately. The relationship of 

process and system tables are shown in Figure 2.10.

Figure 2.10. Process/system file table relationships.

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/eBook.Prentice_Hall_PTR-Interprocess_Communications_in_Linux.ShareReactor.chm/23021533.htm


2-4 EXERCISE

Write a program that verifies that a parent and child process share the same 

file pointer and file pointer offset. The parent should open a text file and fork a 

child process. The child process should read from the text file and display 

what it has read. When the child terminates, the parent process should then 

read from the same file and display what it has read. At this stage, you may 

need to use the sleep system call to synchronize file access between the 

parent and child processes.

2-5 EXERCISE

Write a program that determines by trial and error the number of files a 

process can have simultaneously open (is it really 1,024, as mentioned?). 

Be sure to remove (investigate the unlink system call) any files that you 

generate.
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2.8 File Information

There are a number of system calls that a process can use to obtain file information. 

Of these, the stat system calls (shown in Table 2.8) provide the process with a 

comprehensive set of file-related information somewhat analogous to the information 

that can be obtained by using the system-level stat command found in Linux. For 

example, the command

linux$ stat a.out

  File: "a.out"

  Size: 14932       Blocks: 32        Regular File

Access: (0755/-rwxr-xr-x)  Uid: (  500/  gray)  Gid: (1000/ faculty)

Device: 815        Inode: 97541      Links: 1

Access: Tue Jan  1 16:05:58 2002

Modify: Tue Jan  1 16:05:57 2002

Change: Tue Jan  1 16:05:57 2002

displays information about the file a.out found in the current directory.

Table 2.8. Summary of the stat System Calls.

Include File(s) <sys/types.h>

<sys/stat.h>

<unistd.h>

Manual Section
2

Summary

[View full width]

int stat(const char *file_name, struct stat *buf);

int lstat(const char *file_name, struct stat 

*buf);

int fstat(int filedes, struct stat *buf);

Return

Success Failure Sets errno

0 –1 Yes



As its first argument, the stat system call takes a character pointer to a string 

containing the path for a file. The lstat system call is similar to stat except when the file 

referenced is a symbolic link. In the case of a symbolic link, lstat returns information 

about the link entry, while stat returns information about the actual file. The fstat system

call takes an integer file descriptor value of an open file as its first argument.

All three stat system calls return, via their second argument, a pointer to a stat

structure. The stat structure is defined in its entirety in the header file <sys/stat.h> and 

the <bits/stat.h>. The <bits/stat.h> file is automatically included by <sys/stat.h> and should 

not be directly included by the programmer. The stat structure normally contains 

members for

dev_t     st_dev;      /* device file resides on */

ino_t     st_ino;      /* this file's number */

u_short   st_mode;     /* protection */

short     st_nlink;    /* number of hard links to the file */

short     st_uid;      /* user ID of owner */

short     st_gid;      /* group ID of owner */

dev_t     st_rdev;     /* the device identifier(special files only)*/

off_t     st_size;     /* total size of file, in bytes */

time_t    st_atime;    /* file data last access time */

time_t    st_mtime;    /* file data last modify time */

time_t    st_ctime;    /* file data last status change time */

long      st_blksize;  /* preferred blocksize for file system I/O*/

long      st_blocks;   /* actual number of blocks allocated */

The special data types (e.g., dev_t, ino_t) of individual structure members are mapped 

to standard data types in the header file <sys/types.h>. If the stat system calls are 

successful, they return a value of 0. Otherwise, they return a value of -1 and set errno. 

As these system calls reference file information, there are numerous error situations 

that may be encountered. The value that errno may be assigned and an explanation of 

the associated perror message are shown in Table 2.9.

Table 2.9. stat Error Messages.

# Constant perror Message Explanation

2 ENOENT No such file or 

directory

File does not exist (or is NULL).



# Constant perror Message Explanation

4 EINTR Interrupted system 

call

Signal was caught during the system 

call.

9 EBADF Bad file number The value in fildes is not a valid open 

file descriptor.

12 ENOMEM Cannot allocate 

memory

Out of memory (i.e., kernel memory).

13 EACCES Permission denied Search permission denied on part of 

file path.

14 EFAULT Bad address Path references an illegal address.

20 ENOTDIR Not a directory Part of the specified path is not a 

directory.

36 ENAMETOOLONG File name too long The path value exceeds system 

path/file name length.

40 ELOOP Too many levels of 

symbolic links

The perror message says it all.

67 ENOLINK The link has been 

severed

The path value references a remote 

system that is no longer active.

72 EMULTIHOP Multihop attempted The path value requires multiple hops 

to remote systems, but file system 

does not allow it.

75 EOVERFLOW Value too large for 

defined data type

A value for a member of the structure 

referenced by buf is too large.

A program showing the use of the stat system call is shown in Program 2.2.

Program 2.2 Using the stat system call.

  |     /*

  |         Using the stat system call

  |     */

  |     #include <iostream>



  +     #include <cstdio>

  |     #include <sys/types.h>

  |     #include <sys/stat.h>

  |     #include <unistd.h>

  |     using namespace std;

 10     const int N_BITS = 3;

  |     int

  |     main(int argc, char *argv[ ]){

  |       unsigned int    mask = 0700;

  |       struct stat     buff;

  +       static char    *perm[] = {"---", "--x", "-w-", "-wx",

  |                                 "r--", "r-x", "rw-", "rwx"};

  |       if (argc > 1) {

  |         if ((stat(argv[1], &buff) != -1)) {

  |           cout << "Permissions for " << argv[1] << " ";

 20           for (int i=3; i;-i) {

  |             cout << perm[(buff.st_mode & mask) >> (i-1)*N_BITS];

  |             mask >>= N_BITS;

  |           }

  |           cout << endl;

  +         } else {

  |           perror(argv[1]);

  |           return 1;

  |         }

  |       } else {

 30         cerr <<  "Usage: " << argv[0] << "file_name\n";

  |         return 2;

  |       }

  |       return 0;

  |     }

When this program is run and passed its own name on the command line, the output 

is as shown in Figure 2.11.

Figure 2.11 Output of Program 2.2.

linux$ p2.2 a.out

Permissions for a.out rwxr-xr-x

The system command sequence ls -l for the same file produces the same set of 

permissions as shown in Figure 2.12.

Figure 2.12 Verifying Program 2.2 output with the ls command.



linux$ ls -l a.out

-rwxr-xr-x    1 gray     faculty     15290 Jan  2 07:26 a.out

2-6 EXERCISE

Modify the example stat program so that its output is as close as possible to 

the ls -l output on your system when passed a file or directory name on the 

command line. Note, the stat call will not return the user's name (only the 

UID). The UID can be passed to the getpwuid library call. The getpwuid call will 

return the user's name (along with additional password entry information). A 

description of the getpwuid library call is found in Section 3 of the manual. If 

needed, a second library call, getgrgid, can be used to map the GID value to 

the actual group name.

In a programming environment, the access permissions of a file can be modified with 

the chmod/fchmod system calls (Table 2.10).

Table 2.10. Summary of the chmod/fchmod System Calls.

Include File(s) <sys/types.h>

<sys/stat.h>
Manual Section 2

Summary int chmod( const char *path, mode_t mode );

int fchmod( int fildes, mode_t mode );

Return

Success Failure Sets errno

0 –1 Yes

Both system calls accomplish the same action and differ only in the format of their first 

argument. The chmod system call takes a character pointer reference to a file path as 

its first argument, while fchmod takes an integer file descriptor value of an open file. 

The second argument for both system calls is the mode. The mode can be specified 

literally as an octal number (e.g., 0755) or by bitwise ORing together combinations of 

defined permission constants found in the header file <sys/stat.h>. Unless the effective 

user ID of the process is that of the superuser, the effective user ID and the owner of 

the file whose permissions are to be changed must be the same. If either system call 

is successful, it returns a 0. Otherwise, the call returns a -1 and sets the value in errno. 



As with the stat system calls, the number of error conditions is quite extensive (see 

Table 2.11).

Table 2.11. chmod/fchmod Error Messages.

# Constant perror Message Explanation

1 EPERM Operation not 

permitted

Not owner or file or superuser.

2 ENOENT No such file or 

directory

File does not exist (or is NULL).

4 EINTR Interrupted system 

call

Signal was caught during the system 

call.

5 EIO I/O error I/O error while attempting read or write 

to file system.

9 EBADF Bad file number The value in fildes is not a valid open 

file descriptor.

12 ENOMEM Cannot allocate 

memory

Out of memory (i.e., kernel memory).

13 EACCES Permission denied Search permission denied on part of 

file path.

14 EFAULT Bad address path references an illegal address.

20 ENOTDIR Not a directory Part of the specified path is not a 

directory.

30 EROFS Read-only file 

system

File referenced by path is on read-only 

file system.

36 ENAMETOOLONG File name too long The path value exceeds system 

path/file name length.

40 ELOOP Too many levels 

of symbolic links

The perror message says it all.



# Constant perror Message Explanation

67 ENOLINK The link has been 

severed

The path value references a remote 

system that is no longer active.

72 EMULTIHOP Multihop 

attempted

The path value requires multiple hops 

to remote systems but file system 

does not allow it.

The umask value, which is inherited from the parent process, may be modified by a 

process with the umask system call (Table 2.12).

Table 2.12. Summary of the umask System Call.

Include File(s) <sys/types.h>

<sys/stat.h>
Manual Section 2

Summary mode_t umask(mode_t mask);

Return

Success Failure Sets errno

The previous umask   

When invoked, umask both changes the umask value to the octal integer value passed 

and returns the old (previous) umask value.[6] If you use the umask system call to 

determine the current umask setting, you should call umask a second time, passing it 

the value returned from the first call, to restore the settings to their initial state. For 

example,

[6] This system call appears to have been written before such 

techniques were frowned upon (i.e., both changing the state of the 

umask and returning its current value).

mode_t cur_mask;

cur_mask = umask(0);

cout << "Current mask: " << setfill('0') << setw(4) << oct

     << cur_mask << endl;

umask(cur_mask);



2-7 EXERCISE

The umask system call will never generate an error or set the value in errno. 

What happens if you attempt to assign a mask value of –011?

The library function getcwd is used to copy the absolute path of the current working 

directory of a process to an allocated location. The function is defined as shown in 

Table 2.13. It returns a pointer to the directory pathname. The function expects two 

arguments. The first is a pointer to the location where the pathname should be stored. 

If this argument is set to NULL, getcwd uses malloc to automatically allocate storage 

space. The second argument is the length of the pathname to be returned (plus 1 for 

the \0 to terminate the string). The include file <sys/param.h> contains the defined 

constant MAXPATHLEN that can be used to assure a buffer of sufficient size (i.e., 

MAXPATHLEN+1). In the following code snippet the space allocated to hold the path 

information will be just what is needed to store the absolute path (most likely less than 

MAXPATHLEN+1).

Table 2.13. Summary of the getcwd Library Function.

Include File(s) <unistd.h> Manual Section 3

Summary char *getcwd(char *buf, size_t size);

Return
Success Failure Sets errno

A pointer to the current directory name NULL Yes

char *path;

path = getcwd(NULL, MAXPATHLEN+1);

cout << path << endl;

cout << "Path length: " << strlen(path) << endl;   // sufficient to hold path

If getcwd fails, it returns a NULL and sets errno (Table 2.14). If malloc is used to 

dynamically allocate storage, the space should be returned with free when it is no 

longer needed.



Table 2.14. getcwd Error Messages.

# Constant perror Message Explanation

13 EACCES Permission denied Search permission denied on part of file path.

22 EINVAL Invalid argument The value for size is less than or equal to 0.

34 ERANGE Numerical resultout 

of range

The value for size is greater than 0 but less 

than the length of the path plus 1.

The system call chdir is used to change the current working directory (as is the cd
[7]

command at system level). See Table 2.15.

[7] The cd command, unlike many other system-level commands, is not 

run as a child process, so its change will take effect for the current 

process.

The chdir system call takes a character pointer reference to a valid pathname (the 

process must have search permission for all directories referenced) as its argument. 

The fchdir system call takes an open file descriptor of a directory as its argument. If 

successful, the system call returns a 0, and the new working directory for the process 

will be the one specified. If the call fails, a -1 is returned and errno is set (Table 2.16).

Table 2.15. Summary of the chdir/fchdir System Calls.

Include File(s) <unistd.h> Manual Section 2

Summary int chdir( const char *path );

int fchdir( int fildes );

Return

Success Failure Sets errno

0 –1 Yes



Table 2.16. chdir/fchdir Error Messages.

# Constant perror Message Explanation

2 ENOENT No such file or 

directory

File does not exist (or is NULL).

4 EINTR Interrupted system 

call

Signal was caught during the system 

call.

5 EIO I/O error I/O error while attempting read or write 

to file system.

9 EBADF Bad file number The value in fildes is not a valid open 

file descriptor.

12 ENOMEM Cannot allocate 

memory

Out of memory (i.e., kernel memory).

13 EACCES Permission denied Search permission denied on part of 

file path.

14 EFAULT Bad address path references an illegal address.

20 ENOTDIR Not a directory Part of the specified path is not a 

directory.

36 ENAMETOOLONG File name too long The path value exceeds system 

path/file name length.

40 ELOOP Too many levels 

of symbolic links

The perror message says it all.

67 ENOLINK The link has been 

severed

The path value references a remote 

system that is no longer active.

72 EMULTIHOP Multihop 

attempted

The path value requires multiple hops 

to remote systems, but file system 

does not allow it.

2-8 EXERCISE



Predict what will happen when a process forks a child process and the child 

process issues a chdir system call—will the current directory for the parent be

changed as well? Write a program that substantiates your answer.
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2.9 Process Resource Limits

As system resources are finite, every process is restrained by certain operating 

system-imposed limits. At the command line, the ulimit command (which is actually a 

built-in command found in the Bourne shell [/bin/sh]) provides the user with a means to 

display and modify current system limits available to the shell and the processes that 

are started by it.[8]

[8] The C shell (/bin/csh) provides a somewhat similar built-in command 

called limit.

The command ulimit -Ha displays the hard limits for the system. The hard limits can be 

increased only by the superuser. An example showing the hard limits of a system is 

shown in Figure 2.13.

Figure 2.13 Typical hard limits on a Linux system.

linux$ ulimit -Ha

core file size        (blocks, -c) unlimited

data seg size         (kbytes, -d) unlimited

file size             (blocks, -f) unlimited

max locked memory     (kbytes, -l) unlimited

max memory size       (kbytes, -m) unlimited

open files                    (-n) 1024

pipe size          (512 bytes, -p) 8

stack size            (kbytes, -s) unlimited

cpu time             (seconds, -t) unlimited

max user processes            (-u) 4095

virtual memory        (kbytes, -v) unlimited

A soft limit, displayed when ulimit is passed the -Sa (Soft, all) command-line option, is a 

limit that can be set by the user. A soft limit is typically lower than the established hard

limit. Note that the limits for the current process on this system are slightly less for 

stack size, as shown in Figure 2.14.
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Figure 2.14 Individual process resource limits.

linux$ ulimit -Sa

core file size        (blocks, -c) unlimited

data seg size         (kbytes, -d) unlimited

file size             (blocks, -f) unlimited

max locked memory     (kbytes, -l) unlimited

max memory size       (kbytes, -m) unlimited

open files                    (-n) 1024

pipe size          (512 bytes, -p) 8

stack size            (kbytes, -s) 8192

cpu time             (seconds, -t) unlimited

max user processes            (-u) 4095

virtual memory        (kbytes, -v) unlimited

Resource limit information for a process can be obtained in a programming 

environment as well. Historically, the ulimit system call was used to obtain part of this 

information. In more recent versions of the operating system the ulimit system call has 

been superseded by the getrlimit/setrlimit calls described below. However, ulimit still 

bears a cursory investigation, as it is sometimes found in legacy code (Table 2.17).

Table 2.17. Summary of the ulimit System Call.

Include File(s) <ulimit.h> Manual Section 3

Summary long ulimit(int cmd   /* ,

long newlimit  */ );

Return

Success Failure Sets errno

Nonnegative long integer –1 Yes

The argument cmd can take one of four different values:

Obtain file size limit for this process. The value returned is in units of 512-byte 

blocks.

1.

Set the file size limit to the value indicated by newlimit. Non-superusers only can

decrease the file size limit. This is the only command in which the argument 

newlimit is used.

2.

Obtain the maximum break value. This option is not supported by Linux.3.



Return the maximum number of files that the calling process can open.4.

If ulimit is successful, it returns a positive integer value; otherwise, it returns a -1 and 

sets the value in errno (Table 2.18).

Table 2.18. ulimit Error Messages.

# Constant perror Message Explanation

13 EPERM Permission denied Calling process is not superuser.

22 EINVAL Invalid argument The value for cmd is invalid.

The newer getrlimit/setrlimit system calls provide the process more complete access to 

system resource limits (Table 2.19).

Table 2.19. Summary of the getrlimit/setrlimit System Calls.

Include File(s) <sys/time.h>

<sys/resource.h>

<unistd.h>

Manual Section
2

Summary int getrlimit(int resource, struct rlimit

              *rlim);

int setrlimit(int resource, const struct

              rlimit *rlim);

Return

Success Failure Sets errno

0 -1 Yes

The rlimit structure:

struct rlimit {

         rlimit_t  rlim_cur;   /* current (soft) limit */

         rlimit_t  rlim_max;   /* hard limit           */

};

along with a number of defined constants used by the two functions:

RLIMIT_CPU           /* CPU time in seconds */

RLIMIT_FSIZE         /* Maximum filesize */



RLIMIT_DATA          /* max data size */

RLIMIT_STACK         /* max stack size */

RLIMIT_CORE          /* max core file size */

RLIMIT_RSS           /* max resident set size */

RLIMIT_NPROC         /* max number of processes */

RLIMIT_NOFILE        /* max number of open files */

RLIMIT_MEMLOCK       /* max locked-in-memory address space*/

RLIMIT_AS            /* address space (virtual memory) limit */

RLIMIT_INFINITY      /* actual value for 'unlimited' */

are found in the header file <sys/resource.h> and its associated include files. A program 

using the getrlimit system call is shown in Program 2.3.

Program 2.3 Displaying resource limit information.

 |     /*

 |        Using getrlimt to display system resource limits

 |      */

 |     #include <iostream>

 +     #include <iomanip>

 |     #include <sys/time.h>

 |     #include <sys/resource.h>

 |     using namespace std;

 |     int

10     main( ){

 |       struct rlimit plimit;

 |       char  *label[ ]={"CPU time", "File size",

 |                        "Data segment", "Stack segment",

 |                        "Core size","Resident set size",

 +                        "Number of processes", "Open files",

 |                        "Locked-in-memory", "Virtual memory",

 |                        0};

 |       int constant[]= { RLIMIT_CPU    , RLIMIT_FSIZE,

 |                         RLIMIT_DATA   , RLIMIT_STACK,

20                         RLIMIT_CORE   , RLIMIT_RSS,

 |                         RLIMIT_NPROC  , RLIMIT_NOFILE,

 |                         RLIMIT_MEMLOCK, RLIMIT_AS };

 |

 |       for (int i = 0; label[i]; ++i) {

 +         getrlimit(constant[i], &plimit);

 |         cout << setw(20) << label[i] << "\t Current: "

 |              << setw(10) << plimit.rlim_cur << "\t Max: "

 |              << setw(10) << plimit.rlim_max << endl;

 |       }

30       return 0;



 |     }

The output sequence from this program (Figure 2.15) is comparable to the output of 

the system-level ulimit command shown earlier.

Figure 2.15 Program 2.3 output.

linux$ p2.3

            CPU time     Current: 4294967295     Max: 4294967295

           File size     Current: 4294967295     Max: 4294967295

        Data segment     Current: 4294967295     Max: 4294967295

       Stack segment     Current:    8388608     Max: 4294967295

           Core size     Current: 4294967295     Max: 4294967295

   Resident set size     Current: 4294967295     Max: 4294967295

 Number of processes     Current:      16383     Max:      16383

          Open files     Current:       1024     Max:       1024

    Locked-in-memory     Current: 4294967295     Max: 4294967295

      Virtual memory     Current: 4294967295     Max: 4294967295

The setrlimit system call, like the ulimit call, can be used only by the non-superuser to 

decrease resource limits. If these system calls are successful, they return a 0; 

otherwise, they return a -1 and set the value in errno (Table 2.20).

Table 2.20. getrlimit/setrlimit Error Messages.

# Constant perror Message Explanation

13 EPERM Permission denied Calling process is not superuser.

22 EINVAL Invalid argument The value for resource is invalid.

2-9 EXERCISE

In the Bourne (or BASH /bin/bash) shell issue the command ulimit -u 2 followed 

by the command ls -l. Explain what happens. How did you correct the 

situation? If in the C Shell (/bin/csh or /bin/tcsh), replace the ulimit command 

with limit ma 2).



Additional process limit information can be obtained from the sysconf library function 

(Table 2.21).

Table 2.21. Summary of the sysconf Library Function.

Include File(s) <unistd.h> Manual Section 3

Summary long sysconf(int name);

Return

Success Failure Sets errno

Nonnegative long integer -1 No (?)

The sysconf function is passed an integer name value (usually in the form of a defined 

constant) that indicates the limit requested. If successful, the function returns the long 

integer value associated with the limit or a value of 0 or 1 if the limit is available or not. 

If the sysconf function fails, it returns a -1 and does not set the value in errno. The limits 

that sysconf knows about are defined as constants in the header file <unistd.h>.[9] In past 

versions of the operating system, some of these limit values were found in the header 

file <sys/param.h>. The constants for some of the more commonly queried limits are 

listed below:

[9] Actually, this is a bit of a fudge. The include file <unistd.h> often 

includes yet another file that has the constant definitions. There is logic 

in the <unistd.h> file to include the proper file based on the standard 

being met (POSIX.1, etc.). At present the actual definitions are found in 

<bits/confname.h>—which is never to be included directly by the

programmer.

_SC_ARG_MAX       /* space for argv & envp */

_SC_CHILD_MAX     /* max children per process */

_SC_CLK_TCK       /* clock ticks / sec */

_SC_STREAM_MAX    /* max # of data streams per process */

_SC_TZNAME_MAX    /* max # of bytes in timezone name spec. */

_SC_OPEN_MAX      /* max open files per process */

_SC_JOB_CONTROL   /* do we have job control? */

_SC_SAVED_IDS     /* do we have saved uid/gids? */

_SC_VERSION       /* POSIX version supported YYYYMML format*/

Program 2.4, which displays the values associated with the limits for a system, is 



shown below.

Program 2.4 Displaying system limits.

File : p2.4.cxx

  |     /*

  |        Using sysconf to display system limits

  |      */

  |     #include <iostream>

  +     #include <iomanip>

  |     #include <cstdio>

  |     #include <unistd.h>

  |     using namespace std;

  |     int

 10     main(  ){

  |       char *limits[ ]={"Max size of argv + envp",

  |                        "Max # of child processes",

  |                        "Ticks / second",

  |                        "Max # of streams",

  +                        "Max # of bytes in a TZ name",

  |                        "Max # of open files",

  |                        "Job control supported?",

  |                        "Saved IDs supported?",

  |                        "Version of POSIX supported",

 20                         0};

  |       int constant[ ]={ _SC_ARG_MAX,    _SC_CHILD_MAX,

  |                         _SC_CLK_TCK,    _SC_STREAM_MAX,

  |                         _SC_TZNAME_MAX, _SC_OPEN_MAX,

  |                         _SC_JOB_CONTROL,_SC_SAVED_IDS,

  +                         _SC_VERSION };

  |       for (int i=0; limits[i]; ++i) {

  |         cout << setw(30) << limits[i] << "\t"

  |              << sysconf(constant[i])  << endl;

  |       }

 30       return 0;

  |     }

When run on a local system, Program 2.4 produced the output shown in Figure 2.16.

Figure 2.16 Output of Program 2.4.

linux$ p2.4

       Max size of argv + envp  131072

      Max # of child processes  999



                Ticks / second  100

              Max # of streams  16

   Max # of bytes in a TZ name  3

           Max # of open files  1024

        Job control supported?  1

          Saved IDs supported?  1

    Version of POSIX supported  199506

If the sysconf function fails due to an invalid name value, a -1 is returned. The manual 

page indicates errno will not be set; however, some versions of Linux set errno to 

ENIVAL, indicating an invalid argument.
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2.10 Signaling Processes

When events out of the ordinary occur, a process may receive a signal. Signals are 

asynchronous and are generated when an event occurs that requires attention. They 

can be thought of as a software version of a hardware interrupt and may be generated 

by various sources:

Hardware— Such as when a process attempts to access addresses outside its

own address space or divides by zero.

Kernel— Notifying the process that an I/O device for which it has been waiting

(say, input from the terminal) is available.

Other processes— A child process notifying its parent process that it has

terminated.

User— Pressing keyboard sequences that generate a quit, interrupt, or stop

signal.

Signals are numbered and historically were defined in the header file <signal.h>. In 

Linux signal definitions reside in <bits/signum.h>. This file is included automatically when 

you include <signal.h>. The <bits/signum.h> should not be directly included in your 

program. The process that receives a signal can take one of three courses of action:

Perform the system-specified default for the signal. For most signals the default 

action (what will be done by the process if nothing else has been specified) is 

to (a) notify the parent process that it is terminating, (b) generate a core file (a 

file containing the current memory image of the process), and (c) terminate.

1.

Ignore the signal. A process can do this with all but two special signals:

SIGSTOP (signal 23), a stop-processing signal that was not generated from 

the terminal, and SIGKILL (signal 9), which indicates the process is to be killed 

(terminated). The inability of a process to ignore these special signals ensures 

the operating system the ability to remove errant processes.

2.



Catch the signal. As with ignoring signals, this can be done for all signals

except the SIGSTOP and SIGKILL signals. When a process catches a signal, it

invokes a special signal handling routine. After executing the code in the signal 

handling routine, the process, if appropriate, resumes where it was interrupted.

3.

A child process inherits the actions associated with specific signals from its parent. 

However, should the child process overlay its process space with another executable 

image, such as with an exec system call (see Chapter 3, "Using Processes"), all 

signals that were associated with signal catching routines at specific addresses in the 

process are reset to their default action in the new process. This resetting to the 

default action is done by the system, as the address associated with the signal 

catching routine is no longer valid in the new process image. In most cases (except 

for I/O on slow devices such as the terminal) when a process is executing a system 

call and a signal is received, the interrupted system call generates an error (usually 

returning -1) and sets the global errno variable to the value EINTR. The process issuing 

the system call is responsible for re-executing the interrupted system call. As the 

responsibility for checking each system call for signal interrupts carries such a large 

overhead, it is rare that once a signal is caught the process resumes normal 

execution. More often than not, the process uses the signal catching routine to 

perform housekeeping duties (such as closing files, etc.) before exiting on its own. 

Signals sent to a process/session group leader are also passed to the members of the 

group. Signals and signal catching routines are covered in considerable detail in 

Chapter 4, "Primitive Communications."

2-10 EXERCISE

The system-specified defaults for signals 1 through 31 are given in the 

general manual pages on signal (Section 7 of the manual). As a default 

action, how many signals (a) produce core dumps, (b) cause the process to 

stop (terminate), and (c) are discarded (ignored)?
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2.11 Command-Line Values

Part of the processing environment of every process are the values passed to the 

process in the function main. These values can be from the command line or may be 

passed to a child process from the parent via an exec system call. These values are 

stored in a ragged character array referenced by a character pointer array that, by 

tradition, is called argv. The number of elements in the argv array is stored as an 

integer value, which (again by tradition) is referenced by the identifier argc. Program 

2.5, which displays command line values, takes advantage of the fact that in newer 

ANSI standard versions of Linux, the last element of the argv array (i.e., argv[argc]) is 

guaranteed to be a NULL pointer. However, in most programming situations, 

especially when backward compatibility is a concern, it is best to use the value in argc

as a limit when stepping through argv. If we run the program as p2.5 and place some 

arbitrary values on the command line, we obtain the output shown in Figure 2.17.

Program 2.5 Displaying command line arguments.

File : p2.5.cxx

  |     /*

  |        Displaying the contents of argv[ ] (the command line)

  |     */

  |     #include <iostream>

  +     using namespace std;

  |     int

  |     main(int argc, char *argv[ ]){

  |       for ( ; *argv; ++argv )

  |         cout <<  *argv << endl;

 10       return 0;

  |     }

Figure 2.17 Output of Program 2.5.

linux$ p2.5 This is a test.

p2.5

This



is

a

test.

We can envision the system as storing these command-line values in argc and argv as 

shown in Figure 2.18.

Figure 2.18. Storage of command line values.

In this situation (where the system fills the argv array), argc will always be greater than 

0, and the first value referenced by argv will be the name of the program that is 

executing. The system automatically terminates each string with a null character and 

places a 0 as the last address in the argv array.

In programs, it is a common practice to scan the command line to ascertain its 

contents (such as when looking for command-line options). At one time programmers 

wishing to check the contents of the command line for options had to write their own 

command-line parsing code. However, there is a general-purpose library function 

called getopt that will do this.[10] The getopt library function is somewhat analogous to

the Swiss army knife—it can do many things, but to the uninitiated, upon first

exposure, it appears unduly complex (Table 2.22).

[10] If you do shell programming, you should find that your system 

supports a shell version of this library function called getopt. The shell 

version uses the library function version to do its parsing.



Table 2.22. Summary of the getopt Library Function.

Include File(s) <unistd.h> Manual Section 3

Summary int getopt( int argc, char * const argv[],

            char *optstring );

extern char *optarg;

extern int   optind, opterr, optopt;

Return

Success Failure Sets errno

Next option letter -1 or ?  

The getopt function requires three arguments. The first is an integer value argc (the 

number of elements in the second argument). The second argument is a pointer to a 

pointer to an array of characters strings. Usually this is the array of character strings 

referenced by argv. The third argument is a pointer to a string of valid option letters 

(characters) that getopt should recognize. As noted, in most settings the values for argc

and argv are the same as those for main's first and second arguments. However, 

nothing prevents users from generating these two arguments to getopt on their own.

The format of optstring's content bears further explanation. If an option letter expects a 

following argument, the option letter in optstring is followed by a colon. For example, if 

the option letter s (which, say, stands for size) is to be followed by an integer size 

value, the corresponding optstring entry would be s:. On the command line, the user 

would enter -s 200 to indicate a size of 200. For a command-line option to be 

processed properly by getopt, it must be preceded with a hyphen(-), while the 

argument(s) to the option should have no leading hyphen and may or may not be 

separated by whitespace from the option.

The getopt function returns, as an integer, one of three values:

-1 indicating all options have been processed.

? indicating an option letter has been processed that was not in the optstring or 

an option argument was specified (with the : notation in the optstring) but none 

was found when processing the command line. When a ? is returned, getopt

also displays an error message on standard error. The automatic display of the 

error message can be disabled by changing the value stored in the external 

identifier opterr to 0 (it is set to 1 by default). The offending character (stored as 

an integer) is referenced by the optopt variable.



The next option letter in argv that matches a letter in optstring. If the letter 

matched in optstring is followed by a colon, then the external character pointer 

optarg references the argument value. Remember that if the argument value is 

to be treated as a numeric value (versus a string), it must be converted.

The external integer optind is initialized by the system to 1 before the first call to getopt. 

It will contain the index of the next argument in argv that is not an option. By default 

getopt processes the argument array in a manner that all non-options are placed at the 

end of the list. A comparison of the value in optind to the value in argc can be used to 

determine if all items on the command line have been processed. The getopt function 

has a relative called getopt_long, which is similar in function to getopt but will process 

long (those with two leading dashes) command-line arguments. Check the manual 

page on this function for details. A program demonstrating the use of getopt is shown 

in Program 2.6.

Program 2.6 Using the library function getopt.

File : p2.6.cxx

  |     /*

  |         Command line using getopt

  |      */

  |     #define _GNU_SOURCE

  +     #include <iostream>

  |     #include <cstdlib>

  |     #include <unistd.h>

  |     using namespace std;

  |     extern char    *optarg;

 10     extern int      optind, opterr, optopt;

  |     int

  |     main(int argc, char *argv[ ]){

  |       int      c;

  |       char     optstring[] = "abs:";

  +       opterr = 0;    // turn off auto err mesg

  |       while ((c = getopt(argc, argv, optstring)) != -1)

  |         switch (c) {

  |         case 'a':

  |           cout << "Found option a\n";

 20           break;

  |         case 'b':

  |           cout << "Found option b\n";

  |           break;

  |         case 's':



  +           cout << "Found option s with an argument of: ";

  |           cout << atoi(optarg) << endl; // convert to integer

  |           break;

  |          case '?':

  |           cout << "Found an option that was not in optstring.\n";

 30           cout << "The offending character was " << char(optopt) << endl;

  |         }

  |       if (optind < argc){

  |         cout << (argc—optind) << " arguments not processed.\n";

  |         cout << "Left off at: " <<  argv[optind] << endl;

  +       }

  |       return 0;

  |     }

A run of the program with some sample command-line options is shown in Figure 

2.19.

Figure 2.19 Output of Program 2.6.

linux$ p2.6 -abc -s 34 -b joe -a student

Found option a

Found option b

Found an option that was not in optstring.

The offending character was c

Found option s with an argument of: 34

Found option b

Found option a

2 arguments not processed.

Left off at: joe

As the output shows, getopt can process options in groups (e.g., -abc) or as singletons 

(e.g., -b), and is not concerned with the alphabetic order of options. When processing 

stops, optind can be checked to determine if any command-line options were not part of 

the specified options.

2-11 EXERCISE

Modify Program 2.3 to accept command-line options that will be processed 

with the library call getopt. Where appropriate, allow the user to specify 

arguments to change values of specific limits (use the setrlimit system call). 



Consider using getopt_long to support a --help option that would provide the 

user with some minimal help about how to run the program.
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2.12 Environment Variables

Each process also has access to a list of environment variables. The environment 

variables, like the command-line values, are stored as a ragged array of characters. 

Environment variables, which are most commonly set at the shell level,[11] are passed 

to a process by its parent when the process begins execution. Environment variables 

can be accessed in a program by using an external pointer called environ, which is 

defined as

[11] If at the command-line level you enter the shell command env (or 

printenv), the system should display a list of environment variables and 

their contents.

extern char **environ;

In most older (and in some current) versions of Linux, the environment variables could 

also be accessed by using a third argument in the function main called envp. When 

used, the envp argument to main is defined as

main(int argc,char *argv[],char **envp /* OR as *envp[]*/)

As environ and envp can both be used to accomplish the same thing, and current 

standards discourage the use of envp, only the use of the external pointer environ will 

be discussed in detail.

The contents of the environment variables can be obtained in a manner similar to the 

command-line arguments (Program 2.7).

A partial listing of the output of this program run on a local system is show in Figure 

2.20.

Program 2.7 Displaying environment variables.

File : p2.7.cxx
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  |     /*

  |        Using the environ pointer to display the command line

  |     */

  |     #include <iostream>

  +     using namespace std;

  |     extern char **environ;

  |     int

  |     main( ){

  |       for (  ; *environ ; )

 10         cout << *environ++ << endl;

  |       return 0;

  |     }

Figure 2.20 Output of Program 2.7.

linux$ p2.7

PWD=/home/faculty/gray/revision/02

VENDOR=intel

REMOTEHOST=zeus.cs.hartford.edu

HOSTNAME=kahuna

LOGNAME=gray

SHLVL=2

GROUP=faculty

USER=gray

PATH=/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:.

. . .

The output shows that all environment variables are stored as strings in the format 

name=value. Many of the environment variables shown here are common to all Linux 

systems (e.g., USER, PATH, etc.), while others are system-dependent (e.g., VENDOR). 

Note that by convention environment variables are normally spelled in uppercase. For 

the more curious, the manual page on environ ($ man 5 environ) furnishes a detailed 

description of the commonly found environment variables and their uses.

The two library calls shown in Tables 2.23 and 2.24 can be used to manipulate 

environment variables.

The first library call, getenv, searches the environment list for the first occurrence of a 

specified variable. The character string argument passed to getenv should be of the 

format name, where name is the name of the environment variable to find without an 

appended =. Note that name is case-sensitive (environment variables are often in 

uppercase). If getenv is successful, it returns a pointer to the string assigned to the 



environment variable specified; otherwise, it returns a NULL pointer. If getenv fails, it 

returns a -1 and sets errno to ENOMEM (12—"Cannot allocate memory"). In Program 

2.8 the output (shown in Figure 2.21) indicates that in this case the environment 

variable TERM has been found and that its current value is vt220. Notice that only the 

string to the right of the equals was returned by getenv.

Table 2.23. Summary of the getenv Library Function.

Include File(s) <unistd.h> Manual Section 3

Summary char *getenv( const char *name );

Return
Success Failure Sets errno

Pointer to the value in the environment NULL  

Table 2.24. Summary of the putenv Library Function.

Include File(s) <stdlib.h> Manual Section 3

Summary Int putenv( const char *name );

Return

Success Failure Sets errno

0 -1 Yes

Program 2.8 Using getenv.

File : p2.8.cxx

  |     /*

  |         Displaying the contents of the TERM variable

  |      */

  |     #include <iostream>

  +     #include <cstdlib>

  |     using namespace std;

  |     int

  |     main( ){

  |       char  *c_ptr;

 10       c_ptr = getenv("TERM");

  |       cout << "The variable TERM is "

  |            << (c_ptr==NULL ?  "NOT found" : c_ptr)

  |            << endl;



  |       return 0;

  +     }

Figure 2.21 Checking the output of Program 2.8.

linux$ echo $TERM

vt220

linux$ p2.8

The variable TERM is vt220

Modifying or adding environment variable information, which is usually accomplished 

with the library function putenv, is a little trickier. The environment variables, along with 

the command-line values, are stored by the system in the area just beyond the stack 

segment for the process (see Chapter 1, Section 1.8). This area is accessible by the 

process and can be modified by the process, but it cannot be expanded. When 

environment variables are added or an existing environment variable is modified so it 

is larger (storage-wise) than its initial setting, the system will move the environment 

variable information from its stack location to the text segment of the process (the 

putenv function uses malloc to allocate additional space). To further complicate the issue 

in this situation, envp (if supported) will still point to the table on the stack when 

referencing the original environment variables, but will point to the text segment for 

the new environment variable. This is yet another reason to stay clear of envp!

One last caveat appears in the putenv manual page. The argument for putenv should 

not be an automatic variable (such as a variable local to a function), as these 

variables become undefined once the function in question is exited.

Program 2.9 demonstrates the putenv function.

Program 2.9 Using putenv.

File : p2.9.cxx

  |     /*

  |       Using putenv to modify the environment as seen by parent — child

  |     */

  |     #define _GNU_SOURCE

  +     #include <iostream>

  |     #include <cstdlib>

  |     #include <sys/types.h>

  |     #include <unistd.h>

  |     using namespace std;



 10     extern char **environ;

  |     int show_env( char ** );

  |     int

  |     main( ){

  |       int numb;

  +       cout << "Parent before any additions **********" << endl;

  |       show_env( environ );

  |       putenv("PARENT_ED=parent");

  |       cout << "Parent after one addition   **********" << endl;

  |       show_env( environ );

 20       if ( fork( ) == 0 ){                // In the CHILD now

  |         cout << "Child before any additions *********" << endl;

  |         show_env( environ );

  |         putenv("CHILD_ED=child");

  |         cout << "Child after one addition   *********" << endl;

  +         show_env( environ );

  |         return 0;

  |       }                                    // In the PARENT now

  |       sleep( 10 );                         // Make sure child is done

  |       cout << "Parent after child is done  **********" << endl;

 30       numb = show_env( environ );

  |       cout << "... and at address [" << hex << environ+numb

  |            << "] is ... "

  |            << (*(environ+numb) == NULL ? "Nothing!" : *(environ+numb))

  |            << endl;

  +       return 0;

  |     }

  |     /*

  |        Display the contents of the passed list ... return number found

  |     */

 40     int show_env( char **cp ){

  |       int i;

  |       for (i=0; *cp; ++cp, ++i)

  |         cout << "[" << hex << cp << "] " << *cp << endl;

  |       return i;

  +     }

The abridged output (some of the intervening lines of output were removed for clarity) 

of this program, when run on a local system, is explained in Figure 2.22.

Figure 2.22 Output of Program 2.9.

linux$ p2.9

Parent before any additions **********

[0xbffffc9c] TERM=vt220                              <-- 1



. . .

[0xbffffd08] CA_DB=

Parent after one addition   **********

[0x8049ec8] TERM=vt220

. . .

[0x8049f34] CA_DB=

[0x8049f38] PARENT_ED=parent                         <-- 2

Child before any additions **********

[0x8049ec8] TERM=vt220                               <-- 3

. . .

[0x8049f34] CA_DB=

[0x8049f38] PARENT_ED=parent                         <-- 3

Child after one addition   **********

[0x8049ec8] TERM=vt220

. . .

[0x8049f34] CA_DB=

[0x8049f38] PARENT_ED=parent

[0x8049f3c] CHILD_ED=child                           <-- 4

Parent after child is done  **********

[0x8049ec8] TERM=vt220

 . . .

[0x8049f34] CA_DB=

[0x8049f38] PARENT_ED=parent                         <-- 5

... and at address [0x8049f3c] is ... Nothing!

(1) The environment variables start their life in storage just beyond the

stack segment (notice the addresses).

(2) This environment variable is added by the parent process. All

variables have been moved to the text segment.

(3) Notice the addresses in the child are the same.

(4) This environment variable is added by the child process.



(5) When the child process is gone, so is the environment variable it

added.

There are several important concepts that can be gained by examining this program 

and its output. First, it is clear that the addresses associated with the environment 

variables are changed (from the stack segment to the text segment) when a new 

environment variable is added. Second, the child process inherits a copy of the 

environment variables from its parent. Third, as each process has its own address 

space, it is not possible to pass information back to a parent process from a child 

process.[12] Fourth, when adding an environment variable, the name=value format 

should be adhered to. While it is not checked in the example program, putenv will 

return a 0 if it is successful and a -1 if it fails to accomplish its mission.

[12] I am sure that many human children would say this is also true for

their parent/child relationship—everything (especially tasks) seems to

flow one way.

2-12 EXERCISE

Sam figures he has a way for a child process to communicate with its parent 

via the environment. His solution is to have the child process modify (without 

changing the storage size and without using putenv) an environment variable

that was initially found in the parent. He wrote the following program to test

his idea. Will his program work as he thought—why, or why not?

[View full width]

File : sam.cxx

  |     /*

  |       Sam's environment program

  |     */

  |     #define _GNU_SOURCE

  +     #include <iostream>

  |     #include <cstdlib>

  |     #include <sys/types.h>



  |     #include <unistd.h>

  |     using namespace std;

 10     int

  |     main( ){

  |       int numb;

  |       char *p;

  |       putenv("DEMO=abcdefghijklmnop");

  +       p = getenv("DEMO");

  |       cout << "1. Parent environment has " << p << endl;

  |

  |       if ( fork( ) == 0 ){                // In the CHILD now

  |         *(p + 9) = 'X';                   // Change ref 

location

 20         p = getenv("DEMO");

  |         cout << "2. Child environment has  " << p << endl;

  |         cout << "3. Exiting child." << endl;

  |         return 0;

  |       }                                   // In the PARENT 

now

  +       sleep( 10 );                        // Make sure child 

is done

  |       cout << "4. Back in parent." << endl;

  |       p = getenv("DEMO");

  |       cout << "5. Parent environment has " << p << endl;

  |       return 0;

 30     }
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2.13 The /proc Filesystem

Linux implements a special virtual filesystem called /proc that stores information about 

the kernel, kernel data structures, and the state of each process and associated 

threads. Remember that in Linux a thread is implemented as a special type of 

process. The /proc filesystem is stored in memory, not on disk. The majority of the 

information provided is read-only and can vary greatly from one version of Linux to 

another. Standard system calls (such as open, read, etc.) can be used by programs to 

access /proc files.

Linux provides a procinfo command that generates a formatted display of /proc

information. Figure 2.23 shows the default output of this command. As would be 

expected, there is a variety of command-line options for procinfo (check the manual 

page $ man 8 procinfo for specifics). Additionally, while most of the files in /proc are in a 

special format, many can be displayed by using the command-line cat utility.[13]

[13] Do not be put off by the fact that the majority of the files in /proc show

0 bytes when a long listing is done—keep in mind this is a not a true

filesystem.

Figure 2.23 Typical procinfo output.

linux$ procinfo

Linux 2.4.3-12enterprise (root@porky) (gcc 2.96 20000731 ) #1 2CPU [linux]

Memory:     Total        Used         Free      Shared     Buffers     Cached

Mem:       512928      510436         2492          84       65996     265208

Swap:     1068284         544      1067740

Bootup: Thu Dec 27 12:31:23 2001    Load average: 0.00 0.00 0.00 <fr>>1/85 10791

user  :       0:12:34.61   0.0%  page in :  7194848

nice  :       0:00:15.34   0.0%  page out:  1714280

system:       0:16:18.81   0.0%  swap in :        1

idle  :  21d 20:49:43.68  99.9%  swap out:        0
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uptime:  10d 22:39:26.21         context : 31669318

irq  0:  94556622 timer                 irq  8:         2 rtc

irq  1:      2523 keyboard              irq 12:     15009 PS/2 Mouse

irq  2:         0 cascade [4]           irq 26:  17046596 e100

irq  3:         4                       irq 28:        30 aic7xxx

irq  4:   6223833 serial                irq 29:        30 aic7xxx

irq  6:         3                       irq 30:    155995 aic7xxx

irq  7:         3                       irq 31:    918432 aic7xxx

In the /proc file system are a variety of data files and subdirectories. A typical /proc file 

system is shown in Figure 2.24.

Figure 2.24 Directory listing of a /proc file system.

linux$ ls /proc

1      1083   20706  4    684   9228     dma          loadavg     stat

1025   1084   20719  494  7     9229     driver       locks       swaps

1030   1085   20796  499  704   9230     execdomains  mdstat      sys

10457  1086   20797  5    718   9231     fb           meminfo     sysvipc

10458  19947  20809  511  752   9232     filesystems  misc        tty

10459  2      3      526  758   9233     fs           modules     uptime

1057   20268  32463  6    759   9234     ide          mounts      version

10717  20547  32464  641  765   9235     interrupts   mtrr

10720  20638  32466  653  778   9236     iomem        net

10721  20652  32468  655  780   997      ioports      partitions

10725  20680  32469  656  795   bus      irq          pci

10726  20695  32471  657  807   cmdline  kcore        scsi

10731  20696  32473  658  907   cpuinfo  kmsg         self

10736  20704  32474  669  9227  devices  ksyms        slabinfo

Numeric entries, such as 1 or 1025, are process subdirectories for existing processes 

and contain information specific to the process. Nonnumeric entries, excluding the self

entry, have kernel-related information. At this point, a full presentation of the 

kernel-related entries in /proc would be a bit premature, as many of them reflect 

constructs (such as shared memory) that are covered in detail in later chapters of the 

text. The remaining discussion focuses on the process-related entries in /proc.

The /proc/self file is a pointer (symbolic link) to the ID of the current process. Program 

2.10 uses the system call readlink (see Table 2.25) to obtain the current process ID 

from /proc/self.



Program 2.10 Reading the /proc/self file.

File : p2.10.cxx

  |     /*

  |         Determining Process ID by reading the contents of

  |         the symbolic link  /proc/self

  |     */

  +     #define _GNU_SOURCE

  |     #include <iostream>

  |     #include <cstdlib>

  |     #include <sys/types.h>

  |     #include <unistd.h>

 10     using namespace std;

  |     const int size = 20;

  |     int

  |     main( ){

  |       pid_t proc_PID, get_PID;

  +       char buffer[size];

  |       get_PID = getpid( );

  |       readlink("/proc/self", buffer, size);

  |       proc_PID = atoi(buffer);

  |       cout << "getpid     : " << get_PID  << endl;

 20       cout << "/proc/self : " << proc_PID << endl;

  |       return 0;

  |     }

Table 2.25. Summary of the readlinkSystem Call.

Include File(s) <sys/types.h> Manual Section 2

Summary int readlink(const char *path,

             char *buf, size_t bufsiz);

Return

Success Failure Sets errno

Number of characters read -1 Yes

The readlink system call reads the symbolic link referenced by path and stores this data 

in the location referenced by buf. The bufsiz argument specifies the number of 

characters to be processed and is most often set to be the size of the location 

referenced by the buf argument. The readlink system call does not append a null

character to its input. If this system call fails, it returns a –1 and sets errno; otherwise, it 

returns the number of characters read. In the case of error the values that errno can 



take on are listed in Table 2.26.

A wide array of data on each process is kept by the operating system. This data is 

found in the /proc directory in a decimal number subdirectory named for the process's 

ID. Each process subdirectory includes

cmdline— A file that contains the command-line argument list that started the

process. Each field is separated by a null character.

cpu— When present, this file contains CPU utilization information.

cwd— A pointer (symbolic link) to the current working directory for the process.

exe— A pointer (symbolic link) to the binary file that was the source of the

process.

Table 2.26. readlink Error Messages.

# Constant perror Message Explanation

2 ENOENT No such file or 

directory

File does not exist.

5 EIO I/O error I/O error while attempting 

read or write to file 

system.

12 ENOMEM Cannot allocate 

memory

Out of memory (i.e., 

kernel memory).

13 EACCES Permission 

denied

Search permission 

denied on part of file 

path.

14 EFAULT Bad address Path references an illegal 

address.

20 ENOTDIR Not a directory Part of the specified path 

is not a directory.



# Constant perror Message Explanation

22 EINVAL Invalid argument
Invalid bufsiz

value.

File is not a 

symbolic link.

36 ENAMETOOLONG File name too 

long

The path value exceeds 

system path/ file name 

length.

40 ELOOP Too many levels 

of symbolic links

The perror message says 

it all.

environ— A file that contains the environment variable for the process. Like the

cmdline file, each entry is separated by a null character.

fd— A subdirectory that contains one decimal number entry for each file the

process has open. Each number is a symbolic link to the device associated

with the file.

maps— A file that contains the virtual address maps for the process as well as

the access permissions to the mapped regions. The maps are for various

executables and library files associated with the process.

root— A pointer (symbolic link) to the root filesystem for the process. Most often

this is / but can (via the chroot system call) be set to another directory.

stat— A file that contains process status information (such as used by the ps

command).

statm— A file with status of the process's memory usage.

status— A file that contains much of the same information found in stat and statm

with additional process (current thread) status information. This file is stored in 

a plain text format and is somewhat easier to decipher.



As noted, the cmdline file has the argument list for the process. This same data is 

passed to the function main as argv. The data is stored as a single character string with 

a null character \0 separating each entry. On the command line, the tr utility can be 

used to translate the null characters into newlines to make the contents of the file 

easier to read. For example, the command-line sequence

linux$ cat /proc/cmdline | tr "\0" "\n"

would display the contents of the cmdline file with each argument placed on a separate 

line. Program 2.11 performs a somewhat similar function. It displays the contents of 

the command line by accessing the data in the cmdline file of the executing process.

Program 2.11 Reading the cmdline file.

File : p2.11.cxx

  |     #include <iostream>

  |     #include <fstream>

  |     #include <sstream>

  |     #include <sys/types.h>

  +     #include <unistd.h>

  |     using namespace std;

  |     const int size = 512;

  |     int

  |     main( ){

 10

  |       ostringstream oss (ostringstream::out);

  |       oss  << "/proc/" << getpid( ) << "/cmdline";

  |       cout << "Reading from file: " << oss.str() << endl;

  |

  +       static char buffer[size];

  |       ifstream i_file;

  |       i_file.open(oss.str().c_str());       // open to read

  |       i_file.getline(buffer, size, '\n');

  |

 20       char *p = &buffer[0];                // ref 1st char of seq

  |       do {

  |         cout << "[" << p << "]" << endl;

  |         p += strlen(p)+1;                  // move to next location

  |       } while ( *p );                       // still ref a valid char

  +       return 0;

  |     }

In line 11 of the program, a new output stream descriptor for a string (oss) is declared. 



In line 12 the name of the file (using a call to getpid to obtain the process ID) is 

constructed and written to the string. The specified file is opened and read into buffer. 

The contents of buffer is parsed and displayed. The processing loop uses the fact that 

the command-line arguments are separated by a null character to divide the data into 

its separate arguments. Figure 2.25 shows the output of the program when several 

arguments are passed on the command line.

Figure 2.25 Program 2.11 output.

linux$ p2.11 this is 1 test

Reading from file: /proc/12123/cmdline

[p2.11]

[this]

[is]

[1]

[test]

2-13 EXERCISE

The file environ stores the process's environment variables in a format similar 

to the content of the cmdline file. Modify Program 2.11 to read and display the 

contents of the environ file.

2-14 EXERCISE

In most versions of Linux the statm file contains a series of integer values 

separated by blanks. For Red Hat Linux there are seven values in the file. In 

order, from left to right, these values are (a) program size in KB, (b) memory 

portion of program in KB, (c) number of shared pages, (d) number of code 

pages, (e) number of pages of data/stack, (f) number of pages of library, and 

(g) number of dirty pages. In operating system parlance, a dirty page is one 

that has been modified (and thus will need to be written back at some time 

for updating). Write a program that performs an activity that causes a 

verifiable increase in the number of dirty pages for the process.
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2.14 Summary

The framework in which a process carries on its activities is its processing

environment. The processing environment consists of a number of components. A

series of identification numbers—process ID, parent process ID, and process group

ID—are used to reference the individual process, its parent, and the group with which

the process is affiliated. In its environment a process has access to resources (i.e.,

files and devices). Access to these resources is determined by permissions that are

initially set when the resource is generated. When accessing files, a process can

obtain additional system information about the resource. All processes are

constrained by system-imposed resource limits. A process can obtain limit information

using the appropriate system call or library function. Processes may receive signals

that in turn may require a specific action. The values passed via the command line to

the process can be obtained. In addition, the process has access to, and may modify

(in some settings), environment variables. Linux also supports a /proc directory that 

contains special files with information about the kernel, its data structures, and all 

active processes.
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2.15 Key Terms and Concepts

/proc filesystem

argc

argv

chdir system call

chmod system call

cmdline file

command-line values

cpu file

creation mask

cwd pointer

effective group ID (EGID)

effective user ID (EUID)

environ

environ command

environ file

environment variable

fchdir system call
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fchmod system call

fd subdirectory

file descriptor table

file permissions

getcwd library function

getenv library function

getgrgid system call

getopt library function

getpgid system call

getpid system call

getppid system call

getpwuid system call

getrlimit system call

init process

inode

lstat system call

maps file

process group

process group ID (GID)

process ID (PID)

process leader



procinfo command

putenv library function

readlink system call

real group ID (GID)

real user ID (UID)

root pointer

session

set-group-ID (SGID)

setpgid system call

setrlimit system call

set-user-ID (SUID)

signal

stat file

stat system call

statm file

status file

sysconf library function

system file table

system inode table

ulimit command

ulimit system call



umask command

umask system call
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3.1 Introduction

Processes are at the very heart of the operating system. As we have seen, all but a 

very few special processes are generated by the fork system call. If successful, the fork

system call produces a child process that continues its execution at the point of its 

invocation in the parent process. In this chapter, we explore the generation and use of 

child processes in detail. In Chapter 11, "Threads," the creation of threads will be 

discussed.
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3.2 The fork System Call Revisited

The fork system call is unique in that while it is called once, it returns twice—to the

child and to the parent processes. As noted in Chapter 1, "Programs and Processes," 

if the fork system call is successful, it returns a value of 0 to the child process and the 

process ID of the child to the parent process. If the fork system call fails, it returns a -1 

and sets the global variable errno. The failure of the system to generate a new process 

can be traced, by examination of the errno value, to either exceeding the limits on the 

number of processes (systemwide or for the specific user) or to the lack of available 

swap space for the new process. It is interesting to note that in theory the operating 

system is always supposed to leave room in the process table for at least one 

superuser process, which could be used to remove (kill) hung or runaway processes. 

Unfortunately, on many systems it is still relatively easy to write a program (sometimes 

euphemistically called a fork bomb) that will fill the system with dummy processes, 

effectively locking out system access by anyone, including the superuser.

After the fork system call, both the parent and child processes are running and 

continue their execution at the next statement after the fork. The return from the fork

system call can be examined, and the process can make a decision as to what code is

executed next. The process receiving a 0 from the fork system call knows it is the child, 

as 0 is not valid as a PID. Conversely, the parent process will receive the PID of the 

child. An example of a fork system call is shown in Program 3.1.

Program 3.1 Generating a child process.

File : p3.1.cxx

  |     /*

  |         Generating a child process

  |      */

  |     #include <iostream>

  +     #include <sys/types.h>

  |     #include <unistd.h>

  |     using namespace std;

  |     int



  |     main( ){

 10       if (fork(  ) == 0)

  |         cout << "In the CHILD process"  << endl;

  |       else

  |         cout << "In the PARENT process" << endl;

  |       return 0;

  +     }

There is no guarantee as to the output sequence that will be generated by this 

program. For example, if we issue the command-line sequence

linux$ p3.1 ; echo DONE ; p3.1 ; echo DONE ; p3.1

numerous times, sometimes the statement In the CHILD process will be displayed before 

the In the PARENT process, and other times it will not. The output sequence is dependent 

upon the scheduling algorithm used by the kernel. Keep in mind that commands 

separated by a semicolon on the command line are executed sequentially, with the 

shell waiting for each command to terminate before executing the next. The effects of 

process scheduling are further demonstrated by Program 3.2.

Program 3.2 Multiple activities parent/child processes.

File : p3.2.cxx

  |     /*

  |          Multiple activities PARENT -- CHILD processes

  |      */

  |     #include <iostream>

  +     #include <cstring>

  |     #include <sys/types.h>

  |     #include <unistd.h>

  |     using namespace std;

  |     int

 10     main( ) {

  |       static char buffer[10];

  |       if (fork(  ) == 0) {                 // In the child process

  |         strcpy(buffer, "CHILD...");

  |       } else {                             // In the parent process

  +         strcpy(buffer, "PARENT..");

  |       }

  |       for (int i=0; i < 3; ++i) {          // Both processes do this

  |         sleep(1);                          // 3 times each.

  |         write(1, buffer, sizeof(buffer));

 20       }



  |       return 0;

  |     }

Figure 3.1 shows the output of this program when run twice on a local system.

Figure 3.1 Output of Program 3.2.

linux$ p3.2

PARENT..CHILD...CHILD...PARENT..PARENT..CHILD...linux$

linux$ p3.2

PARENT..CHILD...PARENT..CHILD...PARENT.. $ CHILD...

There are several interesting things to note about this program and its output. First, 

the write (line 19) system call, not the cout object, was used in the program. The cout

object (an instance of the ostream class defined in <iostream>) is buffered and, if used, 

would have resulted in the three-message output from each process being displayed 

all at one time without any interleaving of messages. Second, the system call sleep

(sleep a specified number of seconds) was used to prevent the process from running 

to completion within one time slice (which again would produce a homogenous output 

sequence). Third, one process will always end before the other. If there is sufficient 

intervening time before the second process ends, the system will redisplay the 

prompt, thus producing the last line of output where the output from the child process 

is appended to the prompt (i.e., linux$ CHILD...).

Keep in mind the system will flush an output stream (write its data to the physical 

media) in a variety of circumstances. This synchronization occurs when (a) a file is 

closed, (b) a buffer is full, (c) in C++ the flush or endl manipulators are placed in the 

output stream, or (d) a call is made to the sync system call.

3-1 EXERCISE

When the following program is compiled and run,

File : funny.cxx

  |     /*

  |          A very funny program ...

  |      */

  |     #include <iostream>



  +     #include <sys/types.h>

  |     #include <unistd.h>

  |     using namespace std;

  |     int

  |     main(  ) {

 10       fork( );   cout << "hee " << endl;

  |       fork( );   cout << "ha "  << endl;

  |       fork( );   cout << "ho "  << endl;

  |       return 0;

  |     }

assuming all fork system calls are successful, how many lines of output will 

be produced? Is it ever possible for a ho to be output before a hee? Why is 

this? Would the number of hees, has and hos be different if the << endl was left 

out of each of the cout statements? Why?
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3.3 exec's Minions

Processes generate child processes for a number of reasons. In a Linux environment, 

there are several long-lived processes, which run continuously in the background and 

provide system services upon demand. These processes, called daemon processes, 

frequently generate child processes to carry out the requested service. Some daemon

processes commonly found in a Linux environment are lpd, the line printer daemon; 

xinetd, the extended Internet services daemon; and syslogd, the system logging 

daemon. Some problems (such as with databases) lend themselves to concurrent 

type solutions that can be effected via multiple child processes executing the same 

code. More commonly, such as when the shell processes a command, a process 

procreates a child process because it would like to transform the child process by 

changing the program code the child process is executing.

In Linux, any one of five library functions and one system call can be used to replace 

the current process image with a new image.[1] The library functions act as a front end 

to the system call. The library functions are discussed in the exec manual pages 

(Section 3), while the system call (execve) warrants its own manual page entry in 

Section 2. Any of these can be directly invoked by the programmer. For ease of 

comparison, the library functions and the system call are discussed as a group. The 

phrase exec call will reference this group.

[1] In some versions of UNIX, such as Solaris, all the exec calls are 

system calls and are grouped together as library functions and 

discussed in one section of the manual. Linux has a more historic 

approach to things.

It is important to remember that when a process issues any exec call, if the call is 

successful, the existing process is overlaid with a new set of program code. The text, 

data (initialized and uninitialized), and stack segment of the process are replaced and 

only the u (user) area of the process remains the same. The new program code (if a 

C/C++ binary) begins its execution at the function main. Since the system is now 

executing a different set of code for the same process, some things, by necessity, 



must change:

Signals that were specified as being caught by the process (i.e., associated 

with a signal-catching routine) are reset to their default action. This is 

necessary, as the addresses for the signal-catching routines are no longer 

valid.

In a similar vein, if the process was profiling (determining how much time is 

spent in individual routines), the profiling will be turned off in the overlaid 

process.

If the new program has its SUID bit set, the effective EUID and EGID are set 

accordingly.

The program to be executed can be a script. In this case, the script should have its 

execute bit set and start with the line #! interpreter [arg(s)], where interpreter is a valid 

executable (but not another script). If successful, the exec calls do not return, as the 

initial calling image is lost when overlaid with a new image.

Before we delve into these calls, we should take a quick look at what normally 

transpires when a valid command is issued at the system (shell) level, as this process 

will reflect the functionality available in a program. If the command issued is

linux$ cat file.txt > file2.txt

the shell parses the command line and divides it into valid tokens (e.g., cat, file.txt, 

etc.). The shell (via a call to fork) then generates a child process. After the fork, the 

shell closes standard output and opens the file file2.txt, mapping it to standard output in 

the child process. Next, by calling execve, the shell overlays the current program code 

with the program code for the command (in this case, the code for cat). When the 

command is finished, the shell redisplays its prompt. Figure 3.2 shows the process 

creation and command execution sequence.

Figure 3.2. Process creation and command execution at the shell level.



While the command is executing, the shell, by default, waits in the background. As we 

will see, there is a wait system call that allows the shell or any other process to wait. 

Should the user place an & at the end of the command (to indicate to the shell that the 

command be placed in background), the shell will not wait and will return immediately 

with its prompt. When the command is finished, it may perform a call to exit or return

when in the function main. The integer value passed to these calls is made available to 

the parent process via an argument to the wait system call. When on the command 

line, the returned value is stored in the system variable named status. If in the Bourne 

or BASH shell you issue the command

linux$ echo $?

the system will display the value returned by the last command executed. As the 

mapping of standard output to the file file2.txt was done in the child process and not in 

the shell, the I/O redirection has no further impact on ensuing command sequences.

We should note that it is possible for a user at the command line to issue an exec call. 

The syntax would be

linux$ exec command [arguments]

However, most users would not do this. The current process (the shell) would be 

overlaid with the program code for the command. Once the command was finished, 

the user would be logged out, as the original shell process would no longer exist!

In a programming environment, the exec calls can be used to execute another 

program. The prototypes for the exec calls are listed in Table 3.1.



Table 3.1. The exec Call Prototypes.

[View full width]

#include <unistd.h>

extern char **environ;

int execl (const char *path, const char *arg, ...);

int execv (const char *path, char *const argv[]);

int execle(const char *path, const char *arg , ...

, char * const envp[]);

int execve(const char *path, char *const argv[],  

  char * const envp[]);

int execlp(const char *file, const char *arg, ...);

int execvp(const char *file, char *const argv[]);

The naming convention for these system calls reflects their functionality. Each call 

starts with the letters exec. The next letter in the call name indicates if the call takes its 

arguments in a list format (i.e., literally specified as a series of arguments) or as a 

pointer to an array of arguments (analogous to the argv structure discussed earlier). 

The presence of the letter l indicates a list arrangement (a variable argument list—see

the manual page on stdarg for details); v indicates the array or vector arrangement. The 

next letter of the call name (if present) is either an e or a p. The presence of an e

indicates the programmers will construct (in the array/vector format) and pass their 

own environment variable list. The passed environment variable list will become the 

third argument to the function main (i.e., envp). As noted in the section on environment 

variables, envp is of limited practical value. When the programmer is responsible for 

the environment, the current environment variable list is not passed. The presence of 

a p indicates the current environment PATH variable should be used when searching 

for a file whose name does not contain a slash.[2] In the four calls, where the PATH 

string is not used (execl, execv, execle and execve), the path to the program to be 

executed must be fully specified.

[2] If the executable file is a script, the Bourne shell (/bin/sh) is invoked to 

execute the script. The shell is then passed the specified argument 

information.



The functionality of the exec system calls is best summarized by Table 3.2.

Table 3.2. exec Call Functionality.

Library Call 

Name

Argument 

Format

Pass Current Set of 

Environment Variables?

Search of PATH 

Automatic?

execl list yes no

execv array yes no

execle list no no

execve array no no

execlp list yes yes

execvp array yes yes

Of the six variations, execlp and execvp calls are used most frequently (as automatic 

environment passing and path searching are usually desirable) and will be explained 

in detail.

3.3.1 execlp

The execlp library function (Table 3.3) is used when the number of arguments to be 

passed to the program to be executed is known in advance.

When using execlp, the initial argument, file, is a pointer to the file that contains the 

program code to be executed. If this file reference begins with a /, it is assumed that 

the reference is an absolute path to the file. In this circumstance, it would appear that 

the p specification (execlp) is superfluous; however, the PATH string is still used if other 

arguments are file names or if the code to be executed contains file references. If no / 

is found, each of the directories specified in the PATH variable will be, in turn, 

preappended to the file name specified, and the first valid program reference found will 

be the one executed. It is a good practice to fully specify the program to be executed 

in all situations to prevent a program with the same name, found in a prior PATH string 



directory, from being inadvertently executed. For the execlp call to be successful, the 

file referenced must be found and be marked as executable. If the call fails, it returns 

a -1 and sets errno to indicate the error. As the overlaying of one process image with 

another is very complex, the possibilities for failure are numerous (as shown in Table 

3.4).

Table 3.3. Summary of the execlp Library Function.

Include File(s) <unistd.h>

extern char **environ;
Manual Section 3

Summary int execlp(const char *file,const char *arg, . . .);

Return

Success Failure Sets errno

Does not return -1 Yes

Table 3.4. exec Error Messages.

# Constant perror Message Explanation

1 EPERM Operation not 

permitted The process is being traced, the 

user is not the superuser, and 

the file has an SUID or SGID bit 

set.

The file system is mounted 

nosuid, the user is not the 

superuser, and the file has an 

SUID or SGID bit set.

2 ENOENT No such file or 

directory

One or more parts of path to new 

process file does not exist (or is NULL).

4 EINTR Interrupted 

system call

Signal was caught during the system 

call.

5 EIO Input/output error  



# Constant perror Message Explanation

7 E2BIG Argument list too 

long

New process argument list plus 

exported shell variables exceed the 

system limits.

8 ENOEXEC Exec format error New process file is not in a recognized 

format.

11 EAGAIN Resource 

temporarily 

unavailable

Total system memory while reading 

raw I/O is temporarily insufficient.

12 ENOMEM Cannot allocate 

memory

New process memory requirements 

exceed system limits.

13 EACCES Permission 

denied Search permission denied on 

part of file path.

The new file to process is not an 

ordinary file.

No execute permission on the 

new file to process.

14 EFAULT Bad address path references an illegal address.

20 ENOTDIR Not a directory Part of the specified path is not a 

directory.

21 EISDIR Is a directory An ELF interpreter was a directory.

22 EINVAL Invalid argument An ELF executable had more than one 

interpreter.

24 EMFILE Too many open 

files

Process has exceeded the maximum 

number of files open.

26 ETXTBSY Text file busy More than one process has the 

executable open for writing.



# Constant perror Message Explanation

36 ENAMETOOLONG File name too 

long

The path value exceeds system path/file 

name length.

40 ELOOP Too many levels 

of symbolic links

The perror message says it all.

67 ENOLINK Link has been 

severed

The path value references a remote 

system that is no longer active.

72 EMULTIHOP Multihop 

attempted

The path value requires multiple hops to 

remote systems, but file system does 

not allow it.

80 ELIBBAD Accessing a 

corrupted shared 

library

An ELF interpreter was not in a 

recognized format.

The ellipses in the execlp function prototype can be thought of as argument 0 (arg0) 

through argument n (argn). These arguments are pointers to the null-terminated strings 

that would be normally passed by the system to the program if it were invoked on the 

command line. That is, argument 0, by convention, should be the name of the 

program that is executing. This is usually the same as the value in file, although the 

program referenced by file may include an absolute path, while the value in argument 

0 most often would not. Argument 1 would be the first parameter to be passed to the 

program (which, using argv notation, would be argv[1]), argument 2 would be the 

second, and so on. The last argument to the execlp library call must be a NULL that is, 

for portability reasons, cast to a character pointer. Program 3.3, which invokes the cat

utility program, demonstrates the use of the execlp library call.

Program 3.3 Using the execlp system call.

File : p3.3.cxx

  |     /*

  |          Running the cat utility via an exec system call

  |      */

  |     #include <iostream>

  +     #include <cstdio>

  |     #include <unistd.h>



  |     using namespace std;

  |     int

  |     main(int argc, char *argv[ ]){

 10       if (argc > 1) {

  |         execlp("/bin/cat", "cat", argv[1], (char *) NULL);

  |         perror("exec failure ");

  |         return 1;

  |       }

  +       cerr <<  "Usage: " << *argv << " text_file" << endl;

  |       return 2;

  |     }

When passed a text file name on the command line, this program displays the 

contents of the file to the screen. The program accomplishes this by overlaying its own 

process image with the program code for the cat utility program. The program passes 

the cat utility program the name (referenced by argv[1]) of the file to display. If the execlp

system call fails, the call to perror is made and the program exits and returns the value 

1 to the system. If the call is successful, the perror and return statements are never 

reached, as they are replaced with the program code for the cat utility.

A sample run of the program is shown in Figure 3.3.

Figure 3.3 Output of Program 3.3.

linux$ p3.3 test.txt

This is a sample text

file for the program to

display!



3-2 EXERCISE

Harley wondered what value is used by the system to generate a system 

process table entry when the execlp call is issued. Is it the value referenced 

by file or the value referenced by arg0? Further, what happens if arg0 is set to 

NULL (""), or if arg0 is omitted entirely (e.g., the file value is immediately 

followed with (char *)NULL)? Is it possible, in a case like this, for the value of 

argc to be 0? To test things she wrote, and compiled, the count.cxx program 

below. She then modified Program 3.3 to call her count executable by 

changing "/bin/cat" in line 11 of Program 3.3 to "./count". What did she find?

File : count.cxx

  |     #include <iostream>

  |     #include <cstdlib>

  |     #include <unistd.h>

  |     using namespace std;

  +     int

  |     main(int argc, char *argv[]){

  |       cerr << "argc = " <<  argc  << endl;

  |       cerr << "Processes running" << endl;

  |       system("ps -f");                  // issue a shell

                                               ps cmd

 10       if ( argc > 1 ) {                 // value passed?

  |         int limit = atoi(argv[1]);      // convert to #

  |         for(int i=limit; i ;--i){       // count

  |            cerr << i << endl;

  |            sleep( 1 );

  +         }

  |       } else {

  |         cerr << "Nothing to count" << endl;

  |         return 2;

  |       }

 20       return 0;

  |      }

3.3.2 execvp

If the number of arguments for the program to be executed is dynamic, then the execvp

call can be used (Table 3.5). As with the execlp call, the initial argument to execvp is a 



pointer to the file that contains the program code to be executed. However, unlike

execlp, there is only one additional argument that execvp requires. This second 

argument, defined as

char *const argv[ ]

specifies that a reference to an array of pointers to character strings should be 

passed. The format of this array parallels that of argv and, in many cases, is argv. If the 

reference is not the argv values for the current program, the programmer is 

responsible for constructing and initializing a new argv-like array. If this second 

approach is taken, the last element of the new argv array should contain a NULL 

address value. If execvp fails, it returns a value of -1 and sets the value in errno to 

indicate the source of the error (see Table 3.5).

Table 3.5. Summary of the execvp System Call.

Include File(s) <unistd.h>

<extern char **environ;
Manual Section 3

Summary Int execvp(const char *file, char *const argv[]);

Return

Success Failure Sets errno

Does not return -1 Yes

Program 3.4 makes use of the argv values for the current program.

Program 3.4 Using execvp with argv values.

File : p3.4.cxx

  |     /*

  |          Using execvp to execute the contents of argv

  |      */

  |     #include <iostream>

  +     #include <cstdio>

  |     #include <unistd.h>

  |     using namespace std;

  |     int

  |     main(int argc, char *argv[ ]) {

 10       if ( argc > 1 ) {

  |         execvp(argv[1], &argv[1]);

  |         perror("exec failure");



  |         return 1;

  |       }

  +       cerr << "Usage: " << *argv << " exe [arg(s)]" << endl;

  |       return 2;

  |     }

The program will execute, via execvp, the program passed to it on the command line. 

The first argument to execvp, argv[1], is the reference to the program to execute.

The second argument, &argv[1], is the reference to the remainder of the command-line 

argv array. Notice that both of these references began with the second element of argv

(that is, argv[1]), as argv[0] is the name of the current program (e.g., p3.4). The output in 

Figure 3.4 shows that the program does work as expected.

Figure 3.4 Output of Program 3.4 when passed the cat command.

linux$ p3.4 cat test.txt

This is a sample text

file for a program to

display!

If we place additional information on the command line when running Program 3.4, we 

find the program will pass the information on, as demonstrated in Figure 3.5.

Figure 3.5 Output of Program 3.4 when passed the cat command with the -n option.

linux$ p3.4 cat -n test.txt

     1  This is a sample text

     2  file for a program to

     3  display!

If command-line argv values of the current program are not used with execvp, then the 

programmer must construct a new argv to be passed. An example of how this can be 

done is shown in Program 3.5.

Program 3.5 Using execvp with a programmer-generated argument list.

File : p3.5.cxx

  |     /*

  |          Generating our own argv type list for execvp

  |      */



  |     #include <iostream>

  +     #include <cstdio>

  |     #include <unistd.h>

  |     using namespace std;

  |     int

  |     main( ){

 10       char    *new_argv[ ] = {"cat",

  |                               "test.txt",

  |                               (char *) 0

  |                              };

  |       execvp("/bin/cat", new_argv );

  +       perror("exec failure ");

  |       return 1;

  |     }

When compiled and run as p3.5, the output of this program will be the same as the 

output from the first run of Program 3.4.
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3.4 Using fork and exec Together

In most programs, the fork and exec calls are used in conjunction with one another (in 

some operating systems, the fork and exec calls are packaged as a single spawn system

call). The parent process generates a child process, which it then overlays by a call to 

exec, as in Program 3.6.

Program 3.6 Using fork with execlp.

File : p3.6.cxx

  |     /*

  |          Overlaying a child process via an exec

  |      */

  |     #include <iostream>

  +     #include <sstream>

  |     #include <cstdio>

  |     #include <unistd.h>

  |     using namespace std;

  |     int

 10     main( ){

  |       char  *mesg[ ] = {"Fie", "Foh", "Fum"};

  |       int   display_msg(char *);

  |       for (int i=0; i < 3; ++i)

  |          display_msg(mesg[i]);

  +       return 0;

  |     }

  |     int

  |     display_msg(char *m){

  |       ostringstream oss(ostringstream::out);

 20       switch (fork( )) {

  |       case 0:

  |         sleep(1);

  |         execlp("/bin/echo", "echo", m, (char *) NULL);

  |         oss << m << " exec failure";       // build error msg string

  +         perror(oss.str().c_str());

  |         return 1;

  |       case -1:

  |         perror("Fork failure");



  |         return 2;

 30       default:

  |         return 0;

  |       }

  |     }

Program 3.6 displays three messages (based on the contents of the array mesg). This 

action is accomplished by calling the display_msg function three times. Once in the 

display_msg function, the program forks a child process and then overlays the child 

process code with the program code for the echo command. The output of the program

is shown in Figure 3.6.

Figure 3.6 Output of Program 3.6.

linux$ p3.6

Foh

Fie

Fum

Due to scheduling, the order of the messages may change when run multiple times.

It is interesting to observe what happens if the execlp call in display_msg fails (line 23). If 

we purposely sabotage the execlp system call by changing it to

execlp("/bin/no_echo", "echo", m , (char *) NULL );

and assuming there is not an executable file called no_echo to be found in /bin, the 

output[3] of the program becomes that shown in Figure 3.7.

[3] The program uses a common programming trick to create a message 

string on-the-fly to pass to the perror routine.

Figure 3.7 Output of Program 3.6 when execlp fails.

linux$ p3.6

Foh exec failure: No such file or directory

Fie exec failure: No such file or directory

Fum exec failure: No such file or directory

Fum exec failure: No such file or directory

Foh exec failure: No such file or directory

Fum exec failure: No such file or directory



Fum exec failure: No such file or directory

Surprisingly, when the execlp call fails, we end up with a total of eight processes—the

initial process and its seven children. Most likely this was not the intent of the original

programmer. One way to correct this is within the display_msg function: In the case 0:

branch of the switch statement, replace the return statement in line 26 with a call to exit.

3-3 EXERCISE

In its current implementation, Program 3.6 does not make use of the value 

returned by the display_msg function. Modify the program so that in line 14 the 

returned value is used. Compare and contrast the output of this modification 

to the suggested modification in the previous paragraph (replacing the return

statement in line 26 with a call to exit).

Combining what we have learned so far, we can produce, in relatively few lines of 

code, a shell program that restricts the user to a few basic commands (in this 

example, ls, ps, and df). The code for our shell program[4] is shown in Program 3.7.

[4] For reasons that become obvious when the program is run, this is 

nicknamed the huh shell.

This program could be considered a very stripped-down version of a restricted[5] shell. 

The main thrust of the program is pedagogical, and improvements and expansions (of 

which there can be many) will be addressed in ensuing sections of the text and in a 

number of exercises.

[5] Many UNIX environments come with a predefined restricted shell 

(which is different from the remote shell /bin/rsh). A restricted shell is 

sometimes specified as a login shell for users (such as ftp) that require a 

more controlled environment. Linux does not come with a specific 

restricted shell for users, but some of the standard shells (such as bash

and ksh) can be passed a command-line option (–r) that will run the shell 

in restricted mode. Linux does come with a restricted shell for sendmail

(smrsh).



Program 3.7 The huh shell.

File : p3.7.cxx

  |     /*

  |         A _very_ limited shell program

  |     */

  |     #include <iostream>

  +     #include <cstdio>

  |     #include <cstring>

  |     #include <cstdlib>

  |     #include <unistd.h>

  |     using namespace std;

 10

  |     const int MAX    =256;

  |     const int CMD_MAX=10;

  |     char *valid_cmds = " ls  ps  df ";

  |     int

  +     main( ){

  |       char  line_input[MAX], the_cmd[CMD_MAX];

  |       char  *new_args[CMD_MAX], *cp;

  |       int   i;

  |       while (1) {

 20         cout << "cmd> ";

  |         if (cin.getline(line_input, MAX, '\n') != NULL) {

  |           cp = line_input;

  |           i  = 0;

  |           if ((new_args[i] = strtok(cp, " ")) != NULL) {

  +             strcpy(the_cmd, new_args[i]);

  |             strcat(the_cmd, " ");

  |             if ((strstr(valid_cmds, the_cmd)—valid_cmds) % 4 == 1) {

  |               do {

  |                 cp = NULL;

 30                 new_args[++i] = strtok(cp, " ");

  |               } while (i < CMD_MAX && new_args[i] != NULL);

  |               new_args[i] = NULL;

  |               switch (fork( )) {

  |               case 0:

  +                 execvp(new_args[0], new_args);

  |                 perror("exec failure");

  |                 exit(1);

  |               case -1:

  |                 perror("fork failure");

 40                 exit(2);

  |               default:

  |                 // In the parent we should be waiting for

  |                 // the child to finish



  |                 ;

  +               }

  |             } else

  |               cout << "huh?" << endl;

  |           }

  |         }

 50       }

  |     }

The commands the user is permitted to issue when running our shell are found in the 

global character string called valid_cmds. In the valid_cmds string, each two-letter 

command is preceded and followed by a space. By delimiting the commands in this 

manner, a predefined C string searching function strstr can be used to determine if a 

user has entered a valid command. While this technique is simplistic, it is effective 

when a limited number of commands need to be checked. The program then issues a 

shell-like prompt, cmd>, and uses the C++ input function getline to store user input in a 

character array buffer called line_input. The getline function will read a line of input, 

including intervening whitespace that is terminated by a newline. If the getline function 

fails (such as when the user just presses return), the program loops back around and 

reprompts the user for additional input. Upon entry of input, the program uses the C 

string function strtok to obtain the first valid token from the line_input array. The strtok

function, which will divide a referenced character string into tokens, requires a pointer 

to the array it is to parse and a list of delimiting characters that delimit tokens (in this 

case only a blank " " has been indicated). The strtok function is a wonderful example of 

the idiosyncratic nature of some functions in C/C++. When strtok is called successive 

times and passed a reference to NULL, it will continue to parse the initial input line 

starting each time where it left off previously. The strcat function is used to add a 

trailing blank to this first token (assumed to the command), and the resulting 

sequence is stored in a character array called the_cmd.

The next line of the program checks for the presence of the command in the valid_cmds

string at a modulus-4-based offset (see Figure 3.8).

Figure 3.8. Character offsets in the valid_cmds string.



If the command is found, a do-while loop is used to obtain the remaining tokens (up to 

the limit CMD_MAX). These tokens are stored in successive elements of the previously 

declared new_args array. Upon exiting the loop, we assure that the last element of the 

new_args array contains the requisite NULL value. A switch statement, in concert with 

fork and execvp system calls, is used to execute the command.

3-4 EXERCISE

In Program 3.7, why was new_args[0], rather than the reference the_cmd, 

passed to the execvp system call?

3-5 EXERCISE

When running Program 3.7, we can specify options to commands. For 

example,

df -t

will work just as if we were running the regular shell. However, if we indicate 

that the output of a command is to be redirected to a file, say, df -t > 

/tmp/ps_out, the command no longer works as expected. Why is this?

3-6 EXERCISE

Restructure Program 3.7 into functional units. Add (as part of the valid_cmds

string) the pwd (print working directory), lo (logout), and cd (change directory) 

commands. Submit evidence that these new commands have been 

implemented successfully.
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3.5 Ending a Process

Eventually all things must come to an end. Now that we have generated processes, 

we should take a closer look at how to end a process. Under its own power (assuming

the process does not receive a terminating signal and the system has not crashed) a 

process normally terminates in one of three ways.[6] In order of preference, these are

[6] Of course, the library function abort can also be used to end a 

process, but its call will result in an abnormal termination of the process.

It issues (at any point in its code) a call to either exit or _exit.1.

It issues a return in the function main.2.

It falls off the end of the function main ending implicitly.3.

Programmers routinely make use of the library function exit to terminate programs. 

This function, which does not return a value, is defined as shown in Table 3.6.

Table 3.6. Summary of the exit Library Function.

Include File(s) <stdlib.h> Manual Section 3

Summary void exit(int status);

Return

Success Failure Sets errno

Does not return No return  

In earlier versions of C the inclusion of a specific header file was not required when 

using exit. More recent versions of C (and C++) require the inclusion of the file 

<stdlib.h> (or <cstdlib> if going the full ANSI-C++ route) that contains the exit function 

prototype. The exit function accepts a single parameter, an integer status value that will 

be returned to the parent process.[7] By convention, a 0 value is returned if the 
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program has terminated normally; other wise, a nonzero value is returned.[8] For those 

who wish to standardize the value returned by exit when terminating, the header file 

<stdlib.h> contains two defined constants, EXIT_SUCCESS and EXIT_FAILURE, which can 

be used to indicate program success and failure respectively. If we somehow are able 

to slip by the compiler a call to exit without passing an exit status value (i.e., exit( );) or 

issue a return; in main without specifying a value, then what is returned to the parent 

process is technically undefined.

[7] I know, I know—what if the parent is no longer around? Remember

that init inherits processes whose parents are gone. The handling of 

status values is discussed further in Section 3.6.

[8] Only the low-order eight bits are returned, thus values range from 0 

to 255. (Hmm, I wonder ... would exit(-1) actually return a 255?)

Upon invocation, the exit function performs several actions. Figure 3.9 shows the 

relationship of the actions taken.

Figure 3.9. Actions taken by library function exit.

First, exit will call, in reverse order, all functions that have been registered using the 

atexit library function. The atexit function is relatively new. Some older BSD-based 

versions of C (as well as some version of GNU) supported a library function called 

on_exit that offered a similar functionality. As future support for on_exit looks to be a bit 

sketchy; it might be best to stay clear of it. The atexit function should provide similar 

functionality.



A brief description of the atexit function is in order. The definition of atexit, shown in 

Table 3.7, indicates that functions to be called (when the process terminates 

normally)[9] are registered by passing the atexit function the address of the function. 

The registered functions should not have any parameters. If atexit is successful in 

registering the function, atexit returns a 0; otherwise, it returns a -1 but will not set 

errno.[10]

[9] A normal termination is considered a call to exit or a return in main. On 

our system, atexit registered functions will be called even if the program 

ends implicitly (without a return in main).

[10] This is one of the rare cases where no explanation of errno values is 

provided by system designers.

Program 3.8 demonstrates the use of atexit.

When run, the output of the program shows that the registered functions are called in 

inverse order (Figure 3.10).

In older versions of C, once all atexit functions were called, the standard I/O library 

function _cleanup would be called. Newer versions of GNU C/C++ do not support the 

_cleanup function. Now when all atexit functions have been processed, exit calls the 

system call _exit (passing on to it the value of status). Programmers may call _exit

directly if they wish to circumvent the invocation of atexit registered functions and the 

flushing of I/O buffers. See Table 3.8.

Table 3.7. Summary of the atexit Library Function.

Include File(s) <stdlib.h> Manual Section 3

Summary int atexit(void (*function)(void));

Return

Success Failure Sets errno

0 -1 No

Program 3.8 Using the atexit library function.



File : p3.8.cxx

  |     #include <iostream>

  |     #include <cstdlib>

  |     using namespace std;

  |     int

  +     main( ){

  |       void       f1( ), f2( ), f3( );

  |       atexit(f1);

  |       atexit(f2);

  |       atexit(f3);

 10       cout << "Getting ready to exit" << endl;

  |       exit(0);

  |     }

  |     void

  |     f1( ){

  +       cout << "Doing F1" << endl;

  |     }

  |     void

  |     f2( ){

  |       cout << "Doing F2" << endl;

 20     }

  |     void

  |     f3( ){

  |       cout << "Doing F3" << endl;

  |     }

Figure 3.10 Output of Program 3.8.

linux$ p3.8

Getting ready to exit

Doing F3

Doing F2

Doing F1

3-7 EXERCISE

Explore the atexit function. What happens if one of the functions registered 

with atexit contains a call to exit? What if the registered function (with the exit

call) is called directly rather than having the program exit in main—are things

handled correctly?



Table 3.8. Summary of the _exit System Call.

Include File(s) <unistd.h> Manual Section 2

Summary void _exit(int status);

Return

Success Failure Sets errno

Does not return Does not return  

The _exit system call, like its relative, exit, does not return. This call also accepts an 

integer status value, which will be made available to the parent process. When 

terminating a process, the system performs a number of housekeeping operations:

All open file descriptors are closed.

The parent of the process is notified (via a SIGCHLD signal) that the process is 

terminating.

Status information is returned to the parent process (if it is waiting for it). If the 

parent process is not waiting, the system stores the status information until a 

wait by the parent process is affected.

All child processes of the terminating process have their parent process ID

(PPID) set to 1—they are inherited by init.

If the process was a group leader, process group members will be sent 

SIGHUP/ SIGCONT signals.

Shared memory segments and semaphore references are readjusted.

If the process was running accounting, the accounting record is written out to 

the accounting file.
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3.6 Waiting on Processes

They also serve who only stand and wait.

—John Milton 1608–1674 On His Blindness [1652]

More often than not, a parent process needs to synchronize its actions by waiting until 

a child process has either stopped or terminated its actions. The wait system call 

allows the parent process to suspend its activity until one of these actions has 

occurred (Table 3.9).

Table 3.9. Summary of the wait System Call.

Include File(s)
<sys/types.h>

<sys/wait.h> Manual Section 2

Summary pid_t wait(int *status);

Return

Success Failure Sets errno

Child process ID or 0 -1 Yes

The activities of wait are summarized in Figure 3.11.

Figure 3.11. Summary of wait activities.



The wait system call accepts a single argument, which is a pointer to an integer, and 

returns a value defined as type pid_t. Data type pid_t is found in the header file 

<sys/types.h> and is most commonly a long int. If the calling process does not have any 

child processes associated with it, wait will return immediately with a value of -1 and 

errno will be set to ECHILD (10). However, if any child processes are still active, the 

calling process will block (suspend its activity) until a child process terminates. When a 

waited-for child process terminates, the status information for the child and its process 

ID (PID) are returned to the parent. The status information is stored as an integer 

value at the location referenced by the pointer status. The low-order 16 bits of the 

location contain the actual status information, and the high-order bits (assuming a 

32-bit machine) are set to zero. The low-order bit information can be further 

subdivided into a low- and high-order byte. This information is interpreted in one of 

two ways:

If the child process terminated normally, the low-order byte will be 0 and the

high-order byte will contain the exit code (0–255):

byte 3 byte 2 byte 1 byte 0

  exit code 0

1.

If the child process terminated due to an uncaught signal, the low-order byte 

will contain the signal number and the high-order byte will be 0:

byte 3 byte 2 byte 1 byte 0

  0 signal #

2.

In this second situation, if a core file has been produced, the leftmost bit of byte 0 will 

be a 1. If a NULL argument is specified for wait, the child status information is not

returned to the parent process, the parent is only notified of the child's termination.



Here are two programs, a parent (Program 3.9) and child (Program 3.10), that 

demonstrate the use of wait.

Program 3.9 The parent process.

File : p3.9.cxx

  |     /*

  |         A parent process that waits for a child to finish

  |      */

  |     #include <iostream>

  +     #include <cstdlib>

  |     #include <iomanip>

  |     #include <unistd.h>

  |     #include <sys/types.h>

  |     #include <sys/wait.h>

 10     using namespace std;

  |     int

  |     main(int argc, char *argv[] ){

  |       pid_t  pid, w;

  |       int    status;

  +       if ( argc < 4 ) {

  |         cerr << "Usage " << *argv << " value_1 value_2 value_3\n";

  |         return 1;

  |       }

  |       for (int i = 1; i < 4; ++i)          // generate 3 child processes

 20         if ((pid = fork( )) == 0)

  |           execl("./child", "child", argv[i], (char *) 0);

  |         else                               // assuming no failures here

  |           cout << "Forked child " << pid << endl;

  |     /*

  +          Wait for the children

  |      */

  |       while ((w=wait(&status)) && w != -1)

  |           cout << "Wait on PID: " << dec <<  w << "  returns status of  "

  |                << setw(4) << setfill('0') << hex

 30                << setiosflags(ios::uppercase) << status << endl;

  |       return 0;

  |     }

The parent program forks three child processes. Each child process is overlaid with 

the executable code for the child (found in Program 3.10). The parent process passes 

to each child, from the parent's command line, a numeric value. As each child process 

is produced, the parent process displays the child process ID. After all three 

processes have been generated; the parent process initiates a loop to wait for the 



child processes to finish their execution. As each child process terminates, the value 

returned to the parent process is displayed.

Program 3.10 The child process.

File : p3.10.cxx

  |     /*

  |        The child process

  |     */

  |     #define _GNU_SOURCE

  +     #include <iostream>

  |     #include <cstdlib>

  |     #include <iomanip>

  |     #include <sys/types.h>

  |     #include <unistd.h>

 10     #include <signal.h>

  |     using namespace std;

  |     int

  |     main(int argc, char *argv[ ]){

  |       pid_t     pid = getpid( );

  +       int       ret_value;

  |       srand((unsigned) pid);

  |       ret_value = int(rand( ) % 256);      // generate a return value

  |       sleep(rand( ) % 3);                  // sleep a bit

  |       if (atoi(*(argv + 1)) % 2) {         // assuming argv[1] exists!

 20         cout << "Child " << pid << " is terminating with signal 0009" << endl;

  |         kill(pid, 9);                      // commit hara-kiri

  |       } else {

  |         cout << "Child " << pid << " is terminating with   exit("

  |              << setw(4) << setfill('0') << setiosflags(ios::uppercase)

  +              << hex  << ret_value << ")" << endl;

  |         exit(ret_value);

  |       }

  |     }

In the child program, the child process obtains its own PID using the getpid call. The 

PID value is used as a seed value to initialize the srand function. A call to rand is used

to generate a unique value to be returned when the process exits. The child process

then sleeps a random number of seconds (0–3). After sleeping, if the argument

passed to the child process on the command line is odd (i.e., not evenly divisible by

2), the child process kills itself by sending a signal 9 (SIGKILL) to its own PID. If the

argument on the command line is even, the child process exits normally, returning the

previously calculated return value. In both cases, the child process displays a



message indicating what it will do before it actually executes the statements.

The source programs are compiled and the executables named parent and child 

respectively. They are run by calling the parent program. Two sample output 

sequences are shown in Figure 3.12.

Figure 3.12 Two runs of Programs 3.9 and 3.10.

linux$ parent 2 1 2                                  <-- 1

Forked child 8975

Forked child 8976

Child 8976 is terminating with signal 0009

Forked child 8977

Wait on PID: 8976  returns status of  0009

Child 8977 is terminating with   exit(008F)

Wait on PID: 8977  returns status of  8F00

Child 8975 is terminating with   exit(0062)

Wait on PID: 8975  returns status of  6200

linux$ parent 2 2 1                                  <-- 2

Forked child 8980

Forked child 8981

Forked child 8982

Child 8982 is terminating with signal 0009

Wait on PID: 8982  returns status of  0009

Child 8980 is terminating with   exit(00B0)

Wait on PID: 8980  returns status of  B000

Child 8981 is terminating with   exit(00D3)

Wait on PID: 8981  returns status of  D300

(1) Two even values and one odd

(2) Two even values and one odd but in a different order.

There are several things of interest to note in this output. In the first output sequence, 

one child processes (PID 8976) has terminated before the parent has finished its 

process generation. Processes that have terminated but have not been waited upon by 

their parent process are called zombie processes. Zombie processes occupy a slot in 



the process table, consume no other system resources, and will be marked with the 

letter Z when a process status command is issued (e.g., ps -alx or ps -el). A zombie 

process cannot be killed[11] even with the standard Teflon bullet (e.g., at a system 

level: kill -9 process_id_number). Zombies are put to rest when their parent process 

performs a wait to obtain their process status information. When this occurs, any 

remaining system resources allocated for the process are recovered by the kernel. 

Should the child process become an orphan before its parent issues the wait, the 

process will be inherited by init, which, by design, will issue a wait for the process. On 

some very rare occasions, even this will not cause the zombie process to "die." In 

these cases, a system reboot may be needed to clear the process table of the entry.

[11] This miraculous ability is the source of the name zombie.

Both sets of output clearly show that when the child process terminates normally, the 

exit value returned by the child is stored in the second byte of the integer value 

referenced by argument to the wait call in the parent process. Likewise, if the child 

terminates due to an uncaught signal, the signal value is stored in the first byte of the 

same referenced location. It is also apparent that wait will return with the information 

for the first child process that terminates, which may or may not be the first child 

process generated.

3-8 EXERCISE

Add the wait system call to the huh shell program (Program 3.7).

3-9 EXERCISE

Write a program that produces three zombie processes. Submit evidence, 

via the output of the ps command, that these processes are truly generated 

and are eventually destroyed.

3-10 EXERCISE



In Program 3.10 if the child process uses a signal 8 (versus 9) to terminate, 

what is returned to the parent as the signal value? Why?

It is easy to see that the interpretation of the status information can be cumbersome, 

to say the least. At one time, programmers wrote their own macros to interrogate the 

contents of status. Now most use one of the predefined status macros. These macros 

are shown in Table 3.10.

Table 3.10. The wstat Macros.

Macro Description

WIFEXITED(status) Returns a true if the child process exited normally.

WEXITSTATUS(status) Returns the exit code or return value from main. Should be called 

only if WIFEXITED(status)has returned a true.

WIFSIGNALED(status) Returns a true if the child exited due to uncaught signal.

WTERMSIG(status) Returns the signal that terminated the child. Should be called 

only if WIFSIGNALED(status) has returned a true.

WIFSTOPPED(status) Returns a true if the child process is stopped.

WSTOPSIG(status) Returns the signal that stopped the child. Should be called only 

if WIFSTOPPED(status)has returned a true.

The argument to each of these macros is the integer status value (not the pointer to 

the value) that is returned to the wait call. The macros are most often used in pairs. 

The WIF macros are used as a test for a given condition. If the condition is true, the 

second macro of the pair is used to return the specified value. As shown below, these 

macros could be incorporated in the wait loop in the parent Program 3.9 to obtain the 

child status information:

...

while ((w = wait(&status)) && w != -1)

  if (WIFEXITED(status))                           // test with macro

    cout << "Wait on PID: " << dec << w << " returns a value of "

         << hex << WEXITSTATUS(status) << endl;    // obtain value

  else if (WIFSIGNALED(status))                    // test with macro



    cout << "Wait on PID: " << dec << w << " returns a signal of "

         << hex << WTERMSIG(status) << endl;       // obtain value

...

3-11 EXERCISE

Some systems support a WCOREDUMP macro. This macro is only called if 

the WIFSIGNALED macro returns a true. WCOREDUMP returns a true if the

offending signal generates a core dump. Write your own version of the 

WCOREDUMP macro (inline function). You may need to check the signal 

manual page (Section 7) to determine what signals generate a core dump or

do a bit of bit manipulation (see earlier discussion). Show that your macro 

works when a process receives a terminating signal that generates or does 

not generate a core image file.

While the wait system call is helpful, it does have some limitations. It will always return 

the status of the first child process that terminates or stops. Thus, if the status 

information returned by wait is not from the child process we want, the information may 

need to be stored on a temporary basis for possible future reference and additional 

calls to wait made. Another limitation of wait is that it will always block if status 

information is not available. Fortunately, another system call, waitpid, which is more 

flexible (and thus more complex), addresses these shortcomings. In most invocations, 

the waitpid call will block the calling process until one of the specified child processes 

changes state. The waitpid system call summary is shown in Table 3.11.

Table 3.11. Summary of the waitpid System Call.

Include File(s) <sys/types.h>

<sys/wait.h>
Manual Section 2

Summary pid_t waitpid(pid_t pid, int *status, int options);

Return

Success Failure Sets errno

Child PID or 0 -1 Yes

The first argument of the waitpid system call, pid, is used to stipulate the set of child 

process identification numbers that should be waited for (Table 3.12).



Table 3.12. Interpretation of pid Values by waitpid.

pid

Value

Wait for

< -1 Any child process whose process group ID equals the absolute value of 

pid.

-1
Any child process—in a manner similar to wait.

0 Any child process whose process group ID equals the caller's process 

group ID.

> 0 The child process with this process ID.

The second argument, *status, as with the wait call, references an integer status 

location where the status information of the child process will be stored if the waitpid

call is successful. This location can be examined directly or with the previously 

presented wstat macros.

The third argument, options, may be 0 (don't care), or it can be formed by a bitwise OR

of one or more of the flags listed in Table 3.13 (these flags are usually defined in the 

<sys/wait.h> header file). The flags are applicable to the specified child process set 

discussed previously.

Table 3.13. Flag Values for waitpid.

FLAG Value Specifies

WNOHANG Return immediately if no child has exited—do not block if the status

cannot be obtained; return a value of 0, not the PID.

WUNTRACED Return immediately if child is blocked.

If the value given for pid is -1 and the option flag is set to 0, the waitpid and wait system 

call act in a similar fashion. If waitpid fails, it returns a value of –1 and sets errno to 

indicate the source of the error (Table 3.14).



Table 3.14. waitpid Error Messages.

# Constant perror Message Explanation

4 EINTR Interrupted system 

call

Signal was caught during the system call.

10 ECHILD No child process Process specified by pid does not exist, or 

child process has set action of SIGCHILD to 

be SIG_IGN (ignore signal).

22 EINVAL Invalid argument Invalid value for options.

85 ERESTART Interrupted system 

call should be 

restarted

WNOHANG not specified, and unblocked 

signal or SIGCHILD was caught.

We can modify a few lines in our current version of the parent process (Program 3.9) 

to save the generated child PIDs in an array. This information can be used with the 

waitpid system call to coerce the parent process into displaying status information from 

child processes in the order of child process generation instead of their termination 

order. Program 3.11 shows how this can be done.

Program 3.11 A parent program using waitpid.

File : p3.11.cxx

  |     #include <iostream>

  |     #include <cstdlib>

  |     #include <iomanip>

  |     #include <unistd.h>

  +     #include <sys/types.h>

  |     #include <sys/wait.h>

  |     using namespace std;

  |     int

  |     main(int argc, char *argv[] ){

 10       pid_t  pid[3], w;

  |       int    status;

  |       if ( argc < 4 ) {

  |         cerr << "Usage " << *argv << " value_1 value_2 value_3\n";

  |         return 1;

  +       }



  |       for (int i=1; i < 4; ++i)          // generate 3 child processes

  |         if ((pid[i-1] = fork( )) == 0)

  |           execl("./child", "child", argv[i], (char *) 0);

  |         else                               // assuming no failures here

 20           cout << "Forked child " << pid[i-1] << endl;

  |     /*

  |          Wait for the children

  |     */

  |       for (int i=0;(w=waitpid(pid[i], &status,0)) && w != -1; ++i){

  +         cout << "Wait on PID " << dec << w << " returns ";

  |         if (WIFEXITED(status))                        // test with macro

  |           cout << " a value of  " << setw(4) << setfill('0') << hex

  |                << setiosflags(ios::uppercase) << WEXITSTATUS(status) << endl;

  |         else if (WIFSIGNALED(status))                 // test with macro

 30           cout << " a signal of " << setw(4) << setfill('0') << hex

  |                << setiosflags(ios::uppercase) << WTERMSIG(status) << endl;

  |         else

  |           cout << " unexpectedly!" << endl;

  |       }

  +       return 0;

  |     }

A run of this program (using the same child process—Program 3.10) confirms that the 

status information returned to the parent is indeed ordered based on the sequence of 

child processes generation, not the order in which the processes terminated. Also, 

note that the status macros are used to evaluate the return from waitpid system call 

(Figure 3.13).

Figure 3.13 Output of Program 3.11.

linux$ p3.11  2  2  1

Forked child 9772

Forked child 9773                                    <-- 1

Child 9773 is terminating with   exit(008B)          <-- 2

Forked child 9774

Child 9772 is terminating with   exit(00CD)

Wait on PID 9772 returns  a value of  00CD           <-- 3

Wait on PID 9773 returns  a value of  008B

Child 9774 is terminating with signal 0009

Wait on PID 9774 returns  a signal of 0009

(1) Order of creation:



(2) Order of termination:

(3) Order of wait:

3-12 EXERCISE

The discussion in the text centers on a parent process waiting for a child 

process to terminate or stop. We already have the tools necessary for a 

child process to determine if its parent process has terminated. Show how 

this can be done. What are the advantages and disadvantages of your 

implementation?

On some occasions, the information returned from wait or waitpid may be insufficient. 

Additional information on resource usage by a child process may be sought. There are 

two BSD compatibility library functions, wait3 and wait4,[12] that can be used to provide 

this information (Table 3.15).

[12] It is not clear if these functions will be supported in subsequent 

versions of the GNU compiler, and they may limit the portability of 

programs that incorporate them. As these are BSD-based functions, 

_USE_BSD must be defined in the program code or defined on the 

command line when the source code is compiled.



Table 3.15. Summary of the wait3/wait4 Library Functions.

Include File(s) #define _USE_BSD

#include <sys/types.h>

#include <sys/resource.h>

#include <sys/wait.h>

Manual Section

3

Summary pid_t wait3(int *status, int options,

            struct rusage *rusage);

pid_t wait4(pid_t pid, int *status,

            int options, struct rusage *rusage);

Return

Success Failure Sets errno

Child PID or 0 -1 Yes

The wait3 and wait4 functions parallel the wait and waitpid functions respectively. The 

wait3 function waits for the first child process to terminate or stop. The wait4 function 

waits for the specified PID (pid). In addition, should the pid value passed to the wait4

function be set to 0, wait4 will wait on the first child process in a manner similar to wait3. 

Both functions accept option flags to indicate whether or not they should block and/or 

report on stopped child processes. These option flags are shown in Table 3.16.

Table 3.16. Option Flag Values for wait3/wait4.

FLAG Value Specifies

WNOHANG Return immediately if no child has exited—do not block if the status

cannot be obtained; return a value of 0 not the PID.

WUNTRACED Return immediately if child is blocked.

Both functions contain an argument that is a reference to a rusage structure. This 

structure is defined in the header file <sys/resource.h>.[13]

[13] On some systems, you may need the header file <sys/rusage.h>

instead of <sys/resource.h>, and you may need to explicitly link in the BSD 

library that contains the object code for the wait3/wait4 functions.

struct rusage {

                 struct timeval ru_utime; /* user time used */

                 struct timeval ru_stime; /* system time used */



                 long ru_maxrss;          /* maximum resident set size */

                 long ru_ixrss;           /* integral shared memory size */

                 long ru_idrss;           /* integral unshared data size */

                 long ru_isrss;           /* integral unshared stack size */

                 long ru_minflt;          /* page reclaims */

                 long ru_majflt;          /* page faults */

                 long ru_nswap;           /* swaps */

                 long ru_inblock;         /* block input operations */

                 long ru_oublock;         /* block output operations */

                 long ru_msgsnd;          /* messages sent */

                 long ru_msgrcv;          /* messages received */

                 long ru_nsignals;        /* signals received */

                 long ru_nvcsw;           /* voluntary context switches */

                 long ru_nivcsw;          /* involuntary context switches */

            };

If the rusage argument is non-null, the system populates the rusage structure with the 

current information from the specified child process. See the getrusage system call in 

Section 2 of the manual pages for additional information. The status macros (see 

previous section on wait and waitpid) can be used with the status information returned 

by wait3 and wait4. See Table 3.17.

Table 3.17. wait3/wait4 Error Messages.

# Constant perror Message Explanation

4 EINTR Interrupted system 

call

Signal was caught during the system call.

10 ECHILD No child process Process specified by pid does not exist, or 

child process has set action of SIGCHILD to 

be SIG_IGN (ignore signal).

22 EINVAL Invalid argument Invalid value for options.

85 ERESTART Interrupted system 

call should be 

restarted

WNOHANG not specified, and unblocked 

signal or SIGCHILD was caught.



3-13 EXERCISE

Modify Program 3.11 to use the wait4 library function. After each child 

terminates, have the parent process display the number of page faults the 

child process incurred. A page fault occurs when a program requests data 

that is not currently in memory. To satisfy the request the operating system 

must locate the data and load it into memory. As loading data from a device 

takes time and slows down processing the fewer page faults generated the 

better.
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3.7 Summary

Processes are generated by the fork system call. The process that issues the fork

system call is known as the parent, and the new process as the child. Child processes 

may have their executable code overlaid with other executable code via an exec

system call. When a process finishes executing its code, performs a return in the 

function main, or makes an exit system call, the process terminates. Parent processes 

may wait for their child processes to terminate. Terminating child processes return 

status information that can be examined by the parent process.
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3.8 Key Terms and Concepts

_exit system call

atexit system call

daemon

exec

execl library function

execle function call

execlp library function

execv library function

execve system call

execvp library function

exit code

exit library function

flush

rand library function

restricted shell

rusage structure

srand library function
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status information

strstr library function

strtok library function

wait system call

wait3 library function

wait4 library function

waitpid system call

WEXITSTATUS macro

WIFEXITED macro

WIFSIGNALED macro

WIFSTOPPED macro

wstat macros

WSTOPSIG macro

WTERMSIG macro

zombie
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Chapter 4. Primitive Communications
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4.1 Introduction

Now that we have covered the basics of process structure and generation, we can 

begin to address the topic of interprocess communications. It is common for 

processes to need to coordinate their activities (e.g., such as when accessing a 

non-shareable system resource). Conceptually, this coordination is implemented via 

some form of passive or active communication between processes. As we will see, 

there are a number of ways in which interprocess communications can be carried out. 

The remaining chapters address a variety of interprocess communication techniques. 

As the techniques become more sophisticated, they become more complex, and 

hopefully more flexible and reliable. We begin by discussing primitive communication 

techniques that, while they get the job done, have certain limitations.
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4.2 Lock Files

A lock file (which should not be confused with file/record locking, an I/O technique 

covered in Section 4.3) can be used by processes as a way to communicate with one 

another. The processes involved may be different programs or multiple instances of 

the same program. The use of lock files has a long history in UNIX. Early versions of 

UNIX (as well as some current versions) use lock files as a means of communication. 

Lock files are sometimes found in line printer and uucp implementations. In some 

systems the coordination of access to password and mail files also rely on lock files 

and/or the locking of a specific file.

The theory behind the use of a lock file as an interprocess communication technique 

is rudimentary. In brief, by using an agreed-upon file-naming convention, a process 

examines a prearranged location for the presence or absence of a lock file. Often the 

location is a temporary directory (e.g., /tmp) where the files are automatically cleared 

when the system reboots (or by periodic housecleaning by the system administrator) 

and where all users normally have read/write/execute permission. In its most basic 

form, if the file is present, the process takes one set of actions, and if the file is 

missing, it takes another. For example, suppose we have two processes, 

Process_One and Process_Two, that seek access to a single non-shareable resource

(e.g., a printer or disk). A lock file-based communication convention for the two 

processes could be as shown in Figure 4.1.

Figure 4.1. Using a lock file for communication with two processes.



It is clear that communication implemented in this manner only conveys a minimal 

amount of information from one process to another. In essence, the processes are 

using the presence or absence of the lock file as a binary semaphore. The file's 

presence or absence communicates, from one process to another, the availability of a 

resource.

Such a communication technique is fraught with problems. The most apparent 

problem is that the processes must agree upon the naming convention for the lock file. 

However, additional, perhaps unforeseen, problems may arise as well. For example,

What if one of the processes fails to remove the lock file when it is finished with 

the resource?

1.

Polling (the constant checking to determine if a certain event has occurred) is 

expensive (CPU-wise) and is to be avoided. How does the process that does 

not obtain access to the resource wait for the resource to become free?

2.

Race conditions whereby both processes find the lock file absent at the same 

time and, thus, both attempt to simultaneously create it should not happen. Can 

we make the generation of the lock file atomic (non-divisible, i.e., 

non-interruptible)?

3.

As we will see, we will be able to address some of these concerns and others we will 

only be able to limit in scope. A program that implements communications using a lock 

file is presented below. The code for the main portion of the program is shown in 

Program 4.1.

Program 4.1 Using a lock file—the main program.

File : p4.1.cxx

  |     /*

  |          Using a lock file as a process communication technique.

  |     */

  |     #include <iostream>

  +     #include <unistd.h>

  |

  |     #include "lock_file.h"                       <-- 1

  |     using namespace std;

  |     int

 10     main(int argc, char *argv[ ]){



  |       int  numb_tries, i = 5;

  |       int  sleep_time;

  |       char *fname;

  |       /*

  +             Assign values from the command line

  |       */

  |       set_defaults(argc, argv, &numb_tries, &sleep_time, &fname);

  |       /*

  |             Attempt to obtain lock file

 20       */

  |       if (acquire(numb_tries, sleep_time, fname)) {

  |         while (i--) {                     // simulate resource use

  |           cout << getpid( )<< " " << i << endl;

  |           sleep(sleep_time);

  +         }

  |         release(fname);                   // remove lock file

  |         return 0;

  |       } else

  |         cerr << getpid( ) << " unable to obtain lock file after "

 30              << numb_tries << " tries." << endl;

  |       return 1;

  |     }

(1) This header resides locally.

At line 7 of the program, the local header file lock_file.h is included. This file (Figure 4.2) 

contains the prototypes for the three functions set_defaults, acquire, and release, that are 

used to manipulate the lock file. Preprocessor statements are used in the header file 

to prevent the file from being inadvertently included more than once.

In line 17 of the main program the set_defaults function is called to establish the default 

values. Once these values have been assigned, the program attempts to obtain the 

lock file by calling the function acquire (line 21). If the program is successful in creating 

the lock file, it then accesses the non-shareable resource. In the case of Program 4.1

the resource involved is the screen. When access to the screen is acquired, the 

program displays a series of integer values. Once the program is finished with the 

resource (all values have been displayed), the lock file is removed using the release

function.

Figure 4.2 The lock_file.h header file.



File : lock_file.h

  |     #ifndef LOCK_FILE_H

  |     #define LOCK_FILE_H

  |     /*

  |        Lock file function prototypes

  +     */

  |     void  set_defaults(int, char *[], int *, int *, char **);

  |     bool  acquire(int, int, char *);

  |     bool  release(char *);

  |     #endif

The set_defaults function accepts five arguments. The first two arguments (an integer 

and an array of character pointers) are the argc and argv values passed to the main 

program (Program 4.1). As written, the program will allow the user to change some or 

all of the default values by passing alternate values on the command line when the 

program is invoked. The remaining three arguments for set_defaults are the number of 

tries to be made when attempting to generate the lock file, the amount of time to wait 

in seconds between attempts, and a reference to the name of the lock file.

The acquire function takes three arguments. The first is the number of times to attempt 

to create the lock file, the second the sleep interval between tries, and the third a 

reference to the lock file name. The acquire function returns a boolean value indicating 

its success.

The function release removes the lock file. This function is passed a reference to the 

lock file and returns a boolean value indicating whether or not it was successful. The 

code for these functions, which are stored in a separate file, is shown in Figure 4.3.

Figure 4.3 Source code for the set_defaults, acquire, and release functions.

File : lock_file.cxx

  |     /*

  |       Source code for using lock file. Compile using -c and

  |       -D_GNU_SOURCE options. Link object code as needed.

  |     */

  +     #include <iostream>

  |     #include <cstring>

  |     #include <cstdlib>

  |     #include <cerrno>

  |     #include <limits.h>

 10     #include <fcntl.h>

  |     #include <unistd.h>



  |     const int  NTRIES = 5;                  // default values

  |     const int  SLEEP  = 5;

  |     const char *LFILE = "/tmp/TEST.LCK";

  +     using namespace std;

  |     void

  |     set_defaults(int ac, char *av[ ],

  |                  int *n_tries, int *s_time, char **f_name){

  |       static char full_name[PATH_MAX];

 20       *n_tries = NTRIES;                    // Start with defaults

  |       *s_time  = SLEEP;

  |       strcpy(full_name, LFILE);

  |       switch (ac) {

  |       case 4:                               // File  name was specified

  +         full_name[0] = '\0';                // "clear" the string

  |         strcpy(full_name, av[3]);           // Add the passed in file

  |       case 3:

  |         if ((*s_time = atoi(av[2])) <= 0)   //  Seconds of sleep time

  |           *s_time = SLEEP;

 30       case 2:

  |         if ((*n_tries = atoi(av[1])) <= 0)  // Number of times to try

  |           *n_tries = NTRIES;

  |       case 1:                               // Use the defaults

  |         break;

  +       default:

  |         cerr << "Usage: " << av[0] <<

  |                 " [[tries][sleep][lockfile]]" << endl;

  |         exit(1);

  |       }

 40       *f_name = full_name;

  |     }

  |

  |     bool

  |     acquire(int numb_tries, int sleep_time, char *file_name){

  +       int   fd, count = 0;

  |       while ((fd = creat(file_name, 0)) == -1 && errno == EACCES)

  |         if (++count < numb_tries)           // If still more tries

  |           sleep(sleep_time);                // sleep for a while

  |         else

 50           return (false);                   // Unable to generate

  |       close(fd);                            // Close (0 byte in size)

  |       return (bool(fd != -1));              // OK if actually done

  |     }

  |

  +     bool

  |     release(char *file_name){

  |       return bool(unlink(file_name) == 0);



  |     }

At the top of the lock_file.cxx file, the default values are assigned. The set_defaults

function examines the number of arguments passed on the command line (which has 

been passed to it as the variable ac). A cascading switch statement is used to 

determine if changes in the default assignments should be made. The set_defaults

function assumes the command-line arguments, if present, are arranged as

linux$ program_name  numb_of_tries  sec_to_sleep  lck_file_name

The value for numb_of_tries and the sec_to_sleep should be nonzero. The lck_file_name is 

the name to be used for the lock file. As written, the set_defaults function does not 

validate the passed-in lock file location/name but does attempt to disallow values of 

zero or less for the number of tries and the sleep interval.

The function acquire relies on the system call creat (note there is no trailing e) to 

generate the lock file (Table 4.1).

Table 4.1. Summary of the creat System Call.

Include File(s) <sys/types.h>

<sys/stat.h>

<fcntl.h>

Manual Section
2

Summary int creat(const char *pathname,mode_t mode);

Return
Success Failure Sets errno

Lowest available integer file descriptor -1 Yes

By definition, creat is used to create a new file or rewrite a file that already exists (first 

truncating it to 0 bytes). The creat system call will open a file for writing only.

creat requires two arguments. The first argument, pathname, is a character pointer to the 

file to be created, and the second argument, mode, is a value of type mode_t (in most 

cases defined as type int in the <sys/types.h> file), which specifies the mode (access 

permissions) for the created file. The header file <fcntl.h> contains a number of 

predefined constants that may be bitwise ORed to specify the mode for the file. The 

creat system call in the program function acquire creates a file whose access mode is 0. 

If creat is successful, the file generated will not have read, write, or execute permission 



for any user groups (this excludes the superuser root).[1]

[1] As the superuser has special privileges, the lock file implementation 

shown here would not work for the superuser.

An alternate approach to creating the file would be to use the open
[2] system call. The 

equivalent statement using open would be:

[2] At one time the open system call did not support the O_CREAT (create) 

option.

open( path, O_WRONLY | O_CREAT | O_TRUNC, 0 );

If the creat call is successful, it will return an integer value that is the lowest available 

file descriptor. If creat fails, it returns/sets a -1 and sets errno. Table 4.2 contains the 

errors that may be encountered when using the creat system call.

As shown, a number of things can cause creat to fail, including too many files open, an 

incorrectly specified file and/or path name, and so on. The failure we test for in the 

while loop of the acquire function is EACCES.[3] The failure of creat and the setting of 

errno to EACCES indicates the file to be created already exists and write permission to 

the file is denied (remember, the file was generated with a mode of 0).

[3] EACCES is a defined constant found in the <sys/errno.h> header file.

Table 4.2. creat Error Messages.

# Constant perror Message Explanation

2 ENOENT No such file or 

directory

One or more parts of the path to new file 

do not exist (or is NULL).

6 ENXIO No such device 

or address

O_NONBLOCK | O_WRONLY is set, the 

named file is a pipe, and no process has 

the file open for reading.

12 ENOMEM Cannot allocate 

memory

Insufficient kernel memory was 

available.



# Constant perror Message Explanation

13 EACCES Permission 

denied The requested access to the file 

is not allowed.

Search permission denied on 

part of file path.

File does not exist.

14 EFAULT Bad address pathname references an illegal address 

space.

17 EEXIST File exists pathname (file) already exists and 

O_CREAT and O_EXCL were specified.

19 ENODEV No such device pathname refers to a device special file, 

and no corresponding device exists.

20 ENOTDIR Not a directory Part of the specified path is not a 

directory.

21 EISDIR Is a directory pathname refers to a directory, and the 

access requested involved writing.

23 ENFILE Too many open 

files in system

System limit on open files has been 

reached.

24 EMFILE Too many open 

files

The process has exceeded the 

maximum number of files open.

26 ETXTBSY Text file busy More than one process has the 

executable open for writing.

28 ENOSPC No space left on 

device

Device for pathname has no space for 

new file (it is out of inodes).

30 EROFS Read-only file 

system

The pathname refers to a file on a 

read-only filesystem, and write access 

was requested.



# Constant perror Message Explanation

36 ENAMETOOLONG File name too 

long

The pathname value exceeds system 

path/file name length.

40 ELOOP Too many levels 

of symbolic links

The perror message says it all.

As noted, the while loop in the acquire function tests to determine if a file can be 

created. If the file can be created, the loop is exited and the file descriptor is closed 

(leaving the file present and 0 bytes in length). When the file cannot be created and 

the error code in errno is EACCES, the if statement in the body of the loop is executed. 

In the if statement the value for count is tested against the designated number of tries 

for creating the file. If insufficient tries have been made, a call to sleep, to suspend 

processing, is made.

sleep is a library function that suspends the invoking process for the number of 

seconds indicated by its argument seconds.[4] See Table 4.3. If sleep is interrupted 

(such as by a signal), the number of unslept seconds is returned. If the amount of time 

slept is equal to the argument value passed, sleep will return a 0. Using sleep in the 

polling loop to have the process wait is a compromise. It is not an elegant way to 

reduce CPU-intensive code but, at this point, is better than no built-in wait or running 

some sort of throwaway calculation loop. In later chapters, we discuss alternate 

solutions to this problem.

[4] If smaller intervals are needed, there is a usleep (unsigned sleep) 

library function that suspends execution of the calling process for a 

specified number of microseconds.

Table 4.3. Summary of the sleep Library Function.

Include Files(s) <unistd.h> Manual Section 3

Summary unsigned int sleep(unsigned int seconds);

Return

Success Failure Sets errno

Amount of time left to sleep.   



If, in the program function acquire, the number of tries has been exceeded, a FALSE 

value, indicating a failure, is returned. A boolean TRUE type value is returned if the 

while loop is exited because the creat call was successful. Additionally, if the creat fails 

for any other reason, a FALSE type value is returned.

The release function attempts to remove the file using the system call unlink (Table 4.4). 

This call deletes a file from the filesystem if the reference is the last link to the file and 

the file not currently in use. If the reference is a symbolic link, the link is removed. In 

the program the release function is coded to return the success or failure of unlink's 

ability to accomplish its task. As written, the main program discards the value returned 

by the release function.

Table 4.4. Summary of the unlink System Call.

Include Files(s) <unistd.h> Manual Section 2

Summary int unlink(const char *pathname);

Return

Success Failure Sets errno

0 -1 Yes

If the unlink system call fails it returns a value of -1 and sets errno to one of the values 

found in Table 4.5. If unlink is successful, it returns a value of 0.

Table 4.5. unlink error messages.

# Constant perror Message Explanation

1 EPERM Operation not 

permitted Not owner of file or not 

superuser.

The filesystem (in Linux) does 

not allow the unlinking of files.

2 ENOENT No such file or 

directory

One or more parts of pathname to the file 

to process does not exist (or is NULL).



# Constant perror Message Explanation

4 EINTR Interrupted 

system call

A signal was caught during the system 

call.

5 EIO I/O error An I/O error has occurred.

12 ENOMEM Cannot allocate 

memory

Insufficient kernel memory was 

available.

13 EACCES Permission 

denied Search permission denied on 

part of file path.

The requested access to the file 

is not allowed for this processes 

EUID.

14 EFAULT Bad address pathname references an illegal address 

space.

16 EBUSY Device or 

resource busy

The referenced file is busy.

20 ENOTDIR Not a directory Part of the specified path is not a 

directory.

21 EISDIR Is a directory pathname refers to a directory (not a file).

26 ETXTBSY Text file busy More than one process has the 

executable open for writing.

30 EROFS Read-only file 

system

pathname refers to a file that resides on 

a read-only filesystem.

36 ENAMETOOLONG File name too 

long

pathname is too long.

40 ELOOP Too many levels 

of symbolic links

The perror message says it all.

67 ENOLINK The link has been The path value references a remote 



# Constant perror Message Explanation

severed system that is no longer available.

72 EMULTIHOP Multihop 

attempted

The path value requires multiple hops 

to remote systems, but file system 

does not allow it.

A sample compilation run of the program is shown in Figure 4.4.

Figure 4.4 Output of Program 4.1.

linux$ g++ p4.1.cxx lock_file.o -o p4.1              <-- 1

linux$ p4.1 1 5 & p4.1 2 2 &

24347 4                                              <-- 2

[1] 24347

[2] 24348

linux$ 24348 unable to obtain lock file after 2 tries.

24347 3

24347 2

24347 1

24347 0

[2]  + Exit 1                        p4.1 2 2        <-- 3

[1]  + Done                          p4.1 1 5

(1) Compile the program linking in the lock_file object code.

(2) Run the program twice, placing each in the background.

(3) Second instance of the program failed, returning a value of 1. The

first instance completed normally.

The program p4.1 is invoked twice. To allow the two processes to execute 

concurrently, the program invocations are placed in the background (via the trailing &). 

The first process creates the lock file and gains access to the screen. This process is 



responsible for generating the five values (4, 3, 2, 1, 0) that are displayed on the 

screen. The second process, after two tries with a two-second interval between tries, 

exits and produces the message Unable to obtain lock file after 2 tries. When each process 

finishes, the operating system displays the exit/return value. The process that was 

unable to gain access to the resource exits with a value of 1. It is informative to run 

the program several times using varying settings. When doing so, you should be able 

to ascertain whether the lock file really does allow rudimentary communication 

between the processes involved.

Our example uses the creat system call as the base for its atomic file locking. 

Unfortunately, creat may generate race conditions on NFS filesystem (network 

mounted filesystem). The Linux manual page for creat recommends using the link

system call as the atomic file locking operation (which it indicates should not cause 

race conditions in an NFS setting). The link system call is used to generate a hard link 

to the lock file, giving it new name. With a hard link, the link and the file being linked 

must reside on the same filesystem. If the stat system call for the file returns a link 

count of two, then the lock has been successfully implemented (acquired). See 

Exercise 4-1 for more on using link versus creat.

4-1 EXERCISE

Hillary wrote the following program code for an acquire function that uses the 

link and stat system calls.

File : hillary.cxx

  |     #include <cstdio>

  |     bool                                         <-- 1

  |     acquire(int numb_tries, int sleep_time, char *file_name){

  +       char     my_link[512];

  |       sprintf( my_link, "%s.%d", file_name, getpid());   <-- 2

  |       int count = 0;

  |       struct stat buf;

  |       while ( ++count < numb_tries) {

 50          creat(my_link,0);

  |          link( my_link, file_name );             <-- 3

  |          if (!stat(my_link, &buf) && buf.st_nlink == 2){

  |            unlink(my_link);                      <-- 4

  |            return true;

  +          }



  |         sleep(sleep_time);

  |       }

  |       return false;

  |     }

(1) Needed for sprintf call.

(2) Generate a unique link file name.

(3) Generate a hard link.

(4) If the file has two links, then this process has control.

Does her function work correctly? Why or why not? Provide output that 

supports your answer.

4-2 EXERCISE

Write a program where a parent proc ess forks three child processes. The 

child processes are to be similar to the example program just given 

(p4.1.cxx). Each child process should be passed the name of a text file to 

display on the screen. Show output whereby all processes eventually gain 

access to the file, and show output when at least one of the processes fails. 

The parent process should remove any leftover lock files that may have 

existed from previous invocations before forking the child processes.

4-3 EXERCISE



A classic operating system problem is that of coordinating a producer and 

consumer process. The producer produces a value and stores the value 

(such as in a common buffer or file) that can hold only one of the items 

produced. The consumer obtains (in a nondestructive manner) the value 

from the storage location and consumes it. The producer and consumer 

work at different rates. To guarantee integrity, each value produced must be 

consumed (not lost via overwriting by a speedy producer with a slow 

consumer), and no value should be consumed twice (such as when the 

consumer is faster than the producer). Write a producer/consumer process 

pair that uses a lock file communication technique to coordinate their 

activities. To ensure that no data is lost or duplicated, the producer process 

should produce its values by reading them one-by-one from an input file and 

in turn storing them in the common location. The consumer should append 

the values it consumes (reads from the common location) to an output file. 

After processing, say, 100, unique values, both the input file for the producer 

and the output file for the consumer should be identical. Use the sleep library 

call with small random values to simulate the producer and consumer 

working at different rates.

One way to solve the problem is to use two lock files. When using two lock 

files, one file would indicate whether or not the number has been produced, 

and the second file would indicate if the number has been consumed. The 

activities of the two processes to be coordinated can be summarized as 

follows:

Producer

do

  sleep random amount

  read a number from input file

  if # has been consumed

    write number to common buffer

    indicate new # produced

until 100 numbers produced

Consumer

do

  sleep random amount

  if a new # produced

    read number from common buffer



    indicate # was consumed

    append number read to output file

until 100 numbers produced

Hint: When using lock files, we test whether or not we can create a lock file. 

Thus, we could use the successful creation of the lock file as an indication of 

access and the inability to create the lock file as a prohibition of access. 

Using this approach initially, the lock file indicating a number has been 

consumed would be absent, and the lock file indicating a new number has 

been produced would be present.
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4.3 Locking Files

A second basic communication technique, similar in spirit to using lock files, can be 

implemented by using some of the standard file protection routines found in UNIX. 

UNIX allows the locking of records. As there is no real record structure imposed on a 

file, a record (which is sometimes called a segment or section) is considered to be a 

specified number of contiguous bytes of storage starting at an indicated location. If the 

starting location for the record is the beginning of a file, and the number of bytes 

equals the number found in the file, then the entire file is considered to be the record 

in question. Locking routines can be used to impose advisory or mandatory locking. In 

advisory locking the operating system keeps track of which processes have locked 

files. The processes that are using these files cooperate and access the record/file 

only when they determine the lock is in the appropriate state. When advisory locking is 

used, outlaw processes can still ignore the lock, and if permissions permit, modify the 

record/file. In mandatory locking the operating system will check lock information with 

every read and write call. The operating system will ensure that the proper lock protocol 

is being followed. While mandatory locking offers added security, it is at the expense 

of additional system overhead. Locks become mandatory if the file being locked is a 

plain file (not executable) and the set-group-ID is on and the group execution bit is off.

At a system level the chmod command can be used to specify a file support mandatory 

locking. For example, in Figure 4.5, the permissions on the data file x.dat are set to 

support mandatory file locking. The ls command will display the letter S in the group 

execution bit field of a file that supports a mandatory lock. Notice that in the example 

absolute mode was used with the chmod command to establish locking. The first digit 

of the mode value should be a 2 and the third digit a 6, 4, 2, or 0 (but not a 1).

Figure 4.5 Specifying mandatory locking with chmod.

linux$ echo hello > x.dat                            <-- 1

linux$ ls  -l  x.dat

-rw-r--r--   1 gray     faculty   6 Jan 30 12:06 x.dat   <-- 2
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linux$ chmod  2644  x.dat                            <-- 3

$ ls  -l  x.dat

-rw-r-Sr--   1 gray    faculty   6 Jan 30 12:06 x.dat

(1) Create a small text file.

(2) Default protections.

(3) Set the execution bit for the group.

The topic of record locking is expansive. We focus on one small aspect of it. We use 

file locking routines to place and remove an advisory lock on an entire file as a 

communication technique with cooperating processes.

There are several ways to set a lock. The two most common approaches are 

presented: the fcntl system call and the lockf library function. We begin with fcntl (Table 

4.6).

Table 4.6. Summary of the fcntl System Call.

Include 

File(s)

<unistd.h>

<fcntl.h>
Manual 

Section
2

Summary int fcntl(int fd, int cmd /* , struct

flock *lock */);

Return

Success Failure Sets errno

Value returned depends upon the cmd

argument passed.

-1 Yes

As its first argument the fcntl system call is passed a valid integer file descriptor of an 

open file. The second argument, cmd, is an integer command value that specifies the 

action that fcntl should take. The command values for locking are specified as defined 



constants in the header file <bits/fcntl.h> that is included by the <fcntl.h> header file. The 

lock specific constants are shown in Table 4.7.

Table 4.7. Lock-Specific Defined Constants Used with the fcntl System Call.

Defined 

Constant

Action Taken by fcntl

F_SETLK Set or remove a lock. Specific action is based on the contents of 

the flock structure that is passed as a third argument to fcntl.

F_SETLKW Same as F_SETLK, but block (wait) if the indicated record/segment

is not available—the default is not to block.

F_GETLK Return lock status information via the flock structure that is passed 

as the third argument to fcntl.

The third argument for fcntl is optional for some invocations (as indicated by it being 

gcommented out in the function prototype). However, when working with locks, the 

third argument is specified and references a flock structure, which is defined as

struct flock  {

     short int l_type;   /* Type of lock: F_RDLCK, F_WRLCK, or F_UNLCK. */

     short int l_whence; /* Where 'l_start' is relative to.             */

     #ifndef __USE_FILE_OFFSET64

     __off_t l_start;    /* Offset where the lock begins.               */

     __off_t l_len;      /* Size of the locked area; (0 == EOF).       */

     #else

     __off64_t l_start;  /* For systems with 64 bit offset.             */

     __off64_t l_len;

     #endif

     __pid_t l_pid;      /* PID of process holding the lock.            */

};

The flock structure is used to pass information to and return information from the fcntl

call. The type of lock, l_type, is indicated by using one of the defined constants shown 

in Table 4.8.

The l_whence, l_start, and l_len flock members are used to indicate the starting location 

(0, the beginning of the file; 1, the current location; and 2, the end of the file), relative 



offset, and size of the record (segment). If these values are set to 0, the entire file will 

be operated upon. The l_pid member is used to return the PID of the process that 

placed the lock.

Table 4.8. Defined Constants Used in the flock l_type Member.

Defined Constant Lock Specification

F_RDLCK Read lock

F_WRLCK Write lock

F_UNLCK Remove lock

When dealing with locks, if fcntl fails to carry out an indicated command, it will return a 

value of -1 and set errno. Error messages associated with locking are shown in Table 

4.9.



Table 4.9. fcntl Error Messages Relating to Locking.

# Constant perror Message Explanation

4 EINTR Interrupted 

system call

A signal was caught during the system call.

9 EBADF Bad file number fd does not reference a valid open file descriptor.

11 EAGAIN Resource 

temporarily 

unavailable

Lock operation is prohibited, as the file has been 

memory mapped by another process.

13 EACCES Permission 

denied

Lock operation prohibited by a lock held by 

another process.

14 EFAULT Bad address *lock references an illegal address space.

22 EINVAL Invalid 

argument cmd invalid.

cmd is F_GETLK or F_SETLK and *lock or data 

referenced by *lock is invalid.

fd does not support locking.

35 EDEADLK Resource 

deadlock 

avoided

cmd is F_SETLKW and requested lock is blocked by 

a lock from another process. If fcntl blocks the 

calling process waiting for lock to be free, 

deadlock would occur.

37 ENOLCK No locks 

available

System has reached the maximum number of 

record locks.

Program 4.2 demonstrates the use of file locking.

Program 4.2 Using fcntl to lock a file.

File : p4.2.cxx

  |     /* Locking a file with fcntl

  |      */

  |     #include <iostream>



  +     #include <cstdio>

  |     #include <cerrno>

  |     #include <fcntl.h>

  |     #include <unistd.h>

  |     using namespace std;

  |     const int MAX = 5;

 10     int

  |     main(int argc, char *argv[ ]) {

  |       int             f_des, pass = 0;

  |       pid_t           pid = getpid();

  |       struct flock    lock;                // for fcntl info

  +       if (argc < 2) {                      // name of file to lock missing

  |         cerr << "Usage " << *argv << " lock_file_name" << endl;

  |         return 1;

  |       }

  |       sleep(1);                            // don't start immediately

 20       if ((f_des = open(argv[1], O_RDWR)) < 0){

  |         perror(argv[1]);                   // could not access file

  |         return 2;

  |       }

  |       lock.l_type   = F_WRLCK;             // set a write lock

  +       lock.l_whence = 0;                   // start at beginning

  |       lock.l_start  = 0;                   // with a 0 offset

  |       lock.l_len    = 0;                   // whole file

  |       while (fcntl(f_des, F_SETLK, &lock) < 0) {

  |         switch (errno) {

 30         case EAGAIN:

  |         case EACCES:

  |           if (++pass < MAX)

  |             sleep(1);

  |           else {                           // run out of tries

  +             fcntl(f_des, F_GETLK, &lock);

  |             cerr << "Process " << pid << " found file "

  |                  << argv[1] << " locked by " << lock.l_pid << endl;

  |             return 3;

  |           }

 40           continue;

  |         }

  |         perror("fcntl");

  |         return 4;

  |       }

  +       cerr << endl << "Process " << pid << " has the file" << endl;

  |       sleep(3);                            // fake processing

  |       cerr << "Process " << pid << " is done with the file" << endl;

  |       return 0;

  |     }



In this program the name of the file to be locked is passed on the command line. A call 

to sleep is placed at the start of the program to slow down the processing (for 

demonstration purposes only). The designated file is opened for reading and writing. 

In lines 24 through 27 the lock structure is assigned values that indicate a write lock is 

to be applied to the entire file. In the while loop that follows, a call to fcntl requests the 

lock be placed. If fcntl fails and errno is set to either EAGAIN or EACCES (values that 

indicate the lock could not be applied), the process will sleep for one second and try to 

apply the lock again. To be safe, the EACCES constant is grouped with EAGAIN, as 

in some versions of UNIX this is the value that is returned when a lock cannot be 

applied. If the MAX number of tries (passes) has been exceeded, another call to fcntl

(line 35) is made to obtain information about the process that has locked the file. In 

this call the address of the lock structure is passed to fcntl. The PID of the locking 

process is displayed, and the program exits. If an error other than EAGAIN or 

EACCES is encountered when attempting to set the lock, perror is called, a message is 

displayed, and the program exits. If the process successfully obtains the lock, the 

process prints an informational message, sleeps three seconds (to simulate some sort 

of processing), and prints a second message as it terminates. When the process 

terminates, the system automatically removes the lock on the file. If the process were 

not to terminate, the process would need to set the l_type member to F_UNLCK and 

reissue the fcntl call to clear the lock.

If we run three copies of Program 4.2 in rapid succession, using the file x.dat as the 

lock file, their output will be similar to that shown in Figure 4.6.

Figure 4.6 Running multiple copies of Program 4.2—locking a file.

linux$ p4.2 x.dat & p4.2 x.dat &  p4.2 x.dat &       <-- 1

[1] 28392

[2] 28393

[3] 28394

$

Process 28392 has the file

Process 28392 is done with the file

Process 28393 has the file

Process 28394 found file x.dat locked by 28393

Process 28393 is done with the file

[3]  — Exit 3                        p4.2 x.dat

[2]  — Done                          p4.2 x.dat

[1]  + Done                          p4.2 x.dat



(1) All three processes will use the same file:

Notice that the last process, PID 28394 in this example, is unable to place a lock on 

the file and returns the process ID of the process that currently has the lock on the file. 

The second process, PID 28393, through repeated retries (with intervening calls to 

sleep) is able to lock the file once the first process is finished with it.

4-4 EXERCISE

Change the F_SETLK constant in Program 4.2 to F_SETLKW. Recompile 

the program and rerun it as shown in Figure 4.6. What sequence of 

messages are produced now? Why?

The lockf library function may also be used to apply, test, or remove a lock on an open 

file. Beneath the covers this library function is an alternate interface for the fcntl system

call. The lockf library function is summarized in Table 4.10.

Table 4.10. Summary of the lockf Library Call

Include File(s) <sys/file.h>

<unistd.h>
Manual Section 3

Summary int lockf(int fd, int cmd, off_t len);

Return

Success Failure Sets errno

0 -1 Yes

The fd argument is a file descriptor of a file that has been opened for either writing 

(O_WRONLY) or for reading and writing (O_RDWR). The cmd argument for lockf is 

similar to the cmd argument used with fcntl. The cmd value indicates the action to be 

taken. The action that lockf will take for each cmd value (as specified in the include file 

<unistd.h>) is summarized in Table 4.11.



Table 4.11. Defined cmd Constants.

Defined 

Constant

Lock Specification

F_ULOCK Unlock a previously locked file.

F_LOCK Lock a file (or a section of a file) for exclusive use if it is available. If 

unavailable, the lockf function will block.

F_TLOCK Test and, if successful, lock a file (or section of a file) for exclusive 

use. An error is returned if no lock can be applied; with this option the 

lockf function will not block if the lock cannot be applied.

F_TEST Test a file for the presence of a lock. A 0 is returned if the file is 

unlocked or locked by the current process. If locked by another 

process, -1 is returned and errno is set to EACCES.

The len argument of lockf indicates the number of contiguous bytes to lock or unlock. A 

value of zero indicates the section should be from the present location to the end of 

the file.

If the lockf call is successful, it returns a value of 0. If the call fails, it sets errno and 

returns the value -1 (Table 4.12).



Table 4.12. lockf error messages.

# Constant perror Message Explanation

9 EBADF Bad file number fd is not a valid open file descriptor.

11 EAGAIN Resource 

temporarily 

unavailable

The cmd is F_TLOCK or F_TEST, and

the specified section is already 

locked.

File is memory mapped by another 

process.

13 EACCES Permission denied Lock operation prohibited by a lock held by 

another process.

22 EINVAL Invalid argument Invalid operation specified for fd.

35 EDEADLK File locking deadlock Requested lock operation would cause a 

deadlock.

37 ENLOCK No locks available Maximum number of system locks has been 

reached.

Of the two techniques, lockf is simpler but less flexible than using fcntl. Note that when 

using the lockf call, the user must issue a separate lseek system call to position the file 

pointer to the proper location in the file prior to the call. Also, when generating 

parent/child process pairs, each shares the same file pointer. If locks are to be used in 

both processes, it is sometimes best to close and reopen the file in question so that 

each process has its own separate file pointer.

A final note—Linux supports a shlock command that can be used in shell scripts. The 

shlock command creates a lock file that contains an identifying PID.

4-5 EXERCISE

Write Exercise 4.3 using the lockf system call. Verify that your solution works.
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4.4 More About Signals

A second primitive interprocess communication technique involves the use of signals. 

As previously indicated, signals occur asynchronously (with no specified timing or 

sequencing). Signals, which can be sent by processes or by the kernel, serve as 

notification that an event has occurred. Signals are generated when the event first 

occurs and are considered to be delivered when the process takes action on the 

signal. The delivery of most signals can be blocked so the signal can be acted upon 

later. Blocked signals, and those sent to processes in a non-running state are 

commonly called pending signals.

The symbolic name for each signal can be found in several places. Usually, the 

manual pages for signal ( try man 7 signal) or the header file <asm/signal.h> will contain a 

list of each signal name. Signals, as described in Section 7 of the manual, are shown 

in Table 4.13. The definition of a signal (its symbolic name, the associated integer 

value, and the event signaled) has evolved over time. Signals defined by the POSIX 1 

standard have the letter P in the Def column; those defined by SUS v2 (Single UNIX 

Specification, version 2) have a letter S. The letter O indicates signals not defined by 

either of these standards. Furthermore, keep in mind that some signals are 

architecture-dependent. To denote this if three numbers are listed in the Value column

for a signal, the first number is the signal for alpha and sparc platforms; the middle 

number is for i386 and ppc platforms; while the last number is for mips platforms. A 

dash (–) indicates the signal is missing for the platform. A single value indicates all 

platforms use the same signal number. The default action associated with the signal is 

defined by one or more letters in the Action column of the table. The letter A indicates 

the recipient process will terminate; B, the process will ignore the signal; C, the 

process will terminate and produce a core file; and D, the process will stop (suspend) 

execution. Additionally, the letter E indicates the signal cannot be caught (trapped), 

and the letter F, that the signal cannot be ignored.



Table 4.13. Signal Definitions.

Symbolic 

Name Def Value Action Description

SIGABRT P 6 C Abort signal from abort.

SIGALRM P
14

A Timer signal from alarm.

SIGBUS S 10,7,10 C Bus error (bad memory access).

SIGCHLD P 20,17,18 B Sent to parent when child is stopped or 

terminated.

SIGCLD O -,-,18 B A synonym for SIGCHLD.

SIGCONT P 19,18,25 B Resume if process is stopped.

SIGEMT O 7,-,7 C Emulation trap.

SIGFPE P 8 C Floating-point exception.

SIGHUP P 1 A A hangup was detected on the controlling 

terminal or the controlling process has died.

SIGILL P 4 C Illegal instruction.

SIGINFO O 29,-,-  A synonym for SIGPWR.

SIGINT P 2 A Interrupt from keyboard.

SIGIO O 23,29,22 A I/O now possible.

SIGIOT O 6 C IOT trap—equivalent to SIGABRT.

SIGKILL P 9 A,E,F Kill signal—force process termination.

SIGLOST O -,-,- A File lock lost.

SIGPIPE P
13

A Broken pipe; write to pipe with no readers.

SIGPOLL S
23

A A pollable event has occurred—synonymous

with SIGIO (also 23).

SIGPROF S 27,27,29 A Profiling timer expired.

SIGPWR O 29,30,19 A Power supply failure.



SIGQUIT P 3 C Quit from keyboard.

SIGSEGV P
11

C Invalid memory reference (segmentation 

violation).

SIGSTKFLT O -,16,- A Coprocessor stack error.

SIGSTOP P 17,19,23 D,E,F Stop process—not from tty.

SIGSYS S 12,-,12 C Bad argument to system call.

SIGTERM P
15

A Termination signal from kill.

SIGTRAP S 5 C Trace/breakpoint trap for debugging.

SIGTSTP P 18,20,24 D Stop typed at a tty.

SIGTTIN P 21,21,26 D Background process needs input.

SIGTTOU P 22,22,27 D Background process needs to output.

SIGUNUSED O -,31,- A Unused signal (will be SIGSYS).

SIGURG S 16,23,21 B Urgent condition on I/O channel (socket).

SIGUSR1 P 30,10,16 A User-defined signal 1.

SIGUSR2 P 31,12,17 A User-defined signal 2.

SIGVTALRM S 26,26,28 A Virtual alarm clock.

SIGWINCH O 28,28,20 B Window resize signal.

SIGXCPU S 24,24,30 C CPU time limit exceeded.

SIGXFSZ S 25,25,31 C File size limit exceeded.

Some additional caveats to consider include the following:

For some S signals (SUS v2), the default action is listed as A (terminate) but by 

their actual action should be C (terminate the process and generate a core 

file).

Signal 29 is SIGINFO/SIGPWR on an alpha platform but SIGLOST on a sparc 

platform.



Note that all signals begin with the prefix SIG and end with a semimnemonic suffix. 

For the sake of portability when referencing signals, it is usually best to use their 

symbolic names rather than their assigned integer values. The defined constants 

SIGRTMIN and SIGRTMAX are also found in <asm/signal.h> and allow the generation of 

additional real-time signals. Real-time signals, usually the values 32 to 63, can be 

queued. The queuing of signals ensures that when multiple signals are sent to a 

process, they will not be lost. At present, the Linux kernel does not make use of 

real-time signals.

For each signal, a process may take one of the following three actions:

Perform the default action. This is the action that will be taken unless otherwise

specified. The default action for each signal is listed in the previous table. 

Specifically these actions are

Terminate (Abort)— Perform all the activities associated with the exit

system call.

Core (Dump)— Produce a core image (file) and then perform

termination activities.

Stop— Suspend processing.

Ignore— Disregard the signal.

1.

Ignore the signal. If the signal to be ignored is currently blocked, it is discarded.

The SIGKILL and SIGSTOP signals cannot be ignored.

2.

Catch the signal. In this case, the process supplies the address of a function

(often called a signal catcher) that is to be executed when the signal is 

received. In most circumstances, the signal catching function will have a single 

integer parameter. The parameter value, which is assigned by the system, will 

be the numeric value of the signal caught. When the signal catcher function 

finishes, the interrupted process will, unless otherwise specified, resume its 

execution where it left off.

3.

A discussion of the implementation details for ignoring and catching signals are 

covered in Section 4.5.



Signals are generated in a number of ways:

By the kernel, indicating

Hardware conditions, the most common of which are SIGSEGV, when 

there has been an addressing violation by the process, and SIGFPE, 

indicating a division by zero.

Software conditions, such as SIGIO, indicating I/O is possible on a file 

descriptor or the expiration of a timer.

1.

By the user at a terminal:

Keyboard— The user produces keyboard sequences that will interrupt

or terminate the currently executing process. For example, the interrupt

signal, SIGINT, is usually mapped to the key sequence CTRL+C and

the terminate signal, SIGQUIT, to the key sequence CTRL+\. The

command stty -a will display the current mappings of keystrokes for the 

interrupt and quit signals.

kill command— By using the kill command, the user, at the command 

line, can generate any of the previously listed signals for any process 

that has the same effective ID. The syntax for the kill command is

$ kill [ -signal ] pid . . .

When issued, the kill command will send the specified signal to the 

indicated PID. The signal can be an integer value or one of the symbolic 

signal names with the SIG prefix removed. If no signal number is given, 

the default is SIGTERM (terminate). The PID(s) (multiple PIDs are 

separated with whitespace) are the IDs of the processes that will be 

sent the signal. If needed, the ps command can be used to obtain 

current PIDs for the user.

It is possible for the pid value to be less than 1 and/or for the signal 

value to be 0. In these cases, the kill command will carry out the same 

actions as specified for the kill system call described in the following 

section. As would be expected, the kill command is just a command-line 

interface to the kill system call.

2.



By other processes:

By the kill system call (Table 4.14). The kill system call is used to send a 

signal to a process or a group of processes.

3.

Notice that the argument sequence for the kill system call is the reverse of that of the 

kill command. The value specified for the pid argument indicates which process or 

process group will be sent the signal. Table 4.15 summarizes how to specify a 

process or process group.

Table 4.14. Summary of the kill System Call.

Include File(s) <sys/types.h>

<signal.h>
Manual Section 2

Summary int kill( pid_t pid, int sig );

Return

Success Failure Sets errno

0 -1 Yes

Table 4.15. Interpretation of pid values by the kill System Call.

pid Process(es) Receiving the Signal

>0
The process whose process ID is the same as pid

0 All the processes in the same process group as the sender

-1
Not superuser: All processes whose real ID is the same as the effective ID of

the sender

Superuser: All processes excluding special processes

<-1 All the processes whose process group is absolute_value (-pid)

The value for sig can be any of the symbolic signal names (or the equivalent integer 

value) found in the signal header file. If the value of sig is set to 0, the kill system call 

will perform an error check of the specified PID, but will not send the process a signal. 



Sending a signal of 0 to a PID and checking the return value of the kill system call is 

sometimes used as a way of determining if a given PID is present. This technique is 

not foolproof, as the process may terminate on its own immediately after the call to 

check on it has been made. Remember that UNIX will reuse PID values once the 

maximum PID has been assigned. The statement

kill(getpid(),sig);

can be used by a process to send itself the signal specified by sig.[5]

[5] ANSI C also defines a raise library function that can be used by a 

process to send itself a signal.

If the kill system call is successful, it returns a 0; otherwise, it returns a value of -1 and 

sets errno as indicated in Table 4.16. In Linux, for security reasons, it not possible to

send a signal to process one—init. Signals are passed to init via telinit.

Table 4.16. kill Error Messages.

# Constant perror Message Explanation

1 EPERM Operation not 

permitted Calling process does not have permission 

to send signal to specified process(es).

Process is not superuser and its effective 

ID does not match real or saved user ID.

3 ESRCH No such 

process

No such process or process group as pid.

22 EINVAL Invalid 

argument

Invalid signal number specified.

4-6 EXERCISE



The kill command also accepts the option -l (the letter L in lowercase), which 

lists the defined signals that kill knows about. At the system level, issue the 

command

$ kill -l

Find the (a) integer value, (b) default action, and (c) the event signaled for at 

least two signals that are known by the kill command but were not described 

in the previous signal table (Table 4.13).

4-7 EXERCISE

Write a parent program that forks several child processes that each sleep a 

random number of seconds. The parent process should then wait for the 

child processes to terminate. Once a child process has terminated, the 

parent process should terminate the remaining children by issuing a 

SIGTERM signal to each. Be sure to verify (via the wait system call) that 

each child process terminated received the SIGTERM signal.

By the alarm system call (Table 4.17).

The alarm system call sets a timer for the issuing process and generates a SIGALRM 

signal when the specified number of real-time seconds have passed.

Table 4.17. Summary of the alarm System Call.

Include File(s) <unistd.h> Manual Section 2

Summary unsigned int alarm(unsigned int seconds);

Return

Success Failure Sets errno

Amount of time remaining   

If the value passed to alarm is 0, the timer is reset. Processes generated by a fork have

their alarm values set to 0, while processes created by an exec inherit the alarm with its 



remaining time. alarm calls cannot be stacked—multiple calls will reset the alarm value.

A call to alarm returns the amount of time remaining on the alarm clock. A "sleep" type 

arrangement can be implemented for a process using alarm. However, mixing calls to 

alarm and sleep is not a good idea.

Program 4.3 demonstrates the use of an alarm system call.

Program 4.3 Setting an alarm.

File : p4.3.cxx

  |     #include <iostream>

  |     #include <iomanip>

  |     #include <cstdlib>

  |     #include <sys/types.h>

  +     #include <sys/wait.h>

  |     #include <unistd.h>

  |     using namespace std;

  |     int

  |     main(int argc, char *argv[] ) {

 10       int w, status;

  |       if ( argc < 4 ) {

  |         cerr << "Usage: " << *argv << " value_1 value_2 value_3 "

  |              << endl;

  |         return 1;

  +       }

  |       for(int i=1; i <= 3; ++i)

  |         if ( fork( ) == 0 ) {

  |            int t = atoi(argv[i]);

  |            cout << "Child " << getpid( ) << " waiting to die in "

 20                 << t << " seconds." << endl;

  |            alarm( t );

  |            pause( );

  |            cout << getpid( ) << " is done." << endl;

  |         }

  +       while (( w=wait(&status)) && w != -1)

  |         cout << "Wait on PID: " << dec <<  w << " returns status of  "

  |              << setw(4) << setfill(48) << hex

  |              << setiosflags(ios::uppercase) << status << endl;

  |       return 0;

 30     }

When the program is invoked, three integer values are passed to the program. The 

parent process generates three child processes using the command-line values to set 



the alarm in process. In line 22 the pause library function is called. This function causes 

the child process to wait for the receipt of a signal. In the example, this will be the 

receipt of the SIGALRM signal. When the signal is received, the child process takes 

the default action for the signal. The default for SIGALRM is for the process to exit and

return the value of the signal to its waiting parent. The parent process waits for all of 

the child processes to finish. As each finishes, the parent displays the child PID and 

its return status information. It is important to note that the cout statement in line 23 is 

never executed, as the child process exits before reaching this statement. This can be 

verified by the output shown in Figure 4.7.

Figure 4.7 Setting an alarm in multiple child processes.

linux$ p4.3  3  1  5

Child 17243 waiting to die in 3 seconds.

Child 17244 waiting to die in 1 seconds.

Child 17245 waiting to die in 5 seconds.

Wait on PID: 17244 returns status of  000E

Wait on PID: 17243 returns status of  000E

Wait on PID: 17245 returns status of  000E           <-- 1

(1) The child processes end in the order specified by their alarm times. 

Each passes back the SIGALRM value (14 an E in hexadecimal).

A call to pause suspends a process (causing it to sleep) until it receives a signal that 

has not been ignored (Table 4.18).

Table 4.18. Summary of the pause Library Function.
[6]

Include 

File(s)

<unistd.h> Manual 

Section
2

Summary int pause ( void );

Return

Success Failure Sets errno

If the signal does not cause termination

then –1 returned

Does not 

return

Yes



[6] While in Section 2 of the manual, the manual page indicates this is a 

library function.

pause returns a -1 if the signal received while pausing does not cause process 

termination. The value in errno will be EINTR (4). If the received signal causes 

termination, pause will not return (which is to be expected!).
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4.5 Signal and Signal Management Calls

In the previous section we noted that a process can handle a signal by doing nothing 

(thus allowing the default action to occur), ignoring the signal, or catching the signal. 

Both the ignoring and catching of a signal entail the association of a signal-catching 

routine with a signal. In brief, when this is done the process automatically invokes the 

signal-catching routine when the stipulated signal is received. There are two basic 

system calls that can be used to modify what a process will do when a signal has 

been received: signal and sigaction. The signal system call has been present in all 

versions of UNIX and is now categorized as the ANSI C version signal-handling 

routine (Table 4.19). The sigaction system call (Table 4.20) is somewhat more recent 

and is one of a group of POSIX signal management calls.

Table 4.19. Summary of the signal System Call.

Include 

File(s) <signal.h>

Manual 

Section
2

Summary void (*signal(int signum,

     void (*sighandler)(int)))(int);

Return

Success Failure Sets errno

Signal's previous 

disposition

SIG_ERR (defined as 

-1)

Yes

Table 4.20. Summary of the sigaction System Call.

Include File(s) <signal.h> Manual Section 2

Summary int sigaction(int signum, const

              struct sigaction *act,

              struct sigaction *oldact);

Return Success Failure Sets errno



0 -1 Yes

The most difficult part of using signal is deciphering its prototype. In essence, the 

prototype declares signal to be a function that accepts two arguments—an integer

signum value and a pointer to a function—which are called when the signal is received.

If the invocation of signal is successful, it returns a pointer to a function that returns 

nothing (void). This is the previous disposition for the signal. The mysterious (int), found 

at the far right of the prototype, indicates the referenced function has an integer 

argument. This argument is automatically filled by the system and contains the signal 

number. Either system call fails and returns the value -1, setting the value in errno to 

EINTR (4), if it is interrupted or to EINVAL (22) if the value given for signum is not valid 

or is set to SIGKILL or SIGSTOP. Further, sigaction returns EFAULT (14) if the act or 

oldact arguments reference an invalid address space.

While both signal and sigaction deal with signal handling, the functionality of each is 

slightly different. Let's begin with the signal system call.

The first argument to the signal system call is the signal that we intend to associate 

with a new action. The signal value can be an integer or a symbolic signal name. This 

value cannot be SIGKILL or SIGSTOP. The second argument to signal is the address 

of the signal-catching function. The signal-catching function can be a user-defined 

function or one of the defined constants SIG_DFL or SIG_IGN. Specifying SIG_DFL 

for a signal resets the action to be taken to its default action when the signal is 

received. Indicating SIG_IGN for a signal means the process will ignore the receipt of 

the indicated signal.

An examination of the signal header files shows that SIG_DFL and SIG_IGN are

defined as integer values that have been appropriately cast to address locations that

are invalid (such as -1, etc.). The declaration most commonly found for SIG_DFL and

SIG_IGN is shown below. With these definitions is another defined constant that can

be used—SIG_ERR. This constant is the value that is returned by signal if it fails. See 

Figure 4.8.

Figure 4.8 Defined constants used by signal and sigset.

/* Fake signal functions.  */

#define SIG_ERR ((__sighandler_t) -1)      /* Error return.  */



#define SIG_DFL ((__sighandler_t)  0)      /* Default action.  */

#define SIG_IGN ((__sighandler_t)  1)      /* Ignore signal.  */

Program 4.4 uses the signal system call to demonstrate how a signal can be ignored.

Program 4.4 Pseudo nohup—ignoring a signal.

File : p4.4.cxx

  |     /* Using the signal system call to ignore a hangup signal

  |      */

  |     #include <iostream>

  +     #include <cstdio>

  |     #include <cstdlib>

  |     #include <signal.h>

  |     #include <fcntl.h>

  |     #include <unistd.h>

  |     using namespace std;

 10     const char  *file_out = "nohup.out";

  |     int

  |     main(int argc, char *argv[]){

  |       int       new_stdout;

  |       if (argc < 2) {

  +         cerr << "Usage: " << *argv << " command [arguments]" << endl;

  |         return 1;

  |       }

  |       if (isatty( 1 )) {

  |         cerr <<  "Sending output to " << file_out << endl;

 20         close( 1 );

  |         if ((new_stdout = open(file_out, O_WRONLY | O_CREAT |

  |                                O_APPEND, 0644)) == -1)        {

  |           perror(file_out);

  |           return 2;

  +         }

  |       }

  |       if (signal(SIGHUP, SIG_IGN) == SIG_ERR) {

  |         perror("SIGHUP");

  |         return 3;

 30       }

  |       ++argv;

  |       execvp(*argv, argv);

  |       perror(*argv);                       // Should not get here unless

  |       return 4;                            // the exec call fails.

  +     }

Program 4.4 is a limited version of the /usr/bin/nohup command found on most 



UNIX-based systems. The nohup command can be used to run commands so they will 

be immune to the receipt of SIGHUP signals. If the standard output for the current 

process is associated with a terminal, the output from nohup will be sent to the file 

nohup.out. The nohup command is often used with the command-line background 

specifier & to allow a command to continue its execution in the background even after 

the user has logged out.

Like the real nohup, our pseudo nohup program (Program 4.4) will execute the 

command (with optional arguments) that is passed to it on the command line. After 

checking the number of command-line arguments, the file descriptor associated with 

stdout is evaluated. The assumption here is that the file descriptor associated with 

stdout is 1. However, if needed, there is a standard I/O function named fileno that can 

be used to find the integer file descriptor for a given argument stream. The library 

function isatty (Table 4.21) is used to determine if the descriptor is associated with a 

terminal device.

Table 4.21. Summary of the isatty Library Function.

Include File(s) <unistd.h> Manual Section 3

Summary Int isatty( int desc );

Return

Success Failure Sets errno

1 0  

The isattty library function takes a single integer desc argument. If desc is associated 

with a terminal device, isatty returns a 1; otherwise, it returns a 0. In the program, if the 

isatty function returns a 1, an informational message is displayed to standard error to 

tell the user where the output from the command passed to the pseudo nohup program

can be found. Next, the file descriptor for stdout is closed. The open statement that 

follows the close returns the first free file descriptor. As we have just closed stdout, the 

descriptor returned by the open will be that of stdout. Once this reassignment has been 

done, any information written to stdout (cout) by the program will in turn be appended to 

the file nohup.out. Notice that the call to signal to ignore the SIGHUP signal is done 

within an if statement. Should the signal system call fail (return a SIG_ERR), a 

message would be displayed to standard error and the program would exit. If the signal

call is successful, the argv pointer is incremented to step past the name of the current 



program. The remainder of the command line is then passed to the execvp system call. 

Should the execvp call fail, perror will be invoked and a message displayed. If execvp is 

successful, the current process will be overlaid by the program/command passed from

the command line.

The output in Figure 4.9 shows what happens when the pseudo nohup program is run 

on a local system and passed a command that takes a long time to execute. In the 

example the long-running command is a small Korn shell script called count that counts 

from 1 to 100, sleeping one second after the display of each value. As written, the 

output from the script would normally be displayed on the screen.

Figure 4.9 Output of Program 4.4 when passed a command that takes a long time to execute.

linux$ cat count

#!  /bin/ksh

c=1 

while (( $c <= 100 ))                                <-- 1

do

  echo "$c"

  sleep 1

  (( c = c + 1 ))

done

linux$ ./p4.4 ./count &                              <-- 2

Sending output to nohup.out

[1] 19481

linux$ jobs                                          <-- 3

[1]  + Running                     p4.4 count

linux$ kill -HUP %1                                  <-- 4

linux$ jobs

[1]  + Running                     p4.4 count

linux$ kill -KILL %1

linux$

[1]    Killed                      p4.4 count

linux$ jobs

linux$

(1) The script count from 1 to 100, sleeping one second in between the 

display of each number. If run on the command line, it will take 

approximately 100 seconds to count from 1 to 100.



(2) Pass the count script to our pseudo nohup program—place it in the

background.

(3) The operating system returns the PID of the background process.

(4) Sending a hangup signal to the process does not cause it to

terminate.

When the program was placed in the background, the system reported the job number

(in this case [1]) and the PID (19481). The jobs command confirms that the process is 

still running. As can be seen, the kill -HUP %1 command (which sends a hangup signal 

to the first job in the background) did not cause the program to terminate. This is not 

unexpected, as the SIGHUP signal was being ignored. The command kill –KILL %1 was 

used to terminate the process by sending it a SIGKILL signal.

4-8 EXERCISE

If a find command (e.g., find / -name \* -print ) is run by Program 4.4, the error 

messages from find (such as it not having permission to read certain 

directories), which are written to stderr, are still displayed. Modify Program 4.4

so that error messages from the program being run are discarded (written to 

/dev/null). What are the pros and cons of such a modification?

As noted, if a signal-catching function name is supplied to the signal system call, the 

process will automatically call this function when the process receives the signal. 

However, prior to calling the function, if the signal is not SIG KILL, SIGPWR, or 

SIGTRAP, the system will reset the signal's disposition to its default. This means that 

if two of the same signals are received successively, it is entirely possible that before 

the signal-catching routine is executed, the second signal may cause the process to 

terminate (if that is the default action for the signal). This behavior reduces the 

reliability of using signals as a communication device. It is possible to reduce, but not 



entirely eliminate, this window of opportunity for failure by resetting the disposition for 

the signal in the catching routine. Program 4.5 catches signals and attempts to reduce 

this window of opportunity.

Program 4.5 Catching SIGINT and SIGQUIT signals.

File : p4.5.cxx

  |     /* Catching a signal

  |      */

  |     #include <iostream>

  +     #include <cstdlib>

  |     #include <cstdio>

  |     #include <signal.h>

  |     #include <unistd.h>

  |     using namespace std;

  |     int

 10     main( ) {

  |       void            signal_catcher(int);

  |       if (signal(SIGINT , signal_catcher) == SIG_ERR) {

  |         perror("SIGINT");

  |         return 1;

  +       }

  |       if (signal(SIGQUIT , signal_catcher) == SIG_ERR) {

  |         perror("SIGQUIT");

  |         return 2;

  |       }

 20       for (int i=0;  ; ++i) {              // Forever ...

  |         cout << i << endl;                 // display a number

  |         sleep(1);

  |       }

  |       return 0;

  +     }

  |     void

  |     signal_catcher(int the_sig){

  |       signal(the_sig, signal_catcher);     // reset immediately

  |       cout << endl << "Signal " << the_sig << " received." << endl;

 30       if (the_sig == SIGQUIT)

  |         exit(3);

  |     }

In an attempt to avoid taking the default action (which in this case is to terminate) for 

either of the two caught signals, the first statement (line 28) in the program function 

signal_catcher is a call to signal. This call reestablishes the association between the 



signal being caught and the signal-catching routine.

Figure 4.10 shows the output of the program when run on a local system.

Figure 4.10 Output of Program 4.5.

linux$ p4.5

0

1

2

ò                                                    <-- 1

Signal 2 received.

3

4

ò                                                    <-- 2

Signal 2 received.

5

ò                                                    <-- 2

Signal 2 received.

6

ò

Signal 3 received.

linux$

(1) The user types CTRL+C. The terminal program displays a funny

graphics character, ò.

(2) Here the signals are generated in rapid succession.

From this output we can see that each time CTRL+C was pressed, it was echoed 

back to the terminal as ò. If CTRL+C was struck twice in quick succession, the 

program responded with the Signal 2 received message for each keyboard sequence. 

On this system it appears as if some of the signals were queued if they were received 

in rapid succession. However, this is somewhat misleading, as the mechanics of 

terminal I/O come into play. Say we were (via a background process) to deliver to the 

process, in very rapid succession, multiple copies of the same signal. In this setting 

we would find most often that only one copy of the signal would be delivered to the 



process, while the others are discarded. Most systems do not queue the signals 1 

through 31. When a SIGQUIT signal was generated, a message was displayed and 

the program exited.

4-9 EXERCISE

Lad wrote the program below in an attempt to determine what keystrokes 

generate a signal that can be caught.

[View full width]

File : lad.cxx

  |     /* Lad's signal catching program

  |      */

  |     #include <iostream>

  +     #include <cstdlib>

  |     #include <cstdio>

  |     #include <signal.h>

  |     #include <unistd.h>

  |     using namespace std;

  |     int

 10     main( ) {

  |       void  signal_catcher(int);

  |       char  a_num[5];                            <-- 1

  |       for (int i=1; i < _NSIG; ++i)

  |         switch( i ){

  +         case SIGKILL: case SIGSTOP:

  |           break;

  |         default:                                 <-- 2

  |           if (signal(i , signal_catcher) == SIG_ERR) {

  |             sprintf( a_num, "%d", i );

 20             perror(a_num);

  |             return 1;

  |           }

  |       }

  |       for (int i=0;  ; ++i) {              // Forever ...

  +         cout << i << endl;                 // display a 

number

  |         sleep(1);

  |       }

  |       return 0;



  |     }

 30     void

  |     signal_catcher(int the_sig){

  |       signal(the_sig, signal_catcher);     // reset

  |       cout << endl << "Signal " << the_sig << " received." 

<< endl;

  |       if (the_sig == SIGQUIT)

  +         exit(3);

  |      }

(1) The constant _NSIG is the upper bound for signal

numbers. On some systems, this constant does not have the 

leading underscore.

(2) Catch all signals that can be caught—map each to the

signal-catching function.

When running his program, how many signals did Lad find he could 

generate from the keyboard? What are they? Describe what happens (and 

why) when the following keystrokes are entered? CTRL+S, CTRL+Q, and 

CTRL+R.

4-10 EXERCISE

Remove the statement

if (the_sig == SIGQUIT)

    exit(3);

from Program 4.5. Recompile the program and run it in the background (i.e., 

p4.5 &). How did you stop the program from displaying numbers on the 

screen?



4-11 EXERCISE

Write a program that forks a child process. The parent and child processes 

should generate and send random signals to each other. In each process, 

display the signal being sent and the signal that is caught. Be sure both 

processes exit gracefully and that neither remains active if the other has 

terminated due to the receipt of a SIGKILL signal. Hint: Remember that you 

can, with kill, determine if a process is present.

The sigaction system call, like the signal system call, can be used to associate an 

alternate action with the receipt of a signal. This system call has three arguments. The

first is an integer value that specifies the signal. As with the signal system call, this 

argument can be any valid signal except SIGKILL or SIGSTOP. The second and third 

arguments are references to a sigaction structure. Respectively these structures store 

the new and previous action for the signal. The full definition of the sigaction structure is 

found in the file sigaction.h. This file is automatically included by signal.h. Basically, the 

sigaction structure is

struct sigaction {

     void (*sa_handler)(int);                        // 1

     void (*sa_sigaction)(int, siginfo_t *, void *); // 2

     sigset_t sa_mask;                               // 3

     int sa_flags;                                   // 4

     void (*sa_restorer)(void);                      // 5

}

Both sa_handler and sa_sigaction can be used to reference a signal handling function. 

Only one of these should be specified at any given time, as on most systems this data 

is often stored in a union within the sigaction structure. By definition, a union can hold 

only one of its members at a time. Our discussion centers on using the sa_handler

member. The sa_mask member specifies the signals, which should be blocked when 

the signal handler is executing. Each signal is represented by a bit. If the bit in the 

mask is on, the signal is blocked. By default the signal that triggered the handler is 

blocked. The sa_flags member is used to set flags that modify the behavior of the 

signal-handling process. Flag constants, shown in Table 4.22, can be combined using 

a bitwise OR.



Table 4.22. sa_flags Constants.

Flag Action

SA_NOCLDSTOP If the signal is SIGCHILD, then the calling process will 

not receive a SIGCHILD signal when its child processes 

exit.

SA_ONESHOT or 

SA_RESETHAND

Restore the default action after the signal handler has 

been called once (similar to the default of the signal call).

SA_RESTART Use BSD signal semantics (certain interrupted system 

calls are restarted after the signal has been caught).

SA_NOMASK or 

SA_NODEFER

Undo the default whereby the signal triggering the 

handler is automatically blocked.

SA_SIGINFO The signal handler has three arguments—use

sa_sigaction, not sa_handler.

The remaining structure member, sa_restorer, is obsolete and should not be used.

Unlike signal, a sigaction installed signal-catching routine remains installed even after it 

has been invoked. Program 4.6, which is similar to Program 4.5, shows the use of the 

sigaction system call.

Again, notice that in the program function signal_catcher, it is no longer necessary to 

reset the association for the signal caught to the signal-catching routine.

Program 4.6 Using the sigaction system call.

File : p4.6.cxx

  |     /* Catching a signal using sigaction

  |      */

  |     #define_GNU_SOURCE

  +     #include <iostream>

  |     #include <cstdlib>

  |     #include <cstdio>

  |     #include <signal.h>

  |     #include <unistd.h>

  |     using namespace std;

 10     int

  |     main( ) {



  |       void   signal_catcher(int);

  |       struct sigaction new_action;               <-- 1

  |       new_action.sa_handler = signal_catcher;

  +       new_action.sa_flags   = 0;                 <-- 2

  |

  |       if (sigaction(SIGINT,  &new_action, NULL) == -1) {

  |         perror("SIGINT");                        <-- 3

  |         return 1;

 20       }                                          <-- 3

  |       if (sigaction(SIGQUIT, &new_action, NULL) == -1) {

  |         perror("SIGQUIT");

  |         return 2;

  |       }

  +       for (int i=0;  ; ++i) {              // Forever ...

  |         cout << i << endl;                 // display a number

  |         sleep(1);

  |       }

  |       return 0;

 30     }

  |     void

  |     signal_catcher(int the_sig){

  |       cout << endl << "Signal " << the_sig << " received." << endl;

  |       if (the_sig == SIGQUIT)

  +         exit(3);

  |     }

(1) A sigaction structure is allocated.

(2) The signal catching function is assigned and the sa_flags member set

to 0.

(3) A new action is associated with each signal.

Three other POSIX signal-related system calls that can be used for signal 

management are shown in Table 4.23.



Table 4.23. Summary of the sigprocmask, sigpending, and sigsuspend System Call.

Include File(s) <unistd.h> Manual Section 2

Summary int sigprocmask (int how, const sigset_t *set,

                 sigset_t *oldset);

int sigpending(sigset_t *set);

int sigsuspend(const sigset_t *mask);;

Return

Success Failure Sets errno

0 -1 Yes

Each function returns a 0 if it is successful; otherwise, it returns a -1 and sets the 

value in errno (Table 4.24).

Table 4.24. sigprocmask, sigpending, and sigsuspend Error Messages.

# Constant perror Message Explanation

4 EINTR Interrupted system 

call

A signal was caught during the system call.

14 EFAULT Bad address set or oldset references an invalid address 

space.

The process's signal mask can be manipulated with the sigprocmask system call. The 

first argument, how, indicates how the list of signals (referenced by the second 

argument, set) should be treated. The action that sigprocmask will take, based on the 

value of how, is summarized in Table 4.25.

Table 4.25. Defined how Constants.

Signal Action

SIG_BLOCK Block the signals specified by the union of the current set of 

signals with those specified by the set argument.

SIG_UNBLOCK Unblock the signals specified by the set argument.

SIG_SETMASK Block just those signals specified by the set argument.



If the third argument, oldset, is non-null, the previous value of the signal mask is stored 

in the location referenced by oldset.

The use of the sigprocmask system call is shown in Program 4.7.

Program 4.7 Using sigprocmask.

File : p4.7.cxx

  |     /* Demonstration of the sigprocmask call */

  |     #define_GNU_SOURCE

  |     #include <iostream>

  |     #include <cstdio>

  +     #include <signal.h>

  |     #include <unistd.h>

  |     using namespace std;

  |     sigset_t new_signals;

  |     int

 10     main( ) {

  |       void    signal_catcher(int);               <-- 1

  |       struct  sigaction new_action;              <-- 2

  |

  |       sigemptyset(&new_signals);

  +       sigaddset(&new_signals,SIGUSR1);

  |

  |       sigprocmask(SIG_BLOCK, &new_signals, NULL);

  |       new_action.sa_handler = signal_catcher;

  |       new_action.sa_flags   = 0;

 20       if (sigaction(SIGUSR2, &new_action, NULL) == -1) {

  |         perror("SIGUSR2");

  |         return 1;

  |       }

  |       cout << "Waiting for signal" << endl;

  +       pause( );

  |       cout << "Done" << endl;

  |       return 0;

  |     }

  |     void

 30     signal_catcher( int n ) {

  |       cout << "Received signal " << n << " will release SIGUSR1" << endl;

  |       sigprocmask(SIG_UNBLOCK, &new_signals, NULL);

  |       cout << "SIGUSR1 released!" << endl;

  |     }



(1) Empty (clear) the set of signals.

(2) Add the SIGUSR1 signal to this set.

The example makes use of the SIGUSR1 and SIGUSR2 signals. These are two 

user-defined signals whose default action is termination of the process. In lines 14 and

15 of the example are two signal-mask manipulation library functions (sigemptyset and 

sigaddset) that are used to clear and then add a signal to the new signal mask. A signal

mask is essentially a string of bits—each set bit represents a signal. The signal-mask

manipulation library functions are covered in detail in Chapter 11, "Threads." In 

Program 4.7, the sigprocmask system call in line 17 holds (blocks) incoming SIGUSR1 

signals. The sigaction system call (line 20) is used to associate the receipt of SIGUSR2 

with the signal-catching routine. Following this, an informational message is displayed, 

and a call to pause is made. In the program function signal_catcher, the sigprocmask

system call is used to release the pending SIGUSR1 signal. Notice that a cout

statement was placed before and after the sigprocmask call. A sample of this program 

run locally is shown in Figure 4.11.

When run, the program is placed in background so the user can continue to issue 

commands from the keyboard. The system displays the job number for the process 

and the PID. The program begins by displaying the Waiting for signal message. The 

user, via the kill command, sends the process a SIGUSR1 signal. This signal, while 

received by the process, is not acted upon, as the process has been directed to block 

this signal. When the SIGUSR2 signal is sent to the process, the process catches the 

signal, and the program function signal_catcher is called. The initial cout statement in the 

signal-catching routine is executed, and its message about receiving signals is 

displayed. The following sigprocmask call then unblocks the pending SIGUSR1 signal 

that was issued earlier. As the default action for SIGUSR1 is termination, the process 

terminates and the system produces the trailing information indicating the process 

was terminated via user signal 1. As the process terminates abnormally, the second 

cout statement in the signal-catching routine and the cout in the main of the program 

are not executed.

Figure 4.11 Output of Program 4.7.

linux$ ./p4.7 &



Waiting for signal

[1] 21895

linux$ kill -USR1 21895                              <-- 1

linux$ kill -USR2 21895                              <-- 2

Received signal 12 will release SIGUSR1

linux$

[1]    User signal 1                 ./p4.7

(1) SIGUSR1 would normally cause the process to exit—but it has been

blocked.

(2) SIGUSR2 has been mapped to the signal-catching routine. In this

routine, SIGUSR1 is unblocked; consequently, the process exits without 

executing the second cout statement in the signal catcher.

The sigsuspend system call is used to pause (suspend) a process. It replaces the 

current signal mask with the one passed as an argument. The process suspends until 

a signal is delivered whose action is to execute a signal-catching function or terminate 

the process. Program 4.8 demonstrates the use of the sigsuspend system call.

Program 4.8 Using sigsuspend.

File : p4.8.cxx

  |     /* Pausing with sigsuspend */

  |     #define_GNU_SOURCE

  |     #include <iostream>

  |     #include <cstdio>

  +     #include <signal.h>

  |     #include <unistd.h>

  |     using namespace std;

  |     int

  |     main( ){

 10       void      signal_catcher(int);

  |       struct    sigaction new_action;

  |       sigset_t  no_sigs, blocked_sigs, all_sigs;

  |

  |       sigfillset ( &all_sigs     );        // turn all bits on

  +       sigemptyset( &no_sigs      );        // turn all bits off

  |       sigemptyset( &blocked_sigs );



  |                                            // Associate with catcher

  |       new_action.sa_handler = signal_catcher;

  |       new_action.sa_mask    = all_sigs;

 20       new_action.sa_flags   = 0;

  |       if (sigaction(SIGUSR1, &new_action, NULL) == -1) {

  |         perror("SIGUSR1");

  |         return 1;

  |       }

  +       sigaddset( &blocked_sigs, SIGUSR1 );

  |       sigprocmask( SIG_SETMASK, &blocked_sigs, NULL);

  |       while ( 1 ) {

  |         cout << "Waiting for SIGUSR1 signal" << endl;

  |         sigsuspend( &no_sigs );           // Wait

 30       }

  |       cout << "Done." << endl;

  |       return 0;

  |     }

  |     void

  +     signal_catcher(int n){

  |       cout << "Beginning important stuff" << endl;

  |       sleep(10);                           // Simulate work ....

  |       cout << "Ending important stuff" << endl;

  |     }

In main, the signal-catching function is established. Lines 14 to 16 create three signal 

masks. The sigfillset call turns all bits on, while the sigemptyset turns all bits off. The filled 

set (all bits on, denoting all signals) becomes the signal mask for the signal-catching 

routine. Thus specified, this directs the signal-catching routine to block all signals. In 

line 21 the receipt of signal SIGUSR1 is associated with the signal-catching function 

signal_catcher. In lines 25 and 26 the process is directed to block any SIGUSR1 signals. 

While at first glance this might seem superfluous, as receipt of this signal has been 

mapped to signal_catcher, it allows duplicate SIGUSR1 signals to be pending rather 

than discarded. Then, in an endless loop, the program pauses when the sigsuspend

statement is reached, waiting for the receipt of the SIGUSR1 signal. Once the 

SIGUSR1 signal is received (caught), the signal-catching function is executed. While 

in the signal-catching function, all signals that can be blocked are held. A set of 

messages indicating the beginning and end of an important section of code are 

displayed. When the signal-catching routine is exited, any blocked signals are 

released. In summary, the program defers the execution of an interrupt-protected 

section of code until it receives a SIGUSR1 signal. A run of the program produces the 

output shown in Figure 4.12.



Figure 4.12 Output of Program 4.8.

linux$ p4.8 &

Waiting for SIGUSR1 signal

[1] 6277

linux$ kill -USR1 %1

Beginning important stuff

linux$ kill -INT %1

linux$ jobs

[1]  + Running                       p4.8

linux$ Ending important stuff

[1]    Interrupt                     p4.8

The process was first sent a SIGUSR1 signal that caused it to begin the program 

function signal_catcher. While it was in the signal_catcher function, an interrupt signal was 

sent to the process. This signal did not cause the process to immediately terminate, as 

the process had indicated that all signals were to be blocked (held). The jobs

command confirms that the process is still active after the interrupt command was 

sent. However, once the blocked signals are released (when the signal-catching 

routine is exited), the pending SIGINT signal is acted upon and the process 

terminates.

4-12 EXERCISE

Examine Figure 4.12 carefully. Run program p4.8 and place it in the 

background. Experiment with issuing multiple kill -USR1 %1 commands before

you issue the kill -INT %1 command (note, you may need to increase the 

sleep time from 10 to something more if you type slowly and want to issue 

the signals when the process is in the signal-catching routine). Does the 

system process all the blocked SIGUSR1 signals before it responds to the 

SIGINT signal. Why or why not?

4-13 EXERCISE

Write a program that generates a parent and child process that solves the 

producer/consumer problem presented in Exercise 4-3. Make the parent 



process the producer and the child process the consumer. In place of a lock 

file, use signals to coordinate the activities of the processes. One approach 

would be to use SIGUSR1 to indicate the resource is available to be 

accessed and use signal SIGUSR2 to indicate a new value is available. Do 

signals provide a reliable way of solving the problem? What problems are 

inherent in their use?
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4.6 Summary

As we have seen, lock files, the locking of files and signals, can be used as a basic 

means of communication between processes. Lock files require the participating 

processes to agree upon file names and locations. The creation of a lock file carries 

with it a certain amount of system overhead characteristic of all file manipulations. In 

addition, the problems associated with the removal of "leftover" invalid lock files and 

the implementation of nonsystem-intensive polling techniques must be addressed. On 

the positive side, lock file techniques can be used in any UNIX environment that 

supports the creat system call, and cooperating processes do not need to be related.

UNIX has predefined routines that can be used to lock a file. We can use the 

presence of a lock on a file to indicate that a resource is unavailable. Advisory locking 

is less system-intensive than mandatory locking and is thus more common. As with 

lock files, the participating processes using advisory locking must cooperate to 

effectively communicate.

Signals provide us with another basic communication technique. While signals do not 

carry any information content, they can be, as we have seen, used to communicate 

from one process to another. From a system implementation standpoint, signals are 

more efficient than using lock files. However, participating processes must have 

access to each other's PIDs (in most cases the processes will be parent/child pairs). In 

most environments, the number of user-designated signals is limited. Cooperating 

processes must agree upon the "meaning" of each signal. When a signal is sent from 

one process to another, unless the receiving process acknowledges the receipt of the 

signal, there is no way for the sending process to know if its initial signal was received. 

Signal manipulation can be tricky, and its implementation from one version of UNIX to 

another may vary (this is one of the last areas of UNIX to be standardized). All of 

these techniques are easy to understand and to implement but are often difficult to 

implement well. However, all approaches have a number of limitations that remove 

them from serious consideration when reliable communication between processes is 

needed.
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4.7 Key Terms and Concepts

aborting a process

advisory locking

alarm system call

asynchronous

atomic

consumer process

core image

creat system call

fcntl system call

file locking

flock structure

ignoring a signal

interrupt

isatty library function

kill command

kill system call

link system call
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lock file

lockf library call

mandatory locking

nohup command

pause library function

polling

producer process

race condition

raise library function

real-time signals

shlock command

sigaction structure

sigaction system call

signal blocking

signal catcher

signal delivery

signal generation

signal system call

signals

sigpending system call

sigprocmask system call



sigsuspend system call

sleep library function

stopping a process

unlink system call
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5.1 Introduction

We have discussed the nature and generation of processes. In the previous chapter 

we addressed primitive techniques for communicating between two or more 

processes. These techniques were limited in scope and suffered from a lack of 

reliable synchronization. Beginning with this chapter, we explore interprocess 

communication techniques using system-designed interprocess facilities. We start with 

pipes, which provide processes with a simple, synchronized way of passing 

information. By the early 1970s pipes became a standard part of UNIX.

We can think of the pipe as a special file that can store a limited amount of data in a 

first in, first out (FIFO) manner. On most systems, pipes are limited to a specific size. 

In Linux, the defined constant PIPE_SIZE (which is usually equivalent to the 

PAGE_SIZE for the system) establishes the total number of bytes allocated for a pipe. 

The defined constant PIPE_BUF (found in <linux/limits.h>, which is included by <limits.h>) 

sets the block size for an atomic write to a pipe. On our system the value for 

PIPE_BUF is 4096. Generally, one process writes to the pipe (as if it were a file), 

while another process reads from the pipe.

As shown in Figure 5.1, conceptually we can envision the pipe as a conveyor belt 

composed of data blocks that are continuously filled at (written to) the "write end" and 

emptied (read) from the "read end." The system keeps track of the current location of 

the last read/write location. Data is written to one end of the pipe and read from the 

other. From an implementation standpoint, an actual file pointer (as associated with a 

regular file) is not defined for a pipe, and as such no seeking is supported.

Figure 5.1. Conceptual data access using a pipe.
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The operating system provides the synchronization between the writing and reading 

processes. By default, if a writing process attempts to write to a full pipe, the system 

automatically blocks the process until the pipe is able to receive the data. Likewise, if a 

read is attempted on an empty pipe, the process blocks until data is available. In 

addition, the process blocks if a specified pipe has been opened for reading, but 

another process has not opened the pipe for writing.

In a program, data is written to the pipe using the unbuffered I/O write system call 

(Table 5.1).

Table 5.1. Summary of the write System Call.

Include File(s) <unistd.h> Manual Section 2

Summary ssize_t write(int fd, const void *buf,

size_t count);

Return

Success Failure Sets errno

Number of bytes written -1 Yes

Using the file descriptor specified by fd, the write system call attempts to write count

bytes from the buffer referenced by buf. If the write system call is successful, the

number of bytes actually written is returned. Otherwise, a –1 is returned and the

global variable errno is set to indicate the nature of the error. As shown in Table 5.2, 

the number of ways in which write can fail is impressive indeed!



Table 5.2. write Error Messages.

# Constant perror Message Explanation

4 EINTR Interrupted system 

call

Signal was caught during the system call.

5 EIO I/O error Low-level I/O error while attempting read from 

or write to file system.

6 ENXIO No such device or 

address

O_NONBLOCK | O_WRONLY is set, the 

named file is a FIFO, and no process has the 

file open for reading.

9 EBADF Bad file descriptor fd is an invalid file descriptor or is not open for 

writing.

11 EAGAIN Resource 

temporarily 

unavailable

• O_NDELAY or O_NONBLOCK is set and the

file is currently locked by another process.

• System memory for raw I/O is temporarily

insufficient.

• Attempted a write to pipe of count bytes, but 

less than count bytes is available.

14 EFAULT Bad address buf references an illegal address.

22 EINVAL Invalid argument fd associated with an object unsuitable for 

writing.

27 EFBIG File too large Attempt to write to a file that exceeds the current 

system limits.

28 ENOSPC No space left on 

device

Device with file has run out of room.

32 EPIPE Broken pipe • Attempt to write to a pipe that is not opened for 

reading on one end (in this case a SIGPIPE 

signal also generated).

• Attempt to write to a FIFO that is not opened 

for reading on one end.



• Attempt to write to a pipe with only one end 

open.

34 ERANGE Numerical result 

out of range

count value is less than 0 or greater than 

system limit.

35 EDEADLK Resource 

deadlock avoided

The write system call would have gone to sleep 

generating a deadlock situation.

37 ENOLCK No locks available • Locking enabled, but region was previously

locked.

• System lock table is full.

63 ENOSR Out of streams 

resources

Attempt to write to a stream, but insufficient 

stream memory is available.

67 ENOLINK The link has been 

severed

The buf value references a remote system that 

is no longer active.

# Constant perror Message Explanation

writes to a pipe are similar to those for a file except that

Each file write request is always appended to the end of the pipe.

write requests of PIPE_BUF size or less are guaranteed to not be interleaved 

with other write requests to the same pipe.[1]

[1] While write may still work if the number of bytes is greater than 

PIPE_BUF, it is best to stay within this limitation to guarantee the 

integrity of data.

When the O_NONBLOCK and O_NDELAY flags are clear, a write request may 

cause the process to block. The defined constants O_NONBLOCK and 

O_NDELAY are included by the header file <sys/fcntl.h> and can be set with the 

fcntl system call. By default, these values are considered to be cleared, thus 

write blocks if the device is busy and writes are delayed (written to an internal 

buffer, which is written out to disk by the kernel at a later time). Once the write



has completed, it returns the number of bytes successfully written.

When the O_NONBLOCK or O_NDELAY flags are set and the request to write

PIPE_BUF bytes or less is not successful, the value returned by the write

system call can be summarized as

O_NONBLOCK O_NDELAY Value Returned

set clear –1

clear set 0

If both O_NONBLOCK and O_NDELAY flags are set, write will not block the 

process.

If a write is made to a pipe that is not open for reading by any process, a 

SIGPIPE signal is generated and the value in errno is set to EPIPE (broken 

pipe). The default action (if not caught) for the SIGPIPE signal is termination.

Data is read from the pipe using the unbuffered I/O read system call summarized in 

Table 5.3.

Table 5.3. Summary of the read System Call.

Include File(s) <unistd.h> Manual Section 2

Summary ssize_t read(int fd, void *buf,

             size_t count);

Return

Success Failure Sets errno

Number of bytes read -1 Yes

The read system call reads count bytes from the open file associated with the file 

descriptor fd into the buffer referenced by buf. If the read call is successful, the number 

of bytes actually read is returned. If the number of bytes left in the pipe is less than 

count, the value returned by read will reflect this. When at the end of the file, a value of 

0 is returned. If the read system call fails, a –1 is returned and the global variable errno

is set. The values that errno may take when read fails are shown in Table 5.4.



Table 5.4. read Error Messages.

# Constant Perror Message Explanation

4 EINTR Interrupted system 

call

Signal was caught during the system call.

5 EIO I/O error Background process cannot read from its 

controlling terminal.

6 ENXIO No such device or 

address

File descriptor reference is invalid.

9 EBADF Bad file descriptor fd is an invalid file or is not open for reading.

11 EAGAIN Resource 

temporarily 

unavailable

• O_NDELAY or O_NONBLOCK is set, and

the file is currently locked by another

process.

• System memory for raw I/O is temporarily

insufficient.

• O_NDELAY or O_NONBLOCK is set, but

there is no data waiting to be read.

14 EFAULT Bad address buf references an illegal address.

22 EINVAL Invalid argument fd associated with an unsuitable object for 

reading.

35 EDEADLK Resource deadlock 

avoided

The read system call would have gone to 

sleep generating a deadlock situation.

37 ENOLCK No locks available • Locking enabled, but region was previously

locked.

• System lock table is full.

67 ENOLINK Link has been 

severed

The buf value references a remote system 

that is no longer active.

74 EBADMSG Not a data message Message to be read is not a data message.



In other aspects, reads performed on a pipe are similar to those on a file except that

All reads are initiated from the current position (i.e., no seeking is supported).

If both O_NONBLOCK and O_NDELAY flags are clear, then a read system call 

blocks (by default) until data is written to the pipe or the pipe is closed.

If the pipe is open for writing by another process, but the pipe is empty, then a 

read (in combination with the flags O_NDELAY and O_NONBLOCK) will return 

the values

O_NONBLOCK O_NDELAY Value Returned

set clear –1

clear set 0

If the pipe is not opened for writing by another process, read returns a 0 

(indicating the end-of-file condition). Note, this is the same value that is 

returned when the O_NDELAY flag has been set, and the pipe is open but 

empty.

Pipes can be divided into two categories: unnamed pipes and named pipes. Unnamed

pipes can be used only with related processes (e.g., parent/child or child/child) and 

exist only for as long as the processes using them exist. Named pipes actually exist as 

directory entries. As such, they have file access permissions and can be used with 

unrelated processes.
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5.2 Unnamed Pipes

An unnamed pipe is constructed with the pipe system call (see Table 5.5).

Table 5.5. Summary of the pipe System Call.

Include File(s) <unistd.h> Manual Section 2

Summary int pipe(int filedes[2]);

Return

Success Failure Sets errno

0 –1 Yes

If successful, the pipe system call returns a pair of integer file descriptors, filedes[0] and 

filedes[1]. The file descriptors reference two data streams. Historically, pipes were 

unidirectional, and data flowed in one direction only. If two-way communication was 

needed, two pipes were opened: one for reading and another for writing. This is still 

true in Linux today. However, in some versions of UNIX (such as Solaris) the file 

descriptors returned by pipe are full duplex (bidirectional) and are both opened for 

reading/writing.

In a full duplex setting, if the process writes to filedes[0], then filedes[1] is used for 

reading; otherwise, the process writes to filedes[1], and filedes[0] is used for reading. In a 

half duplex setting (such as in Linux) filedes[1] is always used for writing, and filedes[0] is 

always used for reading—an attempt to write to fildes[0] or read from filedes[1] will 

produce an error (i.e., bad file descriptor).

If the pipe system call fails, it returns a –1 and sets errno (Table 5.6).



Table 5.6. pipe Error Messages.

# Constant perror Message Explanation

23 ENFILE File table overflow System file table is full.

24 EMFILE Too many open 

files

Process has exceeded the limit for number of 

open files.

14 EFAULT Bad address filedes is invalid.

As previously noted, data in a pipe is read on a FIFO basis. Program 5.1 shows a pair 

of processes (parent/child) that use a pipe to send the first argument passed on the 

command line to the parent as a message to the child. Notice that the pipe is 

established prior to forking the child process.

Program 5.1 Parent/child processes communicating via a pipe.

File : p5.1.cxx

  |     /* Using a pipe to send data from a parent to a child process

  |      */

  |     #include <iostream>

  |     #include <cstdio>

  +     #include <unistd.h>

  |     #include <string.h>

  |     using namespace std;

  |     int

  |     main(int argc, char *argv[ ]) {

 10       int            f_des[2];

  |       static char    message[BUFSIZ];

  |       if (argc != 2) {

  |         cerr << "Usage: " << *argv << " message\n";

  |         return 1;

  +       }

  |       if (pipe(f_des) == -1) {             // generate the pipe

  |         perror("Pipe");     return 2;

  |       }

  |       switch (fork( )) {

 20       case -1:

  |         perror("Fork");     return 3;

  |       case 0:                              // In the child

  |         close(f_des[1]);

  |         if (read(f_des[0], message, BUFSIZ) != -1) {

  +           cout << "Message received by child: [" << message



  |                << "]" << endl;

  |           cout.flush();

  |         } else {

  |           perror("Read");    return 4;

 30         }

  |         break;

  |       default:                             // In the Parent

  |         close(f_des[0]);

  |         if (write(f_des[1], argv[1], strlen(argv[1])) != -1) {

  +           cout << "Message sent by parent   : [" <<

  |                argv[1] << "]" << endl;

  |           cout.flush();

  |         } else {

  |           perror("Write");   return 5;

 40         }

  |       }

  |       return 0;

  |     }

In the parent process the "read" pipe file descriptor f_des[0] is closed, and the message

(the string referenced by argv[1]) is written to the pipe file descriptor f_des[1]. In the child 

process the "write" pipe file descriptor f_des[1] is closed, and pipe file descriptor f_des[0]

is read to obtain the message. While the closing of the unused pipe file descriptors is 

not required, it is a good practice. Remember that for read to be successful, the 

number of bytes of data requested must be present in the pipe or all the write file 

descriptors for the pipe must be closed so that an end-of-file can be returned. The 

pipe file descriptors f_des[0] in the child and f_des[1] in the parent will be closed when 

each process exits. The output of Program 5.1 is shown in Figure 5.2.

Figure 5.2 Output of Program 5.1.

linux$ p5.1 Once_upon_a_starry_night

Message sent by parent   : [Once_upon_a_starry_night]

Message received by child: [Once_upon_a_starry_night]

5-1 EXERCISE

Modify Program 5.1 so the child, upon receipt of the message, changes its 

case and returns the message (via a pipe) to the parent, where it is then 

displayed. On a system that does not support duplex pipes, you will need to 



generate two pipes prior to forking the child process.

At a command-line level, a pipe is specified by the | symbol. As shown in Figure 5.3, 

pipes are used to tie the standard output of one command to the standard input of 

another to create a command pipeline.

Figure 5.3. Using pipes on the command line.

For example, the command line sequence

linux$ ps –ef  | grep $USER | cat -n

will execute the ps -ef command (which displays, in full form, the process status of all 

users) and pipe its output to the grep $USER command. The grep command prints those 

lines that contain the contents of the variable $USER—that is, the user's login. A

second pipe passes the output of the grep command to the cat, which (with option –n) 

displays its output as a numbered list. The redirection of the output of the ps command

to be the input to the grep command and the output of the grep command to be the 

input of the cat command is accomplished with the inclusion of the command-line 

specification of a pipe. To achieve a similar arrangement with our parent/child pair, we

need a way to associate standard input and standard output with the pipe we have 

created. This can be done either by using the dup or the dup2 system call (Tables 5.7

and 5.8).

The dup2 call supersedes the dup system call, but both bear discussion. The dup

system call duplicates an original open file descriptor. The new descriptor references 

the system file table entry for the next available nonnegative file de scriptor. The new 

descriptor will share the same file pointer (offset), have the same access mode as the 

original, and share locks. Both will remain open across an exec call, but they do not, 

however, share the close-on-exec flag. An important point to consider is that when 

called, dup will always return the next lowest available file descriptor.



Table 5.7. Summary of the dup System Call.

Include File(s) <unistd.h>

Manual 

Section

2

Summary int dup( int oldfd );

Return

Success Failure Sets errno

Next available nonnegative file descriptor –1 Yes

Table 5.8. Summary of the dup2 System Call.

Include File(s) <unistd.h> Manual Section 2

Summary int dup2( int oldfd, int newfd );

Return

Success Failure Sets errno

newfd as a file descriptor for oldfd –1 Yes

A code sequence of

int f_des[2];

pipe(f_des);

close( fileno(stdout) );  // close standard output

dup(f_des[1]);            // duplicate 1st free descriptor

                             as write end of pipe

.

.

.

declares and generates a pipe. The file descriptor for standard output (say, file 

descriptor 1) is closed. The following dup system call returns the next lowest available 

file descriptor, which in this case should be the previously closed standard output file 

descriptor (i.e., 1). Thus, any data written to standard output in following statements 

would now be written to the pipe. Notice that there are two steps in this sequence: 

closing the descriptor and then dup-ing it. There is an outside chance that the 

sequence will be interrupted and the descriptor returned by dup will not be the one that 

was just closed. This could happen if a signal was caught and the signal-catching 

routine closed a file.

Enter the dup2 system call. The dup2 system call closes and duplicates the file 



descriptor as a single atomic action. When calling dup2, there is no time at which newfd

is closed and oldfd has not yet been duplicated. If the file referenced by newfd is already 

open, it will be closed before the duplication is performed. For those more stout of 

heart, both the dup and dup2 calls can be implemented with the fcntl system call (when 

passed the proper flag values).

A short program that mimics the last | sort command-line sequence is shown in 

Program 5.2. The files/pipes for the two processes, once Program 5.2 successfully 

executes the fork system call in line 17, are shown in Figure 5.4.

Figure 5.4 Initial entries for files/pipes.

      parent        child

0   stdin         stdin      0

1   stdout        stdout     1

2   stderr        stderr     2

3   f_des[o]      f_des[o]   3

4   f_des[1]      f_des[1]   4

5   ...           ...        5

6                            6

Assuming a fairly standard setting (i.e., stdin = 0, stdout = 1, stderr = 2) with both stdout

and stderr mapped to the same device (most likely the terminal), initially both the 

parent and child processes reference the same entries in the system file table. After 

the child process is generated, we use the dup2 call to close standard output and 

duplicate it. The system returns the previous reference for standard output, which is 

now associated with the file table entry for f_des[1]. Once this association has been 

made, the file descriptors f_des[0] and f_des[1] are closed, as they are not needed by 

the child process.

Program 5.2 A last | sort pipeline.

File : p5.2.cxx

  |     /* A home grown last | sort cmd pipeline

  |      */

  |     #define_GNU_SOURCE

  |     #include <iostream>

  +     #include <cstdio>

  |     #include <unistd.h>

  |     using namespace std;

  |     enum { READ, WRITE };



  |

 10     int

  |     main( ) {

  |       int      f_des[2];

  |       if (pipe(f_des) == -1) {

  |         perror("Pipe");

  +         return 1;

  |       }

  |       switch (fork( )) {

  |       case -1:

  |         perror("Fork");

 20         return 2;

  |       case 0:                              // In the child

  |         dup2( f_des[WRITE], fileno(stdout));

  |         close(f_des[READ] );

  |         close(f_des[WRITE]);

  +         execl("/usr/bin/last", "last", (char *) 0);

  |         return 3;

  |       default:                               // In the parent

  |         dup2( f_des[READ], fileno(stdin));

  |         close(f_des[READ] );

 30         close(f_des[WRITE]);

  |         execl("/bin/sort", "sort", (char *) 0);

  |         return 4;

  |       }

  |       return 0;

  +     }

In the parent process the dup2 call closes standard input and duplicates it as the 

reference f_des[0]. The entries for the files/pipes would now look like those shown in 

Figure 5.5. In the parent process, stdout and stderr have not been modified. However, 

stdin is now the read end of the pipe shared with the child. In the child process, stdout

and stderr are their default values. However, stdout has been associated with the write 

end of pipe shared with the parent.

Figure 5.5. End entries for files/pipes.



When running Program 5.2, the two processes (parent and child) are running 

concurrently (at the same time). The sequence in which these processes will be 

executed is not guaranteed. For the processes involved, this is not a concern, since 

the pipe allows both processes to write/read at the same time.

We can summarize the steps involved for communication via unnamed pipes:

Create the pipe(s) needed.1.

Generate the child process(es).2.

Close/duplicate file descriptors to properly associate the ends of the pipe.3.

Close the unneeded ends of the pipe.4.

Perform the communication activities.5.

Close any remaining open file descriptors.6.

If appropriate, wait for child processes to terminate.7.

If either dup or dup2 fail, they return a -1 and set errno. The error codes for dup and dup2

are shown in Table 5.9.

Table 5.9. dup/dup2 Error Messages.

# Constant perror Message Explanation

4 EINTR Interrupted system 

call

Signal was caught during the system call.

9 EBADF Bad file descriptor The file descriptor is invalid.

24 EMFILE Too many open 

files

Process has exceeded the limit for number of 

open files.



# Constant perror Message Explanation

67 ENOLINK The link has been 

severed

The file descriptor value references a remote 

system that is no longer active.

5-2 EXERCISE

Most UNIX-based systems include a utility program called tee that copies 

standard input to standard output and to the file descriptor passed on the 

command line. Thus, the command sequence

linux$ cat x.c | tee /dev/tty | wc

would cat the contents of the file x.c and pipe the standard output to tee. The 

tee program would copy its standard input (from the cat command) to the file 

/dev/tty and to its standard out put, where it would be piped to the wc (word 

count) program. Using unnamed pipes, write your own version of tee called 

my_tee. Hint: If you do not know your terminal device, on most systems the 

command stty will display the device. If stty does not work, try the who

command. When passing the name of the terminal device to your my_tee

program, be sure to include the full path for the device.

5-3 EXERCISE

Modify Program 5.2 so a variable number of commands can be passed to 

the program. Each command passed to the program should be connected to 

the next command via a pipe. When using this new program, a 

three-command sequence such as

linux$ last | sort | more

would be indicated as

linux$ my_p5.2  last  sort  more



5-4 EXERCISE

Rework the program written for Exercise 4.3 (the producer/consumer 

problem in Chapter 4) so the producer and consumer now use a pipe to 

communicate with one another.

Since the sequence of generating a pipe, forking a child process, duplicating file 

descriptors, and passing command execution information from one process to another

via the pipe is relatively common, a set of standard library functions is available to 

simplify this task: popen and pclose. See Tables 5.10 and 5.11.

Table 5.10. Summary of the popen Library Function.

Include File(s) <stdio.h> Manual Section 3

Summary FILE *popen( const char *command, const,

             char *type )

Return

Success Failure Sets errno

Pointer to a FILE NULL pointer Sometimes

Table 5.11. Summary of the pclose Library Function.

Include File(s) <stdio.h> Manual Section 3

Summary int pclose( FILE *stream );

Return

Success Failure Sets errno

Exit status of command -1 Sometimes\dn9

When successful, the popen call returns a pointer to a file stream (not an integer file 

descriptor). The arguments for popen are a pointer to the shell command
[2] that will be 

executed and an I/O mode type. The I/O mode type (read or write) determines how the 

process will handle the file pointer returned by the popen call.

[2] This can be any valid Bourne shell command, including those with I/O 

redirection. Most often, the command is placed in a doubly quoted 



string.

When invoked, the popen call automatically generates a child process. The child 

process execs a Bourne shell (/bin/sh), which will execute the passed shell command. 

Input to and output from the child process is accomplished via a pipe. If the I/O mode 

type for popen is specified as w the parent process can write to the standard input of the 

shell command. In other terms, writing to the file pointer reference generated by the 

popen in the parent process will enable the child process running the shell command to 

read the data as its standard input. Conversely, if the I/O type is r, using the popen file 

pointer, the parent process can read from the standard output of the shell command 

(run by the child process). By default, the I/O stream generated by popen is fully 

buffered.

If popen fails due to an inability to allocate memory, errno will not be set. However, if the 

mode type is specified incorrectly, popen sets errno to EINVAL.

The pclose call is used to close a data stream opened with a popen call. If the data 

stream being closed is associated with a popen, pclose returns the exit status of the 

shell command referenced by the popen. If the data stream is not associated with a 

popen call, the pclose call returns a value of –1. If pclose is unable to obtain the status of 

the child process, errno is set to ECHILD.

Program 5.3 shows one way the popen and pclose calls can be used to pipe the output 

of one shell command to the input of another.

Program 5.3 Using popen and pclose.

File : p5.3.cxx

  |     /* Using the popen and pclose I/O commands

  |      */

  |     #define_GNU_SOURCE

  |     #include <iostream>

  +     #include <cstdio>

  |     #include <limits.h>

  |     #include <unistd.h>

  |     using namespace std;

  |     int

 10     main(int argc, char *argv[ ]) {

  |       FILE    *fin, *fout;

  |       char    buffer[PIPE_BUF];



  |       int     n;

  |       if (argc < 3) {

  +         cerr << "Usage " << argv << "cmd1 cmd2" << endl;

  |         return 1;

  |      }

  |       fin  = popen(argv[1], "r");

  |       fout = popen(argv[2], "w");

 20       fflush(fout);

  |       while ((n = read(fileno(fin), buffer, PIPE_BUF)) > 0)

  |         write(fileno(fout), buffer, n);

  |       pclose(fin);

  |       pclose(fout);

  +       return 0;

  |     }

As written, Program 5.3 requires two command-line arguments: two shell commands 

whose standard output/input is redirected via pipes generated when using the popen

call. The first popen call, with the I/O option of r, directs the system to fork a child 

process that will execute the shell command referenced by argv[1]. The output of the 

command will be redirected so it can be read by the parent process when using the file 

pointer reference fin. In a similar manner, the second popen, with the I/O option of w

directs the system to fork a second child process. As this child process executes its 

shell command (referenced by argv[2]), its standard input will be the data written to the 

pipe by the parent process, and its output will go the standard output. The parent 

process writes data to the second pipe using the file pointer reference fout and reads 

data from the first pipe using the file pointer reference fin. The while loop in the program 

is used to copy the data from the output end of one pipe to the input end of the other. 

The call to fflush in line 20 of the program is used to clear buffered output so that it will 

not be interleaved with data in the pipe.

Figure 5.6 depicts the arrangement when the shell command last and more are passed 

on the command line to Program 5.3.

Figure 5.6. Program 5.3 relationships when invoked as p5.3 last more.



5-5 EXERCISE

Using just the popen call to generate pipes, can we create a pipeline 

consisting of three separate shell commands (e.g., a program that when 

passed three shell commands on the command line, would pipe the 

commands together in the manner cmd1 | cmd2 | cmd3)? If yes, write a 

program that shows how this can be done. If no, give the reason(s) why.
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5.3 Named Pipes

UNIX provides for a second type of pipe called a named pipe, or FIFO (we will use the 

terms interchangeably). Named pipes are similar in spirit to unnamed pipes but have 

additional benefits. When created, named pipes have a directory entry. With the 

directory entry are file access permissions and the capability for unrelated processes 

to use the pipe file. Although the FIFO has a directory entry, keep in mind the data 

written to the FIFO is passed to and stored by the kernel and is not directly written to 

the file system.

Named pipes can be created at the shell level (on the command line) or within a 

program. It is instructive to look at the generation of a named pipe at the shell level 

before addressing its use in a program. At the shell level the command used to make 

a named pipe is mknod. Officially, mknod is a utility command designed to generate 

special files. It is most commonly used by the superuser to generate special device 

files (e.g., the block, character device files found in the /dev directory). For 

nonprivileged users, mknod can only be used to generate a named pipe. The syntax for 

the mknod command to make a named pipe is

linux$ mknod PIPE p

The first argument to the mknod command is the file name for the FIFO (this can be 

any valid UNIX file name; however, it is common to use an uppercase file name to 

alert the user to the special nature of the file). The second argument is a lowercase p, 

which notifies mknod that a FIFO file is to be created. If we issue the command shown 

above and check the directory entry for the file that it has created, we will find a listing 

similar to that shown below:

linux$ ls -l PIPE

prw-r--r--   1 gray     faculty         0 Feb 26 07:18 PIPE

The lowercase letter p at the start of the permission string indicates the file called PIPE

is a FIFO. The default file permissions for a FIFO are assigned using the standard 

umask arrangement discussed previously. The number of bytes in the FIFO is listed as 
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0. As soon as all the processes that are using a named pipe are done with it, any 

remaining data in the pipe is released by the system and the byte count for the file 

reverts to 0. If we wish to, we can, on the command line, redirect the output from a 

shell command to a named pipe. If we do this, we should place the command 

sequence in the background to prevent it from hanging. We could then redirect the 

output of the same FIFO to be the input of another command.

For example, the command

linux$ cat test_file > PIPE &

[1] 27742

will cause the display of the contents of file test_file to be redirected to the named pipe 

PIPE. If this command is followed by

linux$ cat < PIPE

This is test

file to use

with our pipe.

[1]  + Done                          cat test_file > PIPE

the second cat command will read its input from the named pipe called PIPE and 

display its output to the screen.

5-6 EXERCISE

As long as there is one active reader and/or writer for a FIFO, the system will 

maintain its contents. Is it possible to produce a command sequence that 

proves this is so? Try issuing a command that generates a large amount of 

outpt (e.g., cat p5.2.cxx) and redirect the output to the FIFO, placing the 

command in the background. Follow this command with ls -l to see if the pipe 

actually has contents. Now try the following command sequence:

linux$ cat p5.2.cxx > PIPE & more < PIPE & ls -l PIPE

How do you explain the differences in output you observe?

While the previous discussion is instructive, it is of limited practical use. Under most 

circumstances, FIFOs are created in a programming environment, not on the 



command line. The system call to generate a FIFO in a program has the same name 

as the system command equivalent: mknod (Table 5.12).

Table 5.12. Summary of the mknod System Call.

Include File(s) <sys/types.h>

<sys/stat.h>

<fcntl.h>

<unistd.h>

Manual Section 2

Summary int mknod(const char *pathname, mode_t

          mode, dev_t dev);

Return

Success Failure Sets errno

0 -1 Yes

The mknod system call creates the file referenced by pathname. The type of the file 

created (FIFO, character or block special, directory[3] or plain) and its access 

permissions are determined by the mode value. Most often the mode for the file is 

created by ORing a symbolic constant indicating the file type with the file access 

permissions (see the section on umask for a more detailed discussion). Permissible file 

types are listed in Table 5.13.

[3] While most versions of mknod can also be used to generate a directory 

(if you are the superuser), the version found in Linux cannot (use the 

mkdir system call instead).

Table 5.13. File Type Specification Constants for mknod.

Symbolic Constant File Type

S_IFIFO FIFO special

S_IFCHR character special

S_IFDIR directory

S_IFBLK block special

S_IFREG ordinary file



The dev argument for mknod is used only when a character or block special file is 

specified. For character and block special files, the dev argument is used to assign the 

major and minor number of the device. For nonprivileged users, the mknod system call 

can only be used to generate a FIFO. When generating a FIFO, the dev argument 

should be left as 0. If mknod is successful, it returns a value of 0. Otherwise, errno is set

to indicate the error, and a value of –1 is returned.

Table 5.14. mknod Error Messages.

# Constant perror Message Explanation

1 EPERM Operation not 

permitted

The effective ID of the calling process 

is not that of the superuser.

4 EINTR Interrupted 

system call

Signal was caught during the system 

call.

12 ENOMEM Cannot allocate 

memory

Insufficient kernel memory was 

available.

13 EACCES Permission 

denied

Parent directory (or one of the 

directories in pathname) lacks write 

permission.

14 EFAULT Bad address pathname references an illegal address.

17 EEXIST File exists pathname already exists.

20 ENOTDIR Not a directory Part of the specified pathname is not a 

directory.

22 EINVAL Invalid argument Invalid dev specified.

28 ENOSPC No space left on 

device

File system has no inodes left for new 

file generation.

30 EROFS Read-only file 

system

Referenced file is (or would be) on a 

read-only file system.

67 ENOLINK The link has been 

severed

The pathname value references a 

remote system that is no longer active.



# Constant perror Message Explanation

72 EMULTIHOP Multihop 

attempted

The pathname value requires multiple 

hops to remote systems, but file 

system does not allow it.

36 ENAMETOOLONG File name too long The pathname value exceeds system 

path/file name length.

40 ELOOP Too many levels 

of symbolic links

The perror message says it all.

In many versions of UNIX, a C library function called mkfifo simplifies the generation of 

a FIFO. The mkfifo library function (Table 5.15) uses the mknod system call to generate 

the FIFO. Most often, unlike mknod, mkfifo does not require the user have superuser 

privileges.

Table 5.15. Summary of the mkfifo Library Function.

Include File(s) <sys/types.h>

<sys/stat.h>
Manual Section 3

Summary int mkfifo (const char *pathname,

            mode_t mode)

Return

Success Failure Sets errno

0 -1 Yes

If mkfifo is used in place of mknod, the mode argument for mkfifo refers only to the file 

access permission for the FIFO, because the file type, by default, is set to S_IFIFO. If 

the mkfifo call fails, it returns a –1 and sets the value in errno. When generating a FIFO, 

the errors that may be encountered with mkfifo are similar to those previously listed for 

the mknod system call (Table 5.14). In our examples, we use the more universal mknod

system call when generating a FIFO.

Our next example is somewhat more grand in scope than some of the past examples. 

We combine the use of unnamed and named pipes to produce a client–server

relationship. Both the client and server processes will run on the same platform. The 

single-server process is run first and placed in the background. Client processes, run 



subsequently, are in the foreground. The client processes accept a shell command 

from the user. The command is sent to the server via a public FIFO (known to all 

clients and the server) for processing. Once the command is received, the server 

executes it using the popen–pclose sequence (which generates an unnamed pipe in the 

process). The server process returns the output of the command to the client over a 

private FIFO where the client, upon receipt, displays it to the screen. Figure 5.7 shows

the process and pipe relationships.

Figure 5.7. Client–server process relationships.

More succinctly, the steps taken by the processes involved are as follows:

Server generates the public FIFO (available to all participating client 

processes).

Client process generates its own private FIFO.

Client prompts for, and receives, a shell command.

Client writes the name of its private FIFO and the shell command to the public 

FIFO.

Server reads the public FIFO and obtains the private FIFO name and the shell 

command.



Server uses a popen–pclose sequence to execute the shell command. The 

output of the shell command is sent back to the client via the private FIFO.

Client displays the output of the command.

To ensure that both server and client processes will use the same public FIFO name 

and have the same message format, a local header file is used. This header file is 

shown in Figure 5.8.

Figure 5.8 Header file for client–server example.

File : local.h

  |     /*

  |        local header file for pipe client-server

  |      */

  |     #include <cstdio>

  +     #include <sys/types.h>

  |     #include <sys/stat.h>

  |     #include <fcntl.h>

  |     #include <unistd.h>

  |     #include <string.h>

 10     #include <linux/limits.h>

  |     #include <stdlib.h>

  |     using namespace std;

  |     const char *PUBLIC = "/tmp/PUBLIC";          <-- 1

  |     const int   B_SIZ  = (PIPE_BUF / 2);

  +     struct message {

  |       char   fifo_name[B_SIZ];

  |       char   cmd_line[B_SIZ];

  |     };

(1) Establish the name of the common public FIFO.

In this file, a constant is used to establish the name for the public FIFO as /tmp/PUBLIC. 

The format of the message that will be sent over the public FIFO is declared with the 

struct statement. The message structure consists of two character array members. The

first member, called fifo_name, stores the name of the private FIFO. The second 

structure member, cmd_line, stores the command to be executed by the server.

Program 5.4 shows the code for the client process.



Program 5.4 The client process.

File : client.cxx

  |     /* The client process */

  |     #define _GNU_SOURCE

  |

  |     #include "local.h"

  +     int

  |     main(  ){

  |       int             n, privatefifo, publicfifo;

  |       static char     buffer[PIPE_BUF];

  |       struct message  msg;

 10 

  |       sprintf(msg.fifo_name, "/tmp/fifo%d", getpid( ));   <-- 1

  | 

  |       if (mknod(msg.fifo_name, S_IFIFO | 0666, 0) < 0) {   <-- 2

  |         perror(msg.fifo_name);

  +         return 1;

  |       } 

  |       if ((publicfifo = open(PUBLIC, O_WRONLY)) == -1) {   <-- 3

  |         perror(PUBLIC);

  |         return 2;

 20       }

  |       while ( 1 ) {

  |         write(fileno(stdout), "\ncmd>", 6);      <-- 4

  |         memset(msg.cmd_line, 0x0, B_SIZ);

  |         n = read(fileno(stdin), msg.cmd_line, B_SIZ);

  +         if (!strncmp("quit", msg.cmd_line, n—1))

  |           break;

  |         write(publicfifo, (char *) &msg, sizeof(msg));   <-- 5

  |         if ((privatefifo = open(msg.fifo_name, O_RDONLY)) == -1) {

  |           perror(msg.fifo_name);

 30          return 3;

  |         }

  |         while ((n = read(privatefifo, buffer, PIPE_BUF)) > 0) {   <-- 6

  |           write(fileno(stderr), buffer, n);  |         }

  +         close(privatefifo);

  |       }

  |       close(publicfifo);

  |       unlink(msg.fifo_name);

  |       return 0;

 40     }



(1) Build a unique name for the private FIFO for this process.

(2) Generate the private FIFO.

(3) Open the public FIFO for writing.

(4) Prompt for command; clear space to hold command.

(5) Write command to public pipe for server to process.

(6) Open private FIFO; read what is returned.

Using the sprintf function, the client creates a unique name for its private FIFO by 

incorporating the value returned by the getpid system call. The mknod system call is 

used next to create the private FIFO with read and write permissions for all. The 

following open statement opens the public FIFO for writing. If for some reason the 

public FIFO has not been previously generated by the server, the open will fail. In this 

case the perror call produces an error message and the client process exits. If the open

is successful, the client process then enters an endless loop. The client first prompts 

the user for a command.[4] Prior to obtaining the command, the structure member 

where the command will be stored is set to all NULLs using the C library function 

memset. This action assures that no extraneous characters will be left at this storage 

location. Note that using memset is preferable to using the deprecated bzero library 

function for clearing a string. The read statement in line 24 obtains the user's input from 

standard input and stores it in msg.cmd_line. The input is checked to determine if the 

user would like to quit the program. The check is accomplished by comparing the 

input to the character string quit. We use n-1 as the number of characters for 

comparison to avoid including the \n found at the end of the user's input. If quit was 

entered, the while loop is exited via the break statement, the private FIFO is removed, 



and the client process terminates. If the user does not want to quit, the entire 

message structure, consisting of the private FIFO name and the command the user 

entered, is written to the public FIFO (thus sending the information on to the server). 

The client process then attempts to read its private FIFO to obtain the output that will 

be sent to it from the server. At this juncture, if the server has not finished with its 

execution of the client's command, the client process will block (which is the default 

for read). Once data is available from the private FIFO, the while loop in the client will 

read and write its contents to standard error. The code for the server process is shown 

in Program 5.5.

[4] Notice that all the I/O in the program is done with read/write to avoid 

buffer flushing problems associated with standard I/O library calls.

Program 5.5 The server process.

File : server.cxx

  |     /* The server process */

  |     #define _GNU_SOURCE

  |

  |     #include "local.h"

  +     int

  |     main( ){

  |       int             n, done, dummyfifo, publicfifo, privatefifo;

  |       struct message  msg;

  |       FILE            *fin;

 10      static char     buffer[PIPE_BUF];

  |

  |       mknod(PUBLIC, S_IFIFO | 0666, 0);          <-- 1

  |

  |       if ((publicfifo = open(PUBLIC, O_RDONLY)) == -1 ||

  +           (dummyfifo  = open(PUBLIC, O_WRONLY | O_NDELAY)) == -1 ) {

  |           perror(PUBLIC);

  |           return 1;

  |       }

  |

 20       while (read(publicfifo, (char *) &msg, sizeof(msg)) > 0) {   <-- 2

  |         n = done = 0;

  |         do {

  |           if ((privatefifo=open(msg.fifo_name,   <-- 3

  |                                 O_WRONLY|O_NDELAY)) == -1)

  +             sleep(3);

  |           else {



  |             fin = popen(msg.cmd_line, "r");      <-- 4

  |             write(privatefifo, "\n", 1);

  |             while ((n = read(fileno(fin), buffer, PIPE_BUF)) > 0) {

 30              write(privatefifo, buffer, n);      <-- 5

  |               memset(buffer, 0x0, PIPE_BUF);

  |             }

  |             pclose(fin);

  |             close(privatefifo);

  +             done = 1;

  |           }

  |         } while (++n < 5 && !done);

  |         if (!done) {

  |           write(fileno(stderr),

 40          "\nNOTE: SERVER ** NEVER ** accessed private FIFO\n", 48);

  |           return 2;

  |         }

  |       }

  |       return 0;

  +     }

(1) Generate public FIFO and open for reading and writing.

(2) Read message (command) from public FIFO.

(3) Open the child's private FIFO.

(4) Server executes the command using popen.

(5) Command output is read and sent to the child.

The server process is responsible for creating the public FIFO. Once created, the 

public FIFO is opened for both reading and writing. This may appear to be a little odd, 

as the server process only needs to read from the public FIFO. By opening the public 



FIFO for writing as well, the public FIFO always has at least one writing process 

associated with it. Therefore, the server process will never receive an end-of-file on 

the public FIFO. The server process will block on an empty public FIFO waiting for 

additional messages to be written. This technique saves us from having to close and 

reopen the public FIFO every time a client process finishes its activities.

Once the public FIFO is established, the server attempts to read a message from the 

public FIFO. When a message is read (consisting of a private FIFO name and a 

command to execute), the server tries to open the indicated private FIFO for writing. 

The attempt to open the private FIFO is done within a do-while loop. The O_NDELAY 

flag is used to keep the open from generating a deadlock situation. Should the client, 

for some reason, not open its end of the private FIFO for reading, the server would, 

without the O_NDELAY flag specification, block at the open of the private FIFO for 

writing. If the attempt to open the private FIFO fails, the server sleeps three seconds 

and tries again. After five unsuccessful attempts, the server displays an informational 

message to standard error and continues with its processing. If the private FIFO is 

successfully opened, a popen is used to execute the command that was passed in the 

message structure. The output of the command (which is obtained from the unnamed 

pipe) is written to the private FIFO using a while loop. When all of the output of the 

command has been written to the unnamed pipe, the unnamed pipe and private FIFO 

are closed. A sample run of the client-server programs is shown in Figure 5.9.

Figure 5.9 Typical client-server output.

linux$ server &                                      <-- 1

[1] 27107

$ client                                             <-- 2

cmd>ps

  PID TTY          TIME CMD

14736 pts/3    00:00:00 csh

27107 pts/3    00:00:00 server

27108 pts/3    00:00:00 client

27109 pts/3    00:00:00 6

cmd>who

gray     pts/3    Feb 27 11:28

cmd>quit                                             <-- 3

linux$ kill -9 27107

[1]    Killed             server

$



(1) Place the server in the background.

(2) Run a client process in the foreground.

(3) The server process must be removed by sending it a kill signal.

The server process is placed in the background. The client process is then run, and 

shell commands (ps and who) are entered in response to the cmd> prompt. The output 

of each command (after it is executed by the server process and its output sent back 

to the client) is shown. The client process is terminated by entering the word quit. The 

server process, which remains in the background even after the client has been 

removed, is terminated by using the kill command.

5-7 EXERCISE

There are a number of additions that can be made to the client program to 

make it more robust. For example, if the client exits due to the receipt of an 

interrupt signal (CTRL+C), the private FIFO is not removed. Use a 

signal-catching routine to correct this oversight. When the client process is 

initiated, it will fail if the server process is not available. Correct this by 

having the client start the server process if it is not active.

5-8 EXERCISE

As written, the server program will process each command request in turn. 

Should one of these requests require a long time to execute, all other client 

processes must wait to be serviced. Rewrite the server program so that 

when the server process receives a message, it forks a child process to carry 

out the task of executing the command and returning the output of the 



command to the client process.

      

Top

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/eBook.Prentice_Hall_PTR-Interprocess_Communications_in_Linux.ShareReactor.chm/23021533.htm


     

 

5.4 Summary

Pipes provide the user with a more reliable, synchronized means of interprocess 

communication. Unnamed pipes can be used only with related processes. The popen

system call provides the user with an easy way to generate an unnamed pipe to 

execute a shell command. Named pipes (FIFOs), which exist as actual directory 

entries, can be shared by unrelated processes. The amount of data a pipe can contain 

is limited by the system. When a pipe is no longer associated with any processes, its 

contents are flushed by the system. The read and write system calls, which can be used 

with pipes, provide the user with an easy means of coordinating the flow of data in a 

pipe. Care must be taken when using pipes to prevent deadlock situations. Deadlock 

can occur when one process opens one end of a pipe for writing and another process 

opens the other end of the same pipe for writing. Each process in turn is waiting for 

the other to complete its action.[5] Pipes can be used only by processes that are 

running on the same platform. Unfortunately, pipes provide no easy way for a reading 

process to determine who the writing process was. All processes involved with using 

pipes must have forehand knowledge of their existence.

[5] As the unnamed pipe generated by popen is done without the user's 

direct use of the open system call, should the O_NDELAY or 

O_NBLOCK flags need to be set, the fcntl system call must be used.
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5.5 Key Terms and Concepts

bzero library function

dup system call

dup2 system call

FIFO

memset library function

mkdir library function

mkfifo library function

mknod command

mknod system call

named pipe

O_NDELAY flag

O_NOBLOCK flag

pclose library function

pipe

pipe system call

PIPE_BUF

PIPE_SIZE
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popen I/O function

private FIFO

public FIFO

read system call

tee command

unnamed pipe

write system call
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Chapter 6. Message Queues
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6.1 Introduction

The designers of UNIX found the types of interprocess communications that could be 

implemented using signals and pipes to be restrictive. To increase the flexibility and 

range of interprocess communication, supplementary communication facilities were 

added. These facilities, added with the release of System V in the 1970s, are grouped 

under the heading IPC (Interprocess Communication). In brief, these facilities are

Message queues— Information to be communicated is placed in a predefined

message structure. The process generating the message specifies its type and

places the message in a system-maintained message queue. Processes

accessing the message queue can use the message type to selectively read 

messages of specific types in a first in first out (FIFO) manner. Message 

queues provide the user with a means of asynchronously multiplexing data 

from multiple processes.

Semaphores— Semaphores are system-implemented data structures used to

communicate small amounts of data between processes. Most often,

semaphores are used for process synchronization.

Shared memory— Information is communicated by accessing shared process

data space. This is the fastest method of interprocess communication. Shared

memory allows participating processes to randomly access a shared memory

segment. Semaphores are often used to synchronize the access to the shared

memory segments.

All three of these facilities can be used by related and unrelated processes, but these 

processes must be on the same system (machine).

Like a file, an IPC resource[1] must be generated before it can be used. Each IPC 

resource has a creator, owner, and access permissions. These attributes, established 

when the IPC is created, can be modified using the proper system calls. At a system 

level, information about the IPC facilities supported by the system can be obtained 



with the ipcs command. For example, on our system the ipcs command produces the 

following output shown in Figure 6.1.

[1] In the context of IPC facilities, the term resource indicates an 

instance of the facility.

Figure 6.1 Some ipcs output.

linux$ ipcs

------ Shared Memory Segments ------

key       shmid     owner     perms     bytes     nattch   status   <-- 1

0x00000000 25198594  root      666       247264    3

------ Semaphore Arrays ------

key       semid     owner     perms     nsems     status

0x00000000 65537     root      666       4

0x00000000 98306     root      666       16          <-- 2

0x00000000 131075    root      666       16

0x00000000 163844    root      666       16

------ Message Queues ------

key       msqid     owner     perms     used-bytes  messages   <-- 3

(1) One shared memory segment attached (shared) by three processes.

(2) Four sets of semaphores all owned by root.

(3) No message queues are currently allocated.

The ipcs utility supports a variety of options for specifying a specific resource and the 

format of its output. The meaning of each is shown in Table 6.1.

Additionally, -s, -q, or -m can be used to indicate semaphore, message queue, or 

shared memory, and can be followed by –i and a valid decimal ID to display additional 



information about a specific IPC resource (Figure 6.2).

Table 6.1. ipcs Command Line Options.

Resource Specification Output Format

–a
All (default)

–c
Creator

–m
Shared memory

–l
Limits

–q
Message queues

–p
Process ID

–s
Semaphores

–t
Time

  
–u

Summary

Figure 6.2 Using ipcs to display the details on a specific resource.

linux$ ipcs -s -i 65537

Semaphore Array semid=65537

uid=0    gid=1002        cuid=0  cgid=1002           <-- 1

mode=0666, access_perms=0666

nsems = 4

otime = Wed Feb 27 23:00:00 2002

ctime = Fri Jan  4 13:18:00 2002

semnum    value     ncount    zcount    pid

0         1         0         0         0

1         1         0         0         20719

2         1         0         0         20797

3         1         0         0         0

(1) Specifics of the four-element semaphore.

The limits for each facility are established when the kernel is generated. The 

command

linux$ /sbin/sysctl -a



displays all the configurable kernel parameters. On our system, this command 

generates a large amount of output. The IPC related information from this command is 

as follows:

...

kernel.sem    = 250        32000   32      128

kernel.msgmnb = 16384

kernel.msgmni = 16

kernel.msgmax = 8192

kernel.shmmni = 4096

kernel.shmall = 2097152

kernel.shmmax = 33554432

...

A comparison of this output with that of the ipcs -l (limits) command easily establishes

the role of each value—for example, kernel.msgmni is the maximum number of 

message queues systemwide.

IPC resources exist and maintain their contents even after the process that created 

them has terminated. An IPC resource can be removed by its owner, using the 

appropriate system call within a program or by using the system-level command ipcrm. 

The message queue, shown in the output of the previous ipcs command, could be 

removed by its owner issuing the command

linux$ ipcrm sem 65537

The sem
[2] command-line option tells ipcrm that a semaphore is to be removed, and the 

argument 65537 is the ID number of the semaphore. As there are per-user and 

systemwide limits to the number of IPC resources available, users should make a 

conscientious effort to remove unneeded allocated IPCs. Note that as superuser, it is 

unwise to capriciously remove root owned IPC resources.

[2] Use shm to indicate a shared memory segment or msg for a message 

queue.
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6.2 IPC System Calls: A Synopsis

A set of similar system calls are used to create an IPC resource and manipulate IPC 

information.[3] Due to their flexibility, the syntax for these calls is somewhat arcane 

(the calls appear, like the camel, to have been designed by a committee). The System 

V IPC calls are summarized in Table 6.2.

[3] Note Linux also supports a nonstandard, nonportable system call 

called ipc that can be used to manipulate IPC resources. As this is a 

Linux-specific call, its use is best left to Linux system developers.

Table 6.2. Summary of the System V IPC Calls.

Functionality

Message 

Queue

System Call 

Semaphore

Shared 

Memory

Allocate an IPC resource; gain access to 

an existing IPC resource.

msgget Semget Shmget

Control an IPC resource: obtain/modify 

status information, remove the resource.

msgctl Semctl Shmctl

IPC operations: send/receive 

messages,perform semaphore 

operations, attach/free a shared memory 

segment.

msgsnd

msgrcv Semop

Shmat

shmdt

The get system calls[4] (msgget, semget, and shmget) are used either to allocate a new 

IPC resource (which generates its associated system IPC structure) or gain access to 

an existing IPC. Each IPC has an owner and a creator, which under most 

circumstances are usually one and the same. When a new resource is allocated, the 

user must specify the access permissions for the IPC. Like the open system call, the 

get system calls return an integer value called an IPC identifier, which is analogous to 
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a file descriptor. The IPC identifier is used to reference the IPC. From a system 

standpoint, the IPC identifier is an index into a system table containing IPC permission 

structure information. The IPC permission structure is defined in <bits/ipc.h> that is 

included by the header file <sys/ipc.h>. This structure is defined as

[4] The term get (in italics) will be used to reference the group of system 

calls.

struct ipc_perm  {

    __key_t __key;                      /* Key                 */

    __uid_t uid;                        /* Owner's user ID.    */

    __gid_t gid;                        /* Owner's group ID.   */

    __uid_t cuid;                       /* Creator's user ID.  */

    __gid_t cgid;                       /* Creator's group ID. */

    unsigned short int mode;            /* Access permission.  */

    unsigned short int __pad1;

    unsigned short int __seq;           /* Sequence number.    */

    unsigned short int __pad2;

    unsigned long int __unused1;

    unsigned long int __unused2;

};

The type definitions for __uid_t, __gid_t, and so on can be found in the header file 

<sys/types.h>. In general, all programs that use the IPC facilities should include the 

<sys/types.h> and <sys/ipc.h> files. As will be explained in the discussion of ctl system 

calls, some members of the permission structure can be modified by the user.

There are two arguments common to each of the three get system calls. Each get

system call takes an argument of defined type __key_t (of base type integer). This 

argument, known as the key value, is used by the get system call to generate the IPC 

identifier. There is a direct, one-to-one relationship between the IPC identifier returned 

by the get system call and the key value. While the key can be generated in an arbitrary 

manner, there is a library function called ftok that is commonly used to standardize key

production.[5] By calling ftok with the same arguments, unrelated processes can be 

assured of producing the same key value and thus reference the same IPC resource. 

The ftok function is summarized in Table 6.3.

[5] In all honesty, the ftok library function is superfluous, but is presented 

for historical and continuity reasons. As long as processes that wish to 

access a common IPC resource have a method to communicate the key



value for the IPC (such as in a common header file), ftok can be 

avoided.

Table 6.3. Summary of the ftok Library Function.

Include 

File(s)

<sys/types.h>

<sys/ipc.h>
Manual 

Section
3

Summary key_t ftok ( char *pathname, char proj );

Return

Success Failure Sets errno

Returns a key_t value for IPC get

system call

-1 As in stat system call

The ftok function takes two arguments. The first, path, is a reference to an existing 

accessible file. Often the value "." is used for this argument, since in most situations 

the self-referential directory entry "." is always present, accessible, and not likely to be 

subsequently deleted. The second argument for ftok, proj, is a single-character project 

identifier most commonly represented as a literal. The value returned by a successful 

call to ftok is of defined type key_t. ftok's underlying algorithm, which uses data returned 

by the stat system call for the specified pathname as well as the proj argument value, 

does not guarantee a unique key value will be returned. If ftok fails, it returns a –1 and

sets errno in a manner similar to the stat system call (the stat system call is discussed in 

Section 2.8, "File Information."

As demonstrated in Program 6.1, the most significant byte of the value returned by ftok

is the character proj value, which is passed as the second argument.

Program 6.1 Generating some key values with ftok.

File : p6.1.cxx

  |     /*

  |         Using ftok to generate key values

  |      */

  |     #include <iostream>

  +     #include <sys/types.h>

  |     #include <sys/ipc.h>

  |     using namespace std;

  |     int



  |     main( ){

 10       key_t key;

  |       for (char i = 'a'; i <= 'd'; ++i) {

  |         key = ftok(".", i);

  |         cout << "proj = " << i << " key = [" << hex << key

  |              << "] MSB = " << char(key >> 24) << endl;

  +       }

  |       return 0;

  |     }

Figure 6.3 shows the output of Program 6.1 when run on a local 32-bit system.

Figure 6.3 Output of Program 6.1.

linux$ p6.1

proj = a key = [61153384] MSB = a                    <-- 1

proj = b key = [62153384] MSB = b

proj = c key = [63153384] MSB = c

proj = d key = [64153384] MSB = d

(1) The proj argument becomes the most significant byte of the value 

returned by ftok.

6-1 EXERCISE

As shown in Program 6.1, the most significant byte of ftok's returned key value 

is the character value passed as the second argument i.e., the value 

assigned to proj. The remaining parts of the key are obtained from 

information returned by the stat system call (using pathname as its argument). 

What stat information is used by ftok, and what is ftok's underlying algorithm? 

Write a short program that supports your answer.

The key value for the get system calls may also be set to the defined constant 

IPC_PRIVATE. Beneath the covers, IPC_PRIVATE is defined as having a value of 0. 

Note that regardless of its argument values, the ftok library function will not return a 

value of 0. Specifying IPC_PRIVATE instructs the get system call to create an IPC 

resource with a unique IPC identifier. Thus, no other process creating or attempting to 



gain access to an IPC resource will receive this same IPC identifier.

An IPC resource created with IPC_PRIVATE is normally shared between related

processes (such as parent/child or child/child) or in client–server settings. In the

related process settings, the parent process creates the IPC resource. When is

performed, an exec, the associated IPC identifier is passed to the child process by way

of the environment or as a command-line parameter. In client–server relationships,

the server process usually creates the IPC using IPC_PRIVATE. The IPC identifier is

then made available to the client via a file. Note that in either scenario, the child/client

process would not specify IPC_PRIVATE when issuing its get system call to gain 

access to the existing private resource. Finally, using IPC_PRIVATE does not prohibit 

other processes from gaining access to the resource; it only makes it a bit more 

difficult for a process to determine the identifier associated with the resource.

The second argument common to all of the IPC get system calls is the message flag. 

The message flag, an integer value, is used to set the access permissions when the 

IPC resource is created. The lower nine bits of the message flag argument define the 

access permissions. Table 6.4 summarizes the subsequent types of permissions 

required for each of the IPC system calls[6] to perform their functions. The execute bit 

is not relevant for IPC facilities.

[6] The header files for each of the IPC facilities (i.e., <sys/msg.h>, 

<sys/sem.h>, and <sys/shm.h>) contain defined constants for read/write 

(access) permissions for the facility. As noted previously, using defined 

constants does increase the portability of code. However, there is no 

free lunch, as the programmer must often take the time to look up the 

correct spelling of infrequently used defined constants.

Table 6.4. Required Permissions for IPC System Calls.

Permissions 

Required

Message 

Queues Semaphores Shared Memory

write (alter)

msgsnd place 

message in the 

queue

semop increase or decrease 

a semaphore value

shmat to write to 

the shared 

memory segment



Permissions 

Required

Message 

Queues Semaphores Shared Memory

 msgctl write out 

modified IPC 

status information

semctl set the value of one 

semaphore or a whole set; 

write out modified IPC 

status information

shmctl write out 

modified IPC 

status information

read

msgrcv obtain 

message from 

queue

semop block until a 

semaphore becomes 0

shmat read from 

the shared 

memory segment

 msgctl to retrieve 

IPC status 

information

semctl to retrieve IPC status 

information

shmctl to retrieve 

IPC status 

information

In addition to setting access modes, there are two defined constants, found in 

<sys/ipc.h>, that can be ORed with the access permission value(s) to modify the actions 

taken when the IPC is created. The constant IPC_CREAT directs the get system call 

to create an IPC resource if one does not presently exist. When IPC_CREAT is 

specified, if the resource is already present and it was not created using 

IPC_PRIVATE, its IPC identifier is returned. In conjunction with IPC_CREAT, the 

creator may also specify IPC_EXCL. Using these two constants together (i.e., 

IPC_CREAT | IPC_EXCL) causes the get system call to act in a no clobber manner. 

That is, should there already be an IPC present for the specified key value, the get

system call will fail; otherwise, the resource is created. Using this technique, a process 

can be assured that it is the creator of the IPC resource and is not gaining access to a 

previously created IPC. In this context, specifying IPC_EXCL by itself has no 

meaning.

The ctl system calls (msgctl, semctl, and shmctl) act upon the information in the system 

IPC permission structure described previously. All of these system calls require an 

IPC identifier and an integer command value to stipulate their action. The values the 

command may take are represented by the following defined constants (found in the 

header file <sys/ipc.h>):

IPC_STAT— Return the referenced IPC resource status information. When

specifying IPC_STAT, the ctl system call must pass a pointer to an allocated 



structure of the appropriate type to store the returned information.

IPC_SET— Change the owner, group, or mode for the IPC resource. In

addition, as with IPC_STAT, a pointer to a structure of the appropriate type

(with the changed member information) must be passed.

IPC_RMID— Destroy the contents of the IPC resource and remove it from the

system.

A process can specify IPC_SET or IPC_RMID only if it is the owner or creator of the 

IPC (or if it has superuser privileges). Some of the ctl system calls have additional 

functionality, which will be presented in later sections.

The remaining IPC system calls are used for IPC operations. The msgsnd and msgrcv

calls are used to send and receive a message from a message queue. By default, the 

system blocks on an msgsnd if a message queue is full, or on an msgrcv if the message 

queue is empty. The process will remain blocked until the indicated operation is 

successful, a signal is received, or the IPC resource is removed. A process can 

specify to not block by ORing in the IPC_NOWAIT flag with the specified operation 

flag. The semop system call performs a variety of operations on semaphores (such as 

setting and testing). Again, the default is to block when attempting to decrement a 

semaphore that is currently at 0 or if the process is waiting for a semaphore to 

become 0. The shmat and shmdt system calls are used with shared memory to 

map/attach and unmap/detach shared memory segments. These calls do not block.

For some reason known only to those who authored the documentation, the msgsnd

and msgrcv manual pages (found in Section 2) contain a reference to msgop. However, 

there is no system call msgop. Likewise, the shmat and shmdt manual pages make 

reference to shmop, which also is not a system call. The manual page for semop only 

makes reference to semop (which is indeed a system call). One must only conclude 

that the initial intent was to group all of these calls under the general heading of IPC 

operations.

We address each set of IPC system calls in detail as we cover message queues, 

semaphores, and shared memory.
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6.3 Creating a Message Queue

A message queue is created using the msgget system call (Table 6.5).

Table 6.5. Summary of the msgget System Call.

Include 

File(s)

<sys/types.h>

<sys/ipc.h>

<sys/msg.h>

Manual 

Section 2

Summary int msgget (key_t key,int msgflg);

Return

Success Failure Sets errno

Nonnegative message queue 

identifierassociated with key

–1 Yes

If the msgget system call is successful, a nonnegative integer is returned. This value is 

the message queue identifier and can be used in subsequent calls to reference the 

message queue. If the msgget system call fails, the value –1 is returned and the global

variable errno is set appropriately to indicate the error (see Table 6.6). The value for 

the argument key can be specified directly by the user or generated using the ftok

library function (as covered in the previous discussion). The value assigned to key is 

used by the operating system to produce a unique message queue identifier. The 

low-order bits of the msgflg argument are used to determine the access permissions for

the message queue. Additional flags (e.g., IPC_CREAT, IPC_EXCL) may be ORed 

with the permission value to indicate special creation conditions.

A new message queue is created if the defined constant IPC_PRIVATE is used as the

key argument or if the IPC_CREAT flag is ORed with the access permissions and no 

previously existing message queue is associated with the key value. If IPC_CREAT is 

specified (without IPC_EXCL) and the message queue already exists, msgget will not

fail but will return the message queue identifier that is associated with the key value 

(Table 6.6).



Table 6.6. msgget Error Messages.

# Constant perror Message Explanation

2 EOENT No such file or 

directory

Message queue identifier does not exist for this 

key and IPC_CREAT was not set.

12 ENOMEM Cannot allocate 

memory

Insufficient system memory to allocate the 

message queue.

13 EACCES Permission 

denied

Message queue identifier exits for this key, but 

requested operation is not allowed by current 

access permissions.

17 EEXIST File exists Message queue identifier exists for this key, but 

the flags IPC_CREAT and IPC_EXCL are both 

set.

28 ENOSPC No space left on 

device

System imposed limit (MSGMNI) for the number 

of message queues has been reached.

43 EIDRM Identifier 

removed

Specified message queue is marked for removal.

Program 6.2 generates five message queues with read/write access, uses the ipcs

command (via a pipe) to display message queue status, and then removes the 

message queues.

Program 6.2 Generating message queues.

File : p6.2.cxx

  |     /*  Message queue generation

  |      */

  |     #define _GNU_SOURCE

  |     #include <cstdio>

  +     #include <unistd.h>

  |     #include <linux/limits.h>

  |     #include <sys/types.h>

  |     #include <sys/ipc.h>

  |     #include <sys/msg.h>

 10     using namespace std;



  |     const int MAX=5;

  |     int                                          <-- 1

  |     main( ){

  |       FILE *fin;

  +       char  buffer[PIPE_BUF], proj = 'A';

  |       int   i, n, mid[MAX];

  |       key_t key;

  |       for (i = 0; i < MAX; ++i, ++proj) {

  |         key = ftok(".", proj);

 20         if ((mid[i] = msgget(key, IPC_CREAT | 0660)) == -1) {

  |           perror("Queue create");

  |           return 1;

  |         }

  |       }

  +       fin = popen("ipcs", "r");                  <-- 2

  |       while ((n = read(fileno(fin), buffer, PIPE_BUF)) > 0)

  |         write(fileno(stdout), buffer, n);

  |       pclose(fin);

  |       for (i = 0; i < MAX; ++i )                 <-- 3

 30         msgctl(mid[i], IPC_RMID, (struct msqid_ds *) 0);

  |       return 0;

  |     }

(1) Create five message queues.

(2) Use a named pipe to execute the ipcs command.

(3) Remove the five message queues.

When run on our system, this program produces the output in Figure 6.4, indicating 

that five message queues have been generated.

Figure 6.4 Output of Program 6.2.

linux$ p6.2

------ Shared Memory Segments ------



key       shmid     owner     perms     bytes     nattch   status

0x00000000 25198594  root      666       247264    3

------ Semaphore Arrays ------

key       semid     owner     perms     nsems     status

0x00000000 65537     root      666       4

0x00000000 98306     root      666       16

0x00000000 131075    root      666       16

0x00000000 163844    root      666       16

------ Message Queues ------

key       msqid     owner     perms     used-bytes  messages

0x41153384 2260992   gray      660       0           0

0x42153384 2293761   gray      660       0           0

0x43153384 2326530   gray      660       0           0

0x44153384 2359299   gray      660       0           0

0x45153384 2392068   gray      660       0           0

6-2 EXERCISE

Run Program 6.2 several times in rapid succession. Look at the message 

queue identifiers that are produced. What appears to be the numbering 

scheme the system is using? Hint: Look in the header file <linux/msg.h>. Can 

you find any rationale for this approach? Now add the statement sleep(5);

after the statement pclose(fin); on line 28. Recompile the program and invoke 

the program twice, placing it in the background each time. Assuming the 

program is still called p6.2, this can be accomplished by

linux$ p6.2 & p6.2 &

Count the number of message queues generated and explain why there are 

not 10 present.

When a message queue is created, a system message-queue data structure called 

msqid_ds is generated. This structure, maintained by the system, is defined in the 

system-dependent header file <bits/msq.h>, which in turn is included by the header file 

<sys/msg.h>. The msqid_ds structure for Linux is defined as

struct msqid_ds {

  struct ipc_perm msg_perm;       /* structure describing operation



                                     permission */

  __time_t msg_stime;             /* time of last msgsnd command */

  unsigned long int __unused1;

  __time_t msg_rtime;             /* time of last msgrcv command */

  unsigned long int __unused2;

  __time_t msg_ctime;             /* time of last change */

  unsigned long int __unused3;

  unsigned long int __msg_cbytes; /* current number of bytes on queue */

  msgqnum_t msg_qnum;             /* number of messages currently on queue */

  msglen_t msg_qbytes;            /* max number of bytes allowed on queue */

  __pid_t msg_lspid;              /* pid of last msgsnd() */

  __pid_t msg_lrpid;              /* pid of last msgrcv() */

  unsigned long int __unused4;

  unsigned long int __unused5;

};

However, conceptually (and in keeping with its original definition), the msqid_ds

structure is considered to be as found in the header file <linux/msg.h>:

struct msqid_ds {

  struct ipc_perm msg_perm;

  struct msg *msg_first;          /* first message on queue, unused  */

  struct msg *msg_last;           /* last message in queue, unused */

  __kernel_time_t msg_stime;      /* last msgsnd time */

  __kernel_time_t msg_rtime;      /* last msgrcv time */

  __kernel_time_t msg_ctime;      /* last change time */

  unsigned long  msg_lcbytes;     /* Reuse junk fields for 32 bit */

  unsigned long  msg_lqbytes;     /* ditto */

  unsigned short msg_cbytes;      /* current # of bytes on queue */

  unsigned short msg_qnum;        /* number of messages in queue */

  unsigned short msg_qbytes;      /* max number of bytes on queue */

  __kernel_ipc_pid_t msg_lspid;   /* pid of last msgsnd */

  __kernel_ipc_pid_t msg_lrpid;   /* last receive pid */

};

But, if we investigate even further, we find that what is actually implemented by the 

kernel is different still. A check of the kernel source code msg.c (usually found in 

/usr/src/linux-XX.XX.XX/ipc where XX are the version numbers for the particular operating 

system) for message queue implementation defines a kernel structure called 

msg_queue:

struct msg_queue {

    struct kern_ipc_perm q_perm;

    time_t q_stime;                 /* last msgsnd time */



    time_t q_rtime;                 /* last msgrcv time */

    time_t q_ctime;                 /* last change time */

    unsigned long q_cbytes;         /* current number of bytes on queue */

    unsigned long q_qnum;           /* number of messages in queue */

    unsigned long q_qbytes;         /* max number of bytes on queue */

    pid_t q_lspid;                  /* pid of last msgsnd */

    pid_t q_lrpid;                  /* last receive pid */

    struct list_head q_messages;

    struct list_head q_receivers;

    struct list_head q_senders;

};

While this all may seem a bit confusing at first, there is some commonality (e.g., the 

permission structure and reference to the message queue list). The discussion that 

follows is based on the conceptual definition as found in the header file <linux/msg.h>.

The first member of the msqid_ds structure is the IPC permission structure discussed 

earlier. When the resource is allocated, the system sets, respectively, the 

msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid members to the effective 

user and group ID of the invoking process. The low-order nine bits of msgflg (taken 

from the msgget call) are used to set the value in msg_perm.mode.

Next, in the msqid_ds structure are two pointers to the first and last messages in the 

queue. From a conceptual standpoint, the individual messages in the queue are 

structures of type msg, defined as

struct msg {

    struct msg     *msg_next;      /* ptr to next message on q */

    long           msg_type;       /* message type */

    ushort         msg_ts;         /* message text size */

    short          msg_spot;       /* address of text message */

};

Individual messages are placed in a linked list by the system. Each msg structure 

contains four members: a reference to the next msg in the list, a long integer, 

user-assigned value denoting the message type, a short integer value indicating the 

size in bytes of the message (maximum 8192 bytes), and a reference to the actual 

message. When the message queue is created the system sets the msqid_ds members

msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime to 0. The member msg_ctime is 

set to the current time, and msg_qbytes is set to the system limit. Thus, conceptually, 

we can envision a message queue with N items as being similar to Figure 6.5.



Figure 6.5. A message queue with N items.
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6.4 Message Queue Control

The ownership and access permissions, established when the message queue was 

created, can be examined and modified using the msgctl system call (see Table 6.7).

The msgctl system call references the message queue indicated by the msqid argument.

The value of the cmd argument is used to indicate the action that msgctl should take. 

The following defined constants/actions can be specified:

Table 6.7. Summary of the msgget System Call.

Include File(s) <sys/types.h>

<sys/ipc.h>

<sys/msg.h>

Manual Section
2

Summary int msgget (int msqid,int cmd, struct

            msqid_ds *buf);

Return

Success Failure Sets errno

0 -1 Yes

IPC_STAT— Return the current values for each member of the msqid_ds data 

structure (remember that this also contains the permission structure). When 

using the IPC_STAT flag, the user must provide a location to store the returned 

information. The address of the storage location for the information is passed 

as the third argument to the msgctl system call. Of course, the calling process 

must have read-access privileges for the message queue.

IPC_SET— With this flag, the user (creator, owner, or superuser) can modify a

limited number of msqid_ds structure member values. The following members 

can be modified:

msg_perm.uid, msg_perm.gid, msg_perm.mode, and msg_qbytes
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Similar to IPC_STAT, the user must first generate a structure of type 

msqid_ds, modify the appropriate structure members, and then call msgctl with 

the IPC_SET flag and pass the address of the modified structure. A successful 

update will also update the msg_ctime member.

IPC_RMID— Immediately removes all associated message queue structures.

When specifying IPC_RMID, the third argument to msgctl is not considered and 

thus may be left out. However, wanting to leave nothing to chance, most 

programmers enter the third argument as a NULL value cast to be a pointer to 

an msqid_ds structure.

If the msgctl system call fails, it returns a -1 and sets errno; otherwise, it returns a 0 

indicating success. The value that errno may be assigned when msgctl fails is given in 

Table 6.8.

Program 6.3 creates a message queue, uses the msgctl system call to obtain the 

message queue structure information, and displays pertinent data to the screen.



Table 6.8. msgctl Error Messages.

# Constant perror Message Explanation

1 EPERM Operation not
cmd is IPC_RMID and the calling 

process permitted is not the owner or 

superuser.

cmd is IPC_SET and non-superuser 

process is attempting to increase 

msg_qbytes beyond the system limit 

(MSGMNB).

13 EACCES Permission 

denied

cmd is IPC_STAT, but operation is forbidden 

by the current access permissions (i.e., lacks 

read access).

14 EFAULT Bad address cmd is set to IPC_SET or IPC_STAT, but buf

references a bad address.

22 EINVAL Invalid argument
Message queue identifier is invalid.

cmd is invalid.

cmd is IPC_SET, but msg_perm.uid or 

msg_perm.gid value is invalid.

43 EIDRM Identifier 

removed

The message queue was removed.

75 EOVERFLOW Value too large 

for defined data 

type

cmd is IPC_STAT and location referenced by 

buf is too small to hold the uid or gid values.

Program 6.3 Using msgctl.

File : p6.3.cxx

  |   /*



  |         Displaying message queue status information

  |    */

  |   #include <iostream>

  +   #include <cstdio>

  |   #include <sys/types.h>

  |   #include <sys/ipc.h>

  |   #include <sys/msg.h>

  |   using namespace std;

 10   int

  |   main( ){

  |     int             mid;

  |     key_t           key;

  |     struct msqid_ds buf;                         <-- 1

  +

  |     key = ftok(".", 'z');

  |     if ((mid = msgget(key, IPC_CREAT | 0660)) == -1) {   <-- 2

  |       perror("Queue create");

  |       return 1;

 20     }

  |     msgctl(mid, IPC_STAT, &buf);

  |     cout << "Message Queue *Permission* Structure Information" << endl;

  |     cout << "Owner's user ID   \t" << buf.msg_perm.uid  << endl;

  |     cout << "Owner's group ID  \t" << buf.msg_perm.gid  << endl;

  +     cout << "Creator's user ID \t" << buf.msg_perm.cuid << endl;

  |     cout << "Creator's group ID\t" << buf.msg_perm.cgid << endl;

  |     cout << "Access mode in HEX\t" << hex <<  buf.msg_perm.mode << endl;

  |     cout << "\nAdditional Selected Message Queue Structure Information\n";

  |     cout << "Current # of bytes on queue  \t" << dec

 30                                              << buf.__msg_cbytes << endl;

  |     cout << "Current # of messages on queue\t" << buf.msg_qnum   << endl;

  |     cout << "Maximum # of bytes on queue   \t" << buf.msg_qbytes << endl;

  |     msgctl(mid, IPC_RMID, (struct msqid_ds *) 0 );

  |     return 0;

  +   }

(1) The structure buf will store the returned information on the message 

queue.

(2) Generate the message queue.

Run locally, Program 6.3 produces the output shown in Figure 6.6.



Figure 6.6 Output of Program 6.3.

linux$ p6.3

Message Queue *Permission* Structure Information

Owner's user ID         500

Owner's group ID        1000

Creator's user ID       500

Creator's group ID      1000

Access mode in HEX      1b0

Additional Selected Message Queue Structure Information

Current # of bytes on queue     0

Current # of messages on queue  0

Maximum # of bytes on queue     16384

As shown, when first generated, the creator of the message queue and the owner are 

the same. If we convert the displayed hexadecimal access mode value to binary:

1B016  110 110 0002

and examine the lower nine bits of the binary number, we see the access permissions 

are indeed 0660 as we specified. The value for the maximum number of bytes on the 

message queue, shown here as 16384, is one of several system-imposed message 

queue limits. Additional message queue limit information can be found in the header 

file <linux/msg.h>.

6-3 EXERCISE

It is not possible to create and initialize message queue members 

atomically. Is this a design flaw or a feature? Support your answer with an 

example.
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6.5 Message Queue Operations

Message queues are used to send and receive messages. An actual message, from 

the system's standpoint, is defined by the msgbuf structure found in the header file 

<sys/msg.h> as

struct msgbuf  {

    long int mtype;          /* type of received/sent message */

    char mtext[1];           /* text of the message */

  };

This structure is used as a template for the messages to be sent to and received from 

the message queue.

The first member of the msgbuf structure is the message type. The message type, 

mtype, is a long integer value and is normally greater than 0. The message type, 

generated by the process that originates the message, is used to indicate the kind 

(category) of the message. The type value is used by the msgrcv system call to 

selectively retrieve messages falling within certain boundary conditions. Messages are 

placed in the message queue in the order they are sent and not grouped by their 

message type.

Following mtype is the reference to the body of the message. As shown, this is defined 

as a character array with one element: mtext[1]. In actuality, any valid structure 

member(s), character arrays or otherwise, that make up a message can be placed 

after the requisite mtype entry. The system assumes a valid message always consists 

of a long integer followed by a series of 0 or more bytes (the organization of the data 

bytes is the programmer's prerogative). It is the address of the first structure member 

after mtype that the system uses as its reference when manipulating the msg structure 

(discussed in Section 6.3). Therefore, users can generate their own message 

structures to be placed in the message queue so long as the first member (on most 

systems this is the first four bytes) is occupied by a long integer.

Messages are placed in the message queue (sent) using the system call msgsnd



(Table 6.9).

Table 6.9. Summary of the msggnd System Call.

Include File(s) <sys/types.h>

<sys/ipc.h>

<sys/msg.h>

Manual Section 2

Summary int msgsnd (int msqid, struct msgbuf *msgp,

            size_t msgsz,      int msgflg);

Return

Success Failure Sets errno

0 -1 Yes

The msgsnd system call requires four arguments. The first argument, msqid, is a valid 

message queue identifier returned from a prior msgget system call. The second 

argument, msgp, is a pointer to the message to be sent. As noted, the message is a 

structure with the first member being of the type long integer. The message structure 

must be allocated (and hopefully initialized) prior to its being sent. The third argument, 

msgsz, is the size (number of bytes) of the message to be sent. The size of the 

message is the amount of storage allocated for the message structure minus the 

storage used for the message type (stored as a long integer). The message size can 

be from 0 to the system-imposed limit. The fourth argument to msgsnd, msgflg, is used 

to indicate what action should be taken if system limits for the message queue (e.g., 

the limit for the number of bytes in a message queue) have been reached. The msgflg

can be set to IPC_NOWAIT or to 0. If set to IPC_NOWAIT and a system limit has 

been reached, msgsnd will not send the message and will return to the calling process 

immediately with errno set to EAGAIN. If msgflg is set to 0, msgsnd will block until the limit 

is no longer at system maximum (at which time the message is sent), the message 

queue is removed, or the calling process catches a signal. The system uses the msgsz

argument to msgsnd as its msg.msg_ts value, the msgbuf.mtype value as its msg.msg_type, 

and the msgbuf.mtext reference as msg.msg_spot.

If msgsnd is successful, it returns a value of 0; otherwise, it returns a value of -1 and 

sets errno to indicate the nature of the error. See Table 6.10.



Table 6.10. msgsnd Error Messages.

# Constant perror Message Explanation

4 EINTR Interrupted system 

call

When sleeping on a full message queue, the 

process received an interrupt.

11 EAGAIN Resource 

temporarily 

unavailable

Message cannot be sent (msg_qbyte limit 

exceeded) and IPC_NOWAIT was specified.

12 ENOMEM Cannot allocate 

memory

Insufficient system memory to copy message.

13 EACCES Permission denied Calling process lacks write access for the 

message queue.

14 EFAULT Bad address msgp references a bad address.

22 EINVAL Invalid argument
Message queue identifier is invalid.

mtype is nonpositive.

msgsz is less than 0 or greater than 

system limit.

43 EIDRM Identifier removed Message queue has been removed.

Messages are retrieved from the message queue using the system call msgrcv, 

summarized in Table 6.11.



Table 6.11. Summary of the msgrcv System Call.

Include File(s) <sys/types.h>

<sys/ipc.h>

<sys/msg.h>

Manual Section
2

Summary ssize_t msgrcv (int msqid, struct msgbuf *msgp,

                size_t msgsz, long msgtyp, int

                msgflg);

Return

Success Failure Sets errno

Number of bytes actually received -1 Yes

The msgrcv system call takes five arguments. The first, as for the msgsnd system call, is 

the message queue identifier. The second, msgp, is a pointer to the location (structure) 

where the received message will be placed. The receiving location should have as its 

first field a long integer to accommodate the message type information. The third 

argument, msgsz, is the maximum size of the message in bytes. This value should be 

equal to the longest message to be received. Truncation of the message will occur if 

the size value is incorrectly specified, and depending upon the value for msgflg (see 

following section), an error may be generated. The fourth argument, msgtyp, is the type 

of the message to be retrieved. The message type information is interpreted by the 

msgrcv system call, as shown in Table 6.12.

Table 6.12. Actions for msgrcv as Indicated by msgtyp Values.

When 

msgtyp value 

is msgrcv takes this action

0 Retrieve the first message of any msgtyp.

> 0 Retrieve the first message equal to msgtyp if MSG_EXCEPT is not 

specified. If MSG_EXCEPT is specified, the first message that is not 

equal to the msgtyp.

< 0 Retrieve the first message of the lowest type less than or equal to 

absolutevalue of msgtyp.

Using the type argument judiciously, a user can, with minimal effort, implement a 



priority-based messaging arrangement whereby the message type indicates its 

priority.

The fifth and final argument, msgflg, is used to indicate what actions should be taken if 

a given message type is not in the message queue, or if the message to be retrieved 

is larger in size than the number of bytes indicated by msgsz. There are three 

predefined values that msgflg can take. IPC_NOWAIT is used to indicate to msgrcv that 

it should not block if the requested message type is not in the message queue. If 

MSG_EXCEPT is specified and the msgtyp value is greater than 0, msgrcv returns the 

first message not equal to msgtyp. MSG_NOERROR directs msgrcv to silently truncate 

messages to msgsz bytes if they are found to be too long. If MSG_NOERROR is not 

specified and msgrcv receives a message that is too long, it returns a -1 and sets the 

value in errno to E2BIG to indicate the error. In don't-care situations, the value for 

msgflg can be set to 0. When msgrcv is successful, it returns the number of bytes 

actually retrieved. See Table 6.13.

Table 6.13. msgrcv Error Messages.

# Constant perror Message Explanation

4 EINTR Interrupted system 

call

When sleeping on a full message queue, the 

process received an interrupt.

7 E2BIG Argument list too 

long

mtext is greater than msgsz and 

MSG_NOERROR is not specified.

13 EACCES Permission denied Attempt made to read a message, but the 

calling process does not have permission.

14 EFAULT Bad address msgp references a bad address.

22 EINVAL Invalid argument
Message queue identifier is invalid.

msgsz is less than 0 or greater than the 

system limit.

42 ENOMSG No message of 

desired type

Message queue does not have a message of 

type msgtyp, and IPC_NOWAIT is set.



# Constant perror Message Explanation

43 EIDRM Identifier removed Message queue has been removed.
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6.6 A Client–Server Message Queue Example

At this point we can use what we have learned about message queues to write a pair

of programs that establish a client–server relationship and use message queues for

bidirectional interprocess communication. The client process obtains input from the

keyboard and sends it via a message queue to the server. The server reads the

message from the queue, manipulates the message by converting all alphabetic text

in the message to uppercase, and places the message back in the queue for the client

to read. By mutual agreement, the client process identifies messages designated for

the server by placing the value 1 in the message type member of the message

structure.[7] In addition, the client includes its process ID (PID) number in the 

message. The server uses the PID number of the client to identify messages it has 

processed and placed back in the queue. Labeling the processed messages in this 

manner allows the server to handle messages from multiple clients.

[7] This works nicely, as in multiple client situations, because not every 

client has initial access to the PID of the server.

For example, if the client process with a PID of 17 placed each word in the statement 

"The anticipation is greater than the realization." into separate messages, the current state of 

the message queue would be as depicted in Figure 6.7. As shown, the messages 

placed in the queue by the client (PID 17) are labeled as a message type of 1 (for the 

server).

Figure 6.7. Conceptual view of message queue after the client has sent all seven messages



When the server reads the queue, it obtains the first message of type 1. In our 

example this is the message containing the word The. The server processes the 

message, changes the message type to that of the client, and puts the message back 

on the queue. This leaves the message queue in the state shown in Figure 6.8.

Figure 6.8. Conceptual view of message queue after the first client message has been processed.

To accomplish this task, both the client and server programs need to access common 

include files and data structures. These items are placed in a local header file called 

local.h, whose contents are shown in Figure 6.9. An examination of this file reveals that 



the messages placed in the queue consist of a structure with three members. The first 

member (which must be of type long if things are to work correctly) acts as the 

message type (mtype) member. Here we call this member msg_to, since it contains a 

value that indicates the process to whom we are addressing the message. We use the

value of 1 to designate a message for the server process, and other positive PID 

values to indicate a message for a client. The second member of the message 

structure, called msg_fm (which is also a long integer), contains the ID of the process 

that is sending the message. In the program example, if the message is sent by a 

client, this value will be the client PID. If the message is sent by the server, this value 

will be set to 1. The third member of the message structure is an array of a fixed size 

that will contain the text of the actual message.

Figure 6.9 Local header file for message queue example.

File : local.h

  |     /*

  |           Common header file for 2nd Message Queue Example

  |      */

  |     #define _GNU_SOURCE

  +     #include <cstdio>

  |     #include <cstring>

  |     #include <sys/types.h>

  |     #include <sys/ipc.h>

  |     #include <sys/msg.h>

 10     #include <unistd.h>

  |     const char     SEED  ='M';        // Common seed for ftok

  |     const long int SERVER=1L;         // Message type for server

  |     typedef struct {

  |       long int msg_to;                // Message in queue for this type

  +       long int msg_fm;                // Placed in the queue by this type

  |       char buffer[BUFSIZ];            // The actual message

  |     }MESSAGE;

  |     using namespace std;

The client program, shown as Program 6.4, begins by obtaining its PID. This value is 

used later to mark messages sent to the server, identifying them as coming from a 

particular client process. The ftok library function is used to produce a key. When the 

client process is invoked, we want it to create the message queue if one does not 

already exist. Further, if the server process is not present, we want the client to start it. 

We will assume that if the message queue is not present, the server process is not 

present as well. To accomplish this the initial call to msgget, mid=msgget(key, 0) in line 



19, is tested to determine if the call has failed. If the message queue is not found (the 

call fails), the message queue is created by the second call to msgget. If this occurs, 

the client process forks a child process and overlays it with a call to exec to run the 

server process. The server is passed the message queue identifier via the command 

line. As all command-line arguments are strings, the sprintf string function is used to 

put the message queue identifier in the correct format.

Once the message queue is created, the client program enters an endless loop, 

prompting for user input, placing the input in the message queue for the server to 

process, retrieving the processed input, and displaying the results to standard output. 

If the user enters a message of 0 bytes (i.e., enters CTRL+D from the keyboard), the 

client exits its loop and sends the server a special 0-byte-length message (see line 47) 

indicating it is done.

Program 6.4 The client.

File : client.cxx

  |     /*

  |          CLIENT ... sends messages to the server

  |      */

  |     #include "local.h"

  +     #include <cstdio>

  |     using namespace std;

  |     int

  |     main( ){

  |       key_t       key;

 10       pid_t       cli_pid;

  |       int         mid, n;

  |       MESSAGE     msg;

  |       static char m_key[10];

  |       cli_pid = getpid( );

  +       if ((key = ftok(".", SEED)) == -1) {       <-- 1

  |         perror("Client: key generation");

  |         return 1;

  |       }

  |       if ((mid=msgget(key, 0 )) == -1 ) {        <-- 2

 20         mid = msgget(key,IPC_CREAT | 0660);

  |         switch (fork()) {

  |         case -1:

  |           perror("Client: fork");

  |           return 2;

  +         case 0:



  |           sprintf(m_key, "%d", mid);             <-- 3

  |           execlp("./server", "server", m_key, "&", 0);

  |           perror("Client: exec");

  |           return 3;

 30         }

  |       }

  |       while (1) {

  |         msg.msg_to = SERVER;

  |         msg.msg_fm = cli_pid;                    <-- 4

  +         write(fileno(stdout), "cmd> ", 6);

  |         memset(msg.buffer, 0x0, BUFSIZ);

  |         if ( (n=read(fileno(stdin), msg.buffer, BUFSIZ)) == 0 )

  |           break;

  |         n += sizeof(msg.msg_fm);                 <-- 5

 40         if (msgsnd(mid, &msg, n, 0) == -1 ) {

  |           perror("Client: msgsend");

  |           return 4;

  |         }

  |         if( (n=msgrcv(mid, &msg, BUFSIZ, cli_pid, 0)) != -1 )

  +           write(fileno(stdout), msg.buffer, n);   <-- 6

  |       }

  |       msgsnd(mid, &msg, 0, 0);

  |       return 0;

  |     }

(1) Generate a key for the message queue.

(2) If the message queue is not present, create the queue.

(3) Turn message queue ID into a string to pass to the server via the

command line.

(4) Label message as to receiving and originating process.



(5) The message size is the size of the second member (the first is

assumed) of the structure plus the number of bytes in the message.

(6) Server will pause, waiting for messages to be added to the message

queue. Once a message is retrieved, it is written to standard output.

The server process (shown as Program 6.5) begins by checking the number of 

command-line arguments. If three command-line arguments are not found, an error 

message is generated and the server program exits. Otherwise, the contents of argv[1]

are converted to an integer value to be used as the message queue identifier. The 

server then enters into a loop. It first attempts to receive a message of type SERVER 

(1) from the queue. If the number of bytes returned by msgrcv is 0, the server assumes 

that the client process is done. In this case, the loop is exited and the server removes 

the message queue with a msgctl system call (line 35) and exits. However, if a 

message is successfully retrieved from the message queue, it is processed (in the 

function process_msg) and placed back on the queue so the client process can retrieve 

it.

Program 6.5 The server.

File : server.cxx

  |     /*

  |          SERVER-receives messages from clients

  |      */

  |     #include "local.h"

  +     #include <iostream>

  |     #include <cstdio>

  |     #include <ctype.h>

  |     #include <stdlib.h>

  |     using namespace std;

 10     int

  |     main(int argc, char *argv[ ]) {

  |       int     mid, n;

  |       MESSAGE msg;

  |       void    process_msg(char *, int);          <-- 1

  +       if (argc != 3) {

  |         cerr << "Usage: " << argv[0] << " msq_id &" << endl;

  |         return 1;

  |       }



  |       mid = atoi(argv[1]);

 20       while (1) {

  |         memset( msg.buffer, 0x0, BUFSIZ );       <-- 2

  |         if ((n=msgrcv(mid, &msg, BUFSIZ, SERVER, 0)) == -1 ) {

  |          perror("Server: msgrcv");

  |          return 2;

  +         } else if (n == 0) break;                <-- 3

  |         process_msg(msg.buffer, strlen(msg.buffer));

  |         msg.msg_to = msg.msg_fm;

  |         msg.msg_fm = SERVER;

  |         n += sizeof(msg.msg_fm);

 30         if (msgsnd(mid, &msg, n, 0) == -1 ) {    <-- 4

  |           perror("Server: msgsnd");

  |           return 3;

  |         }

  |       }

  +       msgctl(mid, IPC_RMID, (struct msqid_ds *) 0 );   <-- 5

  |       exit(0);

  |     }

  |     /*

  |        Convert lowercase alphabetics to uppercase

 40     */

  |     void

  |     process_msg(char *b, int len){

  |       for (int i = 0; i < len; ++i)

  |         if (isalpha(*(b + i)))

  +           *(b + i) = toupper(*(b + i));

  |     }

(1) Check number of command-line arguments.

(2) Retrieve message from queue; wait if no messages are present.

(3) If a zero-length message, exit the loop.

(4) Reassign the to and from fields for the message. Process the



message and put it back in the message queue.

(5) Remove the message queue.

Entering the name of the client program on the command line executes the program. 

The client creates the message queue and invokes the server process (which must 

reside locally). A prompt is placed on the screen, requesting input. Each time the user 

enters a string of characters and presses return, the client places the input in the 

message queue for processing. After the message has been processed, the client 

retrieves the message from the message queue and displays it to the screen. Entering 

CTRL+D from the keyboard terminates the client process. As implemented, multiple 

copies of the client process can run/communicate with the server at the same time. 

One way to try this is to open multiple windows and run multiple copies of the client. 

An alternate approach is to place the executable version of the client and server 

programs in /tmp (be sure to change the permissions so that all users have access to 

them). Then cd to /tmp and run the client program. Ask another user to do the same 

(again, remember this is all done on the same machine). Each of you should be able 

to run the client program and receive processing service. In either scenario, just one 

message queue will be generated.

6-4 EXERCISE

As written, the server program removes the message queue when any client

sends a message of length 0. Modify the server program so that it only 

removes the message queue after all client processes are done with it. One 

approach might be for the server to keep track of the client processes using 

the message queue and exit only when the last one sends a message of 

length 0.
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6.7 Message Queue Class

As the functionality of and syntax for message queues is somewhat complex, they are 

ideal candidates for incorporation into a C++ class. A message queue class would 

define the relationships between message queue data and the functions (methods) 

that manipulate this data. A declaration of a simplified message queue class called 

Message_que is shown in Figure 6.10.

Figure 6.10 Header file for a basic message queue class.

File : Message_que.h

  |     /*

  |       A VERY simplified message queue class for use in a std UNIX

  |       environment.  See the text for instructions on how to use

  |       this class.  Copyright (c) 2002  J. S. Gray

  +

  |       Exit codes for class operations:

  |

  |       1 - Unable to create queue    2 - Cannot access queue

  |       3 - Enque has failed          4 - Deque has failed

 10       5 - Unable to remove queue

  |     */

  |     #ifndef Message_que_h

  |     #define Message_que_h

  |     #define _GNU_SOURCE

  +     #include <iostream>

  |     #include <cstring>

  |     #include <sys/types.h>

  |     #include <sys/ipc.h>

  |     #include <sys/msg.h>

 20     #include <stdlib.h>

  |     #include <unistd.h>

  |

  |     class Message_que {

  |       public:

  +         Message_que (const char ='M');    // Constructor

  |         void Remove( );                   // Remove the queue

  |         void Enque( void *, int );        // Place a message in the queue



  |         int  Deque( void *, int, int );   // Obtain a message from queue

  |         bool Exist( const char ='M' );    // True if the queue exists

 30         void Create(  );                  // Create the queue

  |         void Acquire(  );                 // Acquire access to the queue

  |       private:

  |         int      msqid;                   // ID of message queue

  |         key_t    ipckey;                  // Key from ftok

  +     };

  |     #endif

As defined, the Message_que class has seven public methods and three private data 

members. The functionality of each method is shown in Table 6.14.

The C++ code that implements the message queue class is found in the program file 

Message_que.cxx (Program 6.5). As shown, the code is bare bones—little is done to

handle errors, and only basic message queue functionality is addressed.

Table 6.14. Message_que Class Methods.

Method 

name

Explanation

Message_que This is the class constructor. This method takes one argument, which, 

if specified, defaults to the value M. The constructor generates the 

message queue ID.

Remove This method removes the message queue from the system.

Enque Enque is used to add a message to the message queue. This method 

is passed a reference to the message and the message size (in 

bytes).

Deque

The Deque method removes a single message from the message 

queue. This method has three arguments: a reference to a structure 

to store the returned data, the maximum size of a returned message, 

and the message type.

Exist This method returns a true or false as to whether or not the message 

queue exists.

Create Create (generate) a new message queue.



Method 

name

Explanation

Acquire Gains access to the existing message queue.

Program 6.5a Program code for the Message Queue Class.

File : Message_que.cxx

  |     /*

  |         Message queue implementation—Copyright (c) 2002  J. S. Gray

  |     */

  |     #include "Message_que.h"

  +     #include <cstdio>

  |

  |     // Message queue constructor.

  |     Message_que::Message_que( const char the_key ){

  |       ipckey = ftok( ".", the_key );

 10       msqid  = -1;

  |     }

  |     // Remove the message queue (if this process created it)

  |     void

  |     Message_que::Remove(  ) {

  +       if ( msgctl( msqid, IPC_RMID, (struct msqid_ds *) 0 ) == -1 )

  |         exit( 5 );

  |     }

  |     // Place a message in the message queue.

  |     void

 20     Message_que::Enque( void *msg, int msg_size ){

  |       if ( msgsnd( msqid, msg, msg_size, 0 ) == -1 )

  |         exit( 3 );

  |     }

  |     // Return a message from the message queue.

  +     int

  |     Message_que::Deque( void *msg, int msg_size, int msg_type ){

  |       int n;

  |       memset( msg, 0x0, msg_size );        // clear space

  |       if ( (n=msgrcv( msqid, msg, msg_size, msg_type, IPC_NOWAIT)) == -1 )

 30         exit( 4 );

  |       return n;

  |     }

  |     //   True if message queue exists else false.

  |     bool

  +     Message_que::Exist( const char the_key ){

  |       return (msgget(ipckey, 0) != -1);



  |     }

  |     //   Generate a new message queue.

  |     void

 40     Message_que::Create( ){

  |       if ( (msqid=msgget(ipckey, IPC_CREAT|0660)) == -1 )

  |         exit( 1 );

  |     }

  |     //   Acquire (gain access to) existing message queue.

  +     void

  |     Message_que::Acquire( ){

  |       if ( (msqid=msgget(ipckey, 0)) == -1 )

  |         exit( 2 );

  |     }

To use this class, the files Message_que.h and Message_que.cxx should reside locally. 

The Message_que class is compiled into object code with the command line

linux$  g++ Message_que.cxx –c

At the top of the source file that will use a Message_que object, add the statement

#include "Message_que.h"

to make the class definition available to the compiler. When compiling the source file, 

include the message queue object code file

linux$  g++  your_file_name.cxx   Message_que.o

Program 6.6 demonstrates the use of a message queue object. This program allows 

command-line manipulation of a message queue. As such, the message queue could 

be used as a drop off and retrieval site for messages.

Program 6.6 A command-line message queue manipulation utility.

File : p6.6.cxx

  |     /*

  |         A message queue manipulation utility

  |      */

  |     #include "Message_que.h"                     <-- 1

  +     #include <iostream>

  |     #include <cstdlib>

  |     #include <unistd.h>

  |     using namespace std;



  |

 10     typedef struct {

  |       long int m_type;

  |       char m_text[1024];

  |     } MESSAGE;

  |     extern char    *optarg;

  +     extern int      optind, opterr, optopt;

  |     int

  |     main(int argc, char *argv[ ]){

  |       int      c;

  |       char     optstring[] = "sri:m:";           <-- 2

 20       opterr = 0;

  |       bool    snd_msg=false, get_msg=false, rmv_que=false;

  |       char    *the_message;

  |       //                                   Allocate msg - clear text

  |       MESSAGE my_msg;

  +       memset( my_msg.m_text, 0x0, 1024 );

  |       //                                   Allocate - acquire msg queue

  |       Message_que MQ('M');

  |       if ( !MQ.Exist('M') )

  |         MQ.Create( );

 30       else

  |         MQ.Acquire( );

  |       //                                   Process command line args

  |       while ((c = getopt(argc, argv, optstring)) != -1)

  |         switch (c) {

  +         case 's':

  |           snd_msg=true;

  |           break;

  |         case 'r':

  |           get_msg=true;

 40           break;

  |         case 'i':

  |           my_msg.m_type=atol(optarg);

  |           break;                                 <-- 3

  |          case 'm':

  +           strcpy(my_msg.m_text,optarg);

  |         }

  |       if ( snd_msg && my_msg.m_type > 0  ){

  |         MQ.Enque( &my_msg, strlen(my_msg.m_text)+1);

  |         cerr << "Added  : " << my_msg.m_text << endl;

 50       } else  if ( get_msg &&  my_msg.m_type > 0 ){

  |         MQ.Deque(&my_msg, 1024, my_msg.m_type);

  |         cerr << "Message: " << my_msg.m_text << endl;

  |       } else

  |         cerr << "Invalid command line option(s)" << endl;



  +       return 0;

  |     }

(1) Include the Message_que class definition.

(2) Acceptable command-line options:

(3) Use the optarg reference to obtain the actual command-line data.

In line 4 of the program, the definition of the Message_que class is included. At line 10, 

the format of a message queue message is defined. Within the function main, the 

acceptable command-line options are assigned to the optstring array. The program 

accepts two standard-format command-line options. The -s option indicates a 

message is to be sent to the message queue, while –r means a message should be 

read from the message queue. Theremaining two options of the program require 

arguments. The –i option is to be followed with the message queue ID (type), and the 

–m option is to be followed with an actual message. If the message is more than one 

word, it should be surrounded with quotes.

A while loop and the getopt library function are used to parse command-line options. If 

the user indicates a message is to be sent, the message type (–i) and the actual 

message (-m) must be specified. If a message is to be retrieved, then just the 

message type (-i) must be indicated. The program informs the user of its activity, 

including a message that indicates when an improper set of command-line options 

has been passed. Figure 6.11 demonstrates the use of Program 6.6.

Figure 6.11 Manipulating a message queue from the command line.

linux$ ipcs -q

------ Message Queues ------                         <-- 1

key       msqid     owner     perms     used-bytes  messages

linux$ p6.6 -i 98 -s -m "Don't forget the fish!"     <-- 2

Added  : Don't forget the fish!



linux$ p6.6 -i 98 -s -m "See you Wednesday -jg       <-- 2

Added  : See you Wednesday -jg

linux$ p6.6 -s -i 72 -m "Paper due on the 16th"      <-- 2

Added  : Paper due on the 16th

linux$ ipcs -q

------ Message Queues ------                         <-- 2

key       msqid     owner     perms     used-bytes  messages

0x4d15ae86 4718592   gray      660       67          3

linux$ p6.6 -r -i 98

Message: Don't forget the fish!                      <-- 3

linux$ p6.6 -r -i 98

Message: See you wednesday -jg

linux$ ipcs -q

------ Message Queues ------

key       msqid     owner     perms     used-bytes  messages

0x4d15ae86 4718592   gray      660       22          1

linux$ ipcs -q -i 4718592

Message Queue msqid=4718592                          <-- 4

uid=500           gid=1000        cuid=500       cgid=1000       mode=0660

cbytes=22      qbytes=16384       qnum=1        lspid=17306     lrpid=17309

send_time=Sun Mar 10 17:06:40 2002

rcv_time=Sun Mar 10 17:06:40 2002

change_time=Sun Mar 10 17:06:40 2002

(1) At the start, no message queues in the system.

(2) Add some messages to the message queue.

(2) Three messages now in the queue.



(3) Retrieve the first two messages of type 98.

(4) What the system knows about this message queue.

6-5 EXERCISE

Program 6.6 has a great deal of room for improvement. For example, when 

a message is retrieved, it is removed from the message queue. In addition, 

the user is unable to remove the message queue (without resorting to the 

ipcrm command). Modify Program 6.6 to support the nondestructive reading 

of messages and the removal of the message queue from the system.

6-6 EXERCISE

Modify the client–server programs to implement a rudimentary chat program 

that allows users to interactively talk to one another (sort of a poor man's 

talk). One way to do this is to have the server examine the first character of 

the text portion of a SERVER message. If the character is, say, a ".", then 

the message is assumed to be a command the server should act on. For 

example, if the sequence is .lo, then the server records the PID of the client 

as logged in. If the sequence is .who, the server returns the list of the PIDs of 

all logged-in (attached) clients. The PID information can then be used to 

connect the two processes so that interactive communication can occur.
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6.8 Summary

Message queues are one of three interprocess communication facilities added to 

UNIX with the release of System V. Once created, a message queue is maintained by 

the system. Unrelated processes, executing at different times, can use a message 

queue to pass information. Each message has an associated type that can be used to 

implement a rudimentary form of data multiplexing when multiple producers are 

involved. Message queues are created and accessed using the msgget system call. 

Messages are placed in the message queue with the msgsnd system call and retrieved 

from the queue with the msgrcv system call. Additional message queue manipulations 

are carried out with the msgctl system call. The msgctl system call returns information 

about the message queue, permits modification of access permissions, and allows the

owner to remove the message queue facility.
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6.9 Key Terms and Concepts

ftok library function

IPC facility

IPC key

IPC resource

IPC_CREAT

IPC_EXCL

IPC_NOWAIT

ipc_perm structure

IPC_PRIVATE

IPC_RMID

IPC_SET

IPC_STAT

ipcs command

iprm command

message queue class

message queues

message type



msg structure

MSG_EXCEPT

MSG_NOERROR

msgbuf structure

msgget system call

MSGMNB

MSGMNI

msgrcv system call

msgsnd system call

msqid_ds structure

semaphore

shared memory
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Chapter 7. Semaphores
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7.1 Introduction

Conceptually, a semaphore is a data structure that is shared by several processes.[1]

Semaphores are most often used to synchronize operations when multiple processes 

access a common, non-shareable resource. By using semaphores, we attempt to 

avoid starvation (which occurs when a process is habitually denied access to a 

resource it needs) and deadlock (which occurs when two or more processes each 

hold a resource that the other needs while waiting for the other process to release its 

resource). When used to synchronize the access to a resource, a semaphore is 

initially set to the number of available resources. Each time a process wants to obtain 

the resource, the associated semaphore is tested. A positive, nonzero semaphore 

value indicates the resource is available. To indicate it has gained access to the 

resource, the process decrements the semaphore. For events to progress correctly, 

the test and decrement operation on the semaphore must be atomic (i.e., 

noninterruptible/indivisible). If the tested semaphore is zero, indicating the resource is 

not available, the requesting process must wait. When a process is finished with a 

semaphore-associated resource, the process indicates the return of the resource by 

incrementing the semaphore. Once a resource is returned, other processes that have 

been waiting for the resource are notified by the system. Semaphores that control 

access to a single resource, taking the value of 0 (resource is in use) or 1 (resource is 

available), are often called binary semaphores.[2] Semaphores controlling access to 

multiple resources, thus assuming a range of nonnegative values, are frequently 

called counting semaphores.

[1] In this chapter we concentrate on semaphores as they relate to 

processes. In Chapter 11, we revisit semaphores and address their use 

with threads.

[2] In function, binary semaphores are similar to the lock files discussed 

in Chapter 4. Unfortunately, semaphores can only be used by 

processes residing on the same system, while, with some stretching, 

lock files can be implemented in a networked environment. Of course, 



semaphores are much faster and more reliable than lock files.

E. W. Dijkstra (1965) did much of the early work describing the use of semaphores to

coordinate access to shared resources. Most college-level operating systems

textbooks—for example, Silberschatz and Peterson (1989), Tanenbaum (2001), Nutt

(2002), Stallings (2001), and Deitel (1990)—contain excellent discussions on the

theory and use of semaphores for process synchronization.

Implementation-wise, a semaphore is a nonnegative integer that is stored in the 

kernel. Access to the semaphore is provided by a series of semaphore system calls. 

The semaphore system calls assure the user the test and decrement operations on 

the semaphore will be atomic. Likewise, the semaphore system calls, by default, 

cause the invoking process to block if the semaphore value indicates the resource is 

not available (i.e., the semaphore is a 0). When the resource becomes available and 

the semaphore becomes nonzero, the system notifies the queued, waiting processes 

of this event. To increase their flexibility, in UNIX semaphores are generated as sets 

(arrays) consisting of one or more semaphores. Operations acting upon individual 

semaphores within the set or upon the entire semaphore set are provided.
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7.2 Creating and Accessing Semaphore Sets

Before a semaphore set can be used, it must be created. The creation of the 

semaphore set generates a unique data structure that the system uses to identify and 

manipulate the semaphores. The definition of system semaphore data structure is 

found in the system-dependent include file <bits/sem.h>. This file is not directly 

referenced by the programmer, since the standard include file <sys/sem.h> includes this 

file.

struct semid_ds {

  struct ipc_perm sem_perm;             /* operation permission struct */

  __time_t sem_otime;                   /* last semop() time */

  unsigned long int __unused1;

  __time_t sem_ctime;                   /* last time changed by semctl() */

  unsigned long int __unused2;

  unsigned long int sem_nsems;          /* number of semaphores in set */

  unsigned long int __unused3;

  unsigned long int __unused4;

};

In keeping with its origins, and for System V compatibility, the semid_ds structure is 

also defined in <linux/sem.h> as

struct semid_ds {

  struct ipc_perm sem_perm;           /* permissions .. see ipc.h */

  __kernel_time_t sem_otime;          /* last semop time */

  __kernel_time_t sem_ctime;          /* last change time */

  struct sem      *sem_base;          /* ptr to first semaphore in array */

  struct sem_queue *sem_pending;      /* pending operations to be processed */

  struct sem_queue **sem_pending_last;/* last pending operation */

  struct sem_undo *undo;              /* undo requests on this array */

  unsigned short  sem_nsems;          /* no. of semaphores in array */

};

As with message queues, there is a bit of a disconnect between the way we view and 

discuss semaphores and the way they may actually be implemented at a system level.

Additional system-specific details can be found in the source code for semaphore 
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implementation in the kernel source directory /usr/src/linux-XX.XX.XX/ipc (where XX is the 

appropriate version number). On our system the files sem.c and util.h contain additional 

semaphore implementation details.

Using the <linux/sem.h> definition as our reference, the system semaphore data 

structure semid_ds contains a permission structure of type ipc_perm, which is used to 

specify the access permissions for the semaphore set. The access permission 

structure is followed by two time members. These store the time of the last operation 

on the semaphore (sem_otime) and the time of its last modification (sem_ctime). The 

next member is a reference, sem_base, to an array (set) of structures of type sem. The 

sem structure contains the semaphore value and the ID of the last process to operate 

on the semaphore. Here is the definition of a sem structure:

struct sem {

        int     semval;         /* current value         */

        int     sempid;         /* pid of last operation */

};

Following the pointer to the base of the semaphore array are three additional pointers. 

The sem_pending member references a linked list (treated as a queue) of pending 

semaphore operations. Normally, semaphore operations are done immediately, so 

requests are only added to this list if for some reason the request cannot processed 

immediately. The sem_pending_last member references the end of the same list. The 

sem_undo member references a list of undo operations. These operations, stored when

a semaphore operation sets the SEM_UNDO flag, can be used to undo requested 

semaphore operations to return the semaphore to its previous state. The kernel uses 

the undo list information to reverse semaphore operations when a process exits 

without releasing its allocated semaphores. This action helps reduce the chance of 

deadlock. The system semaphore data structure also keeps track of the number of 

semaphores in the set (sem_nsems).

A conceptual arrangement of a system semaphore structure for a newly allocated set 

of three semaphores is shown in Figure 7.1.

Figure 7.1. Data structures for a set of three semaphores.



To create a semaphore or gain access to one that exists, the semget system call, 

shown in Table 7.1, is used.

Table 7.1. Summary of the semget System Call.

Include File(s) <sys/types.h>

<sys/ipc.h>

<sys/sem.h>

Manual Section 2

Summary int semget (key_t key,intnsems,int semflg);

Return

Success Failure Sets errno

The semaphore identifier -1 Yes

The semget system call takes three arguments. The first argument, key, is used by the 

system to generate a unique semaphore identifier. The second argument, nsems, is 

the number of semaphores in the set. The system uses the nsems value when 

allocating the array of sem structures. Remember, as with all arrays in C/C++, the 

array of sem structures that represents the set of semaphores is indexed starting at 0. 

The nsems value should be less than or equal to the SEMMSL value, which sets the 

upper boundary for the number of semaphores for a given semaphore ID. The third 

argument, semflg, is used to specify access permission and/or special creation 

conditions. The low-order bits of the semflg value are used to specify the access 

permissions for the owner, group, and other. Read and write permissions control 

reading and alteration of the semaphore; execute permission settings are ignored. 

The flags IPC_CREAT and IPC_EXCL may be ORed with the permission value.

If the semget system call is successful, a nonnegative integer, the semaphore identifier, 

is returned. If the value for key is IPC_PRIVATE or the value for key does not have a 



semaphore identifier associated with it, and IPC_CREAT has been specified, a new 

set of semaphores is created. When created, the semaphore set represented by the 

array of sem structures is not initialized. If IPC_CREAT is specified (but not 

IPC_EXCL) and the semaphore set for the indicated key value already exists, the 

semget system call returns the associated semaphore identifier. When using semget to 

access an established semaphore set (such as in a client process), the value of nsems

can be set to 0 (a don't-care value).

When the semaphore is created, the system sets, respectively, the semid_ds members 

sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and sem_perm.gid to the effective user and 

group ID of the invoking process. The member sem_otime is set to 0, and sem_ctime is 

assigned the current time. The nsems member stores the number of semaphores in the

semaphore set.

If the semget system call fails, it returns a -1 and sets the value stored in errno. Error 

messages for semget are shown in Table 7.2.

Table 7.2. semget Error Messages.

# Constant perror

Message
Explanation

2 EOENT No such file or 

directory

Semaphore identifier does not exist for this key, and 

IPC_CREAT was not set.

12 ENOMEM Cannot 

allocate 

memory

Insufficient system memory to allocate the 

semaphore set.

13 EACCES Permission 

denied

Semaphore identifier exists for this key, but 

requested operation is not allowed by current 

access permissions.

17 EEXIST File exists Semaphore identifier exists for this key, but the 

flags IPC_CREAT and IPC_EXCL are both set.

28 ENOSPC No space left 

on device

System-imposed limit (SEMMNI) for the number of 

semaphore sets or systemwide maximum number 

of semaphores (SEMMNS) has been reached.



# Constant perror

Message
Explanation

43 EIDRM Identifier 

removed

Specified semaphore set is marked for removal.

Program 7.1 attempts to create several semaphore sets, each containing three 

semaphores.

Program 7.1 Creating semaphore sets.

File : p7.1.cxx

  |     /* Creating sets of semaphores */

  |     #include <iostream>

  |     #include <cstdio>

  |     #include <sys/types.h>

  +     #include <sys/ipc.h>

  |     #include <sys/sem.h>

  |     using namespace std;

  |     int

  |     main( ){

 10       int      sem1, sem2, sem3;

  |       key_t    ipc_key;

  |       ipc_key = ftok(".", 'S');

  |       if ((sem1 = semget(ipc_key, 3, IPC_CREAT | 0666)) == -1) {

  |         cerr << "semget: IPC_CREAT | 0666" << endl;

  +       }

  |       cout << "sem1 identifier " <<  sem1 << endl;

  |       if ((sem2 = semget(ipc_key, 3, IPC_CREAT|IPC_EXCL|0666)) == -1) {

  |         cerr << "semget: IPC_CREAT | IPC_EXCL | 0666" << endl;

  |       }

 20       cout << "sem2 identifier " <<  sem2 << endl;

  |       if ((sem3 = semget(IPC_PRIVATE, 3, 0600)) == -1) {

  |         cerr << "semget: IPC_PRIVATE" << endl;

  |       }

  |       cout << "sem3 identifier " <<  sem3 <<  endl;

  +       return 0;

  |     }

The first call to semget, provided the system limits have not been reached, creates a 

set of three semaphores. The permissions for the set are read and alter (write) for the 

owner, group, and others (world). The value of the semaphore identifier is tied to the 

key value that is produced by the call to ftok. The second call to semget attempts to 



create a second set of three semaphores. The call uses the same key value as the 

first but includes the specification IPC_EXCL. With the IPC_EXCL flag set and the 

previous successful creation of the semaphore set using the same key value, this 

invocation of semget will fail. The third call to semget creates a three-semaphore set 

used by specifying IPC_PRIVATE instead of using the ftok key value. The semaphore 

identifier generated for this set will be private to this process.

When the program is run twice consecutively, the output generated will be similar to 

that shown in Figure 7.2.

Figure 7.2 Two consecutive runs of Program 7.1.

linux$ p7.1

sem1 identifier 9797637

semget: IPC_CREAT | IPC_EXCL | 0666: File exists

sem2 identifier -1

sem3 identifier 9830406

linux$ p7.1

sem1 identifier 9797637

semget: IPC_CREAT | IPC_EXCL | 0666: File exists

sem2 identifier -1

sem3 identifier 9863175

Notice that when the program is run the second time, the same semaphore identifier 

(9797637) is returned from the initial call to semget. Without the IPC_EXCL flag, the 

semget system call will not fail if the semaphore set has already been created, but will 

instead return the associated semaphore identifier. The creation of a second private 

semaphore set by the second invocation of the program produces another unique 

semaphore identifier (9863175), which is different from the first private semaphore 

identifier (9830406). The output of the ipcs command, shown in Figure 7.3, verifies the 

presence and permissions of the three semaphore sets that were created by the user 

gray. Notice that the key for each of the private semaphore sets is 0.

Figure 7.3 ipcs output.

linux$ ipcs -s

-----Semaphore Arrays------

key       semid     owner     perms     nsems     status

0x53157f08 9797637   gray      666       3



0x00000000 9830406   gray      600       3

0x00000000 9863175   gray      600       3

As written, Program 7.1 does not remove the semaphore sets it creates. Semaphores,

like message queues, are a limited resource. In a programming setting, semaphores 

can be removed with the semctl system call (see the following section). Semaphores 

may also be removed at the command-line level using the ipcrm command (as 

discussed in Chapter 6, Section 6.1). If there are several semaphores to remove, a 

shell script, such as that shown in Program 7.2, can be used to automate the removal 

process.

Program 7.2 A Korn shell script to remove all semaphores for a user.

File : clean

  |     #!/bin/ksh

  |     #

  |     #  Korn Shell script to remove all existing semaphores for a user

  |     #

  +     list=$(ipcs -s | grep "$USER" | cut -d' ' -f2)

  |     count=0

  |     for semaphore in $list

  |     do

  |      ipcrm sem $semaphore > /dev/null

 10      ((count=count+1))

  |     done

  |     print "$count semaphore(s) for $USER removed"

7-1 EXERCISE

Rewrite the shell script shown as Program 7.2 to permit the user to specify 

four command-line options: -q to remove message queues, -s to remove 

semaphores, -m to remove shared memory segments, and -a to remove all 

IPC facilities. If the script is run by root, a warning message and request for 

verification should be included.

7-2 EXERCISE



Write a program that determines by trial and error the maximum number of 

semaphores per semid and semaphore sets. If you completed Exercise 7-1, 

you may find your script to be of help in removing allocated semaphores.
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7.3 Semaphore Control

The semget system call (Table 7.3) is used to create or gain access to a set of 

semaphores. The semctl system call allows the user to perform a variety of generalized 

control operations on the system semaphore structure, on the semaphores as a set, 

and on individual semaphores. Additional manipulative operations on specific 

semaphores within a set are covered in the following section on semaphore 

operations (Section 7.4).

Table 7.3. Summary of the semctl System Call.

Include File(s) <sys/types.h>

<sys/ipc.h>

<sys/sem.h>

Manual Section 2

Summary int semctl(int semid, int semnum, int cmd,

           union semun arg);

Return

Success Failure Sets errno

0 or the value requested -1 Yes

The semctl system call takes four arguments. The first argument, semid, is a valid 

semaphore identifier that was returned by a previous semget system call. The second 

argument, semnum, is the number of semaphores in the semaphore set. In most cases, 

this value is greater than 0 but less than the system limit. However, we will see 

occasions when the value for semnum is set to 0. These occasions arise when we ask 

semctl to perform an operation for which the number of semaphores in the set is not 

relevant. The third argument to semctl, cmd, is an integer command value (usually 

expressed as one of the symbolic constants found in the header files <sys/ipc.h> or 

<sys/sem.h>). As discussed in detail in Section 7.3.1, "Semaphore Control Details," the 

cmd value directs semctl to take one of several control actions. Each action requires 

specific access permissions to the semaphore control structure (i.e., read or alter). The 

fourth argument to semctl, arg, is a union of type semun. Given the action specified by 
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the preceding cmd argument, the data in arg can be one of any of the following four 

values:

An integer used with SETVAL to indicate a specific value for a particular 

semaphore within the semaphore set.

1.

A reference to a semid_ds structure where information is returned when 

IPC_STAT or IPC_SET is specified.

2.

A reference to an array of type unsigned short integers; the array is used either 

to initialize the semaphore set (such as when stipulating SETALL) or as a 

return location when specifying GETALL.

3.

A reference to a seminfo structure when IPC_INFO is requested.4.

In some versions of UNIX the definition of the semun union is found in the include files 

required by semctl. However, technically the user should define the union. To this end, 

the manual page for semctl contains the following cryptic reference.

#if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)

/* union semun is defined by including <sys/sem.h> */

#else

/* according to X/OPEN we have to define it ourselves */

union semun {

        int val;                    /* value for SETVAL */

        struct semid_ds *buf;       /* buffer for IPC_STAT, IPC_SET */

        unsigned short int *array;  /* array for GETALL, SETALL */

        struct seminfo *__buf;      /* buffer for IPC_INFO */

};

#endif

This sequence of preprocessor directives determines whether the programmer 

defines the semun union. If __GNU_LIBRARY__ has been defined (is nonzero), and 

_SEM_SEMUN_UNDEFINED has not been defined, the definition of the union semun

is found in the include file <sys/sem.h>. Otherwise, the user defines the union. To be 

safe, this set of preprocessor directives should be placed at the top any program that 

will make use of the fourth argument of the semctl call. Its omission may cause the 

semctl system call to fail, returning the value EFAULT (bad address). Further, when 

specifying arg as the fourth argument to semctl, the value for arg should be explicitly 

assigned (e.g., arg.buf=ptr_to_my_structure). This assignment must be done prior to the 



calling of semctl (see Program 7.3).

7.3.1 Semaphore Control Details

The following cmd values cause semctl to act upon the system semaphore structure 

(semid_ds):

IPC_STAT— Return the current values of the semid_ds structure for the 

indicated semaphore identifier. The returned information is stored in a 

user-generated structure referenced by the fourth argument to semctl. To 

specify IPC_STAT, the process must have read permission for the semaphore 

set associated with the semaphore identifier.

IPC_SET— Modify a restricted number of members in the semid_ds structure. 

The members sem_perm.uid, sem_perm.gid and sem_perm.mode (in the permissions 

structure within semid_ds) can be changed if the effective ID of the accessing 

process is that of the superuser or is the same as the ID value stored in 

sem_perm.cuid or sem_perm.uid. To make these changes, a structure of the type 

semid_ds must be allocated. The appropriate members' values are then 

assigned, and a reference to the modified structure is passed as the fourth 

argument to the semctl system call.

IPC_RMID— Remove the semaphore set associated with the semaphore

identifier.

When specifying IPC_STAT, IPC_SET, or IPC_RMID, the value for semnum (the 

number of semaphores in the set) is not considered and can be set to 0.

The following cmd values cause semctl to act upon the entire set of semaphores:

GETALL— Return the current values of the semaphore set. The values are

returned via the array reference passed as the fourth argument to semctl. The 

user is responsible for allocating the array of the proper size and type prior to 

passing its address to semctl. Read permission for the semaphore set is required 

to specify GETALL. When specifying GETALL, the argument semnum is 

ignored.



SETALL— Initialize all semaphores in a set to the values stored in the array

referenced by the fourth argument to semctl. Again, the user must allocate the 

initializing array and assign values prior to passing the address of the array to 

semctl. The process must have alter access for the semaphore set to use 

SETALL. When specifying SETALL, the sem_ctime member of the system 

semaphore data structure is updated.

The last set of semctl cmd values acts upon individual semaphores or upon specific 

members in the semid_ds structure. All of these commands require read permission 

except for SETVAL, which requires alter permission:

GETVAL— Return the current value of the individual semaphore referenced by

the value of the semnum argument (remember, arrays in C/C++ are zero-based;

thus, the first semaphore of a set is at index 0).

SETVAL— Set the value of the individual semaphore referenced by the semnum

argument to the value specified by the fourth argument to semctl (e.g., the value 

stored in arg.val).

GETPID— Return the PID from the sem_perm structure within the semid_ds

structure.

GETNCNT— Return the number of processes waiting for the semaphore

referenced by the semnum argument to increase in value.

GETZCNT— Return the number of processes waiting for the semaphore

referenced by the semnum argument to become 0.

If semctl is successfully issues any of these commands, the requested integer value is 

returned: the value of semncnt for GETNCNT, the value of sempid for GETPID, the value

of semval for GETVAL, or the value of semzcnt for GETZCNT. If semctl fails, it returns a 

value of -1 and sets errno to indicate the specific error. The errors returned by semctl

with an explanation of their meaning are shown in Table 7.4.



Table 7.4. semctl Error Messages.

# Constant perror Message Explanation

1 EPERM Operation not 

permitted

Value for cmd is IPC_RMID or IPC_SET and the 

calling process in not the owner or superuser.

13 EACCES Permission 

denied

The requested operation is not allowed by the 

current access permissions for this process.

14 EFAULT Bad address The fourth argument to semctl contains a reference 

to an illegal address (the union semun may not 

have been declared).

22 EINVAL Invalid argument
The semaphore identifier is invalid.

The number of semaphores specified is 

less than 0 or greater than the number in 

the semaphore set.

The value for cmd is invalid.

The value for cmd is IPC_SET, but the 

value for sem_perm. uid or sem_perm.gid is 

invalid.

34 ERANGE Numerical result 

out of range

The value for cmd is SETVAL or SETALL, and the 

value to be assigned is greater than the system 

maximum or less than 0.

43 EIDRM Identifier 

removed

Specified semaphore set is marked for removal.

Program 7.3 uses the semctl system call to perform a number of semaphore control 

operations.

Program 7.3 Using semctl.

File : p7.3.cxx

  |     /*



  |          Using the semctl system call

  |      */

  |     #include <iostream>

  +     #include <cstdio>

  |     #include <sys/ipc.h>

  |     #include <sys/sem.h>

  |     #include <time.h>

  |     #define  NS    3                             <-- 1

 10     #if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)

  |                                        // definition in <sys/sem.h>

  |     #else

  |     union semun {                      // We define:

  |       int val;                         // value  for SETVAL

  +       struct semid_ds *buf;            // buffer for IPC_STAT, IPC_SET

  |       unsigned short int *array;       // array  for GETALL, SETALL

  |       struct seminfo *__buf;           // buffer for IPC_INFO

  |     };

  |     #endif

 20     using namespace std;

  |     int

  |     main( ){

  |       int             sem_id, sem_value, i;

  |       key_t           ipc_key;

  +       struct semid_ds sem_buf;

  |       unsigned short int  sem_array[NS] = {3, 1, 4};

  |       union semun     arg;

  |       ipc_key = ftok(".", 'S');

  |

 30       if ((sem_id = semget(ipc_key, NS, IPC_CREAT | 0660)) == -1) {

  |         perror("semget: IPC_CREAT | 0660");

  |         return 1;

  |       }

  |       cout << "Semaphore identifier " << sem_id << endl;

  +       arg.buf = &sem_buf;                        <-- 2

  |       if (semctl(sem_id, 0, IPC_STAT, arg) == -1) {

  |         perror("semctl: IPC_STAT");

  |         return 2;

  |       }

 40       cout << "Created " <<  ctime(&sem_buf.sem_ctime) << endl;

  |       arg.array = sem_array;                     <-- 3

  |       if (semctl(sem_id, 0, SETALL, arg) == -1) {

  |         perror("semctl: SETALL");

  |         return 3;

  +       }

  |       for (i = 0; i < NS; ++i) {

  |         if ((sem_value = semctl(sem_id, i, GETVAL, 0)) == -1) {



  |           perror("semctl: GETVAL");

  |           return 4;

 50         }

  |         cout << "Semaphore " << i << " has value of " << sem_value << endl;

  |       }

  |       if (semctl(sem_id, 0, IPC_RMID, 0) == -1) {

  |         perror("semctl: IPC_RMID");

  +         return 5;

  |       }

  |       return 0;

  |     }

(1) Do we need to define semun union?

(2) Set arg to be the address of the storage for the returned values.

(3) Set arg to be the address of the initializing vector.

Program 7.3 creates a set of three semaphores. The semaphore identifier for the set 

is printed. In line 35, the address of sem_buf is assigned to the appropriate member of 

arg. The union arg now contains the location where the returned data will be stored. 

Then, by specifying IPC_STAT and passing the proper address, semctl obtains the 

current values of the system semaphore structure. The date and time the semaphore 

was created are displayed using the library function ctime. Using similar syntax, other 

members of the semid_ds structure could be displayed. However, there is another way 

to obtain the entire contents of the semid_ds structure (albeit on a temporary basis). To 

do this, compile Program 7.3 with the -g option and then use the debugger, gdb, to 

examine the semid_ds structure. This can be accomplished by invoking gdb with the 

executable program name, such as linux$ gdb p7.3. When in gdb, direct gdb to stop at 

the correct line (say, break 40). The program is then run, and when gdb stops at line 40, 

it is asked to print the contents of the structure using the gdb command: print sem_buf. 

The output of such a sequence will display the contents of the entire sem_buf structure. 

On our system, Program 7.3 run in gdb produces the output shown in Figure 7.4:



Figure 7.4 dbx output of Program 7.3.

linux$ g++ -g -o p7.3 p7.3.cxx                       <-- 1

linux$ gdb p7.3

GNU gdb 5.0rh-5 Red Hat Linux 7.1

Copyright 2001 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB.  Type "show warranty" for details.

This GDB was configured as "i386-redhat-linux"...

(gdb) break 40                                       <-- 2

Breakpoint 1 at 0x8048890: file p7.3.cxx, line 40.

(gdb) run

Starting program: /home/faculty/gray/revision/07/p7.3

Semaphore identifier 10027013

Breakpoint 1, main () at p7.3.cxx:40

40        cout << "Created " <<  ctime(&sem_buf.sem_ctime) << endl;

Current language:  auto; currently c++

(gdb) print sem_buf

$1 = {sem_perm = {__key = 1393917704, uid = 500, gid = 1000, cuid = 500,

      cgid = 1000, mode = 432, __pad1 = 0, __seq = 306, __pad2 = 0,

      __unused1 = 0, __unused2 = 0}, sem_otime = 0, __unused1 = 0,

      sem_ctime = 1016545082, __unused2 = 0, sem_nsems = 3, __unused3 = 0,

      __unused4 = 0}

(gdb)

(1) Compile the program with the –g option.

(2) Stop at line 40 of the program.

Notice, as would be expected, that the number of semaphores in the set, three, has 

been stored in the sem_nsems member.

Program 7.3 uses the semctl system call to initialize the three-semaphore set to the 

values stored in the array sem_array. Again, notice that prior to calling semctl the 

address of the initializing vector (see line 41) is assigned to the proper member of arg. 

Once the values are assigned to the semaphore set, the program uses a loop to 

display to the screen the value stored in each semaphore. The last action of Program 



7.3 is to use the semctl system call with the IPC_RMID flag to remove the semaphore 

set.

When run outside of gdb, the output of Program 7.3 should be similar to that shown in 

Figure 7.5.

Figure 7.5 Output of Program 7.3.

linux$ p7.3

Semaphore identifier 10027013

Created Tue Mar 19 08:38:02 2002

Semaphore 0 has value of 3

Semaphore 1 has value of 1

Semaphore 2 has value of 4

7-3 EXERCISE

After generating a set of, say, three semaphores, can semctl be used to alter 

the values of sem_nsems to indicate an increase or decrease in the number of 

semaphores in a set? Is this a bug or a feature? Provide a program segment 

that supports your answer

7-4 EXERCISE

In earlier IPC implementations, the base address of the semaphore set was 

stored in the member sem_base. In current versions, the user does not have 

access to this address. Why do you suppose the developers removed the 

ability to access the semaphore set directly?
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7.4 Semaphore Operations

Additional operations on individual semaphores are accomplished by using the semop

system call, shown in Table 7.5.

The semop system call requires three arguments and returns an integer value. If 

successful, semop returns a 0; otherwise it returns a -1 and sets errno to indicate the 

source of the error (see Table 7.9 for details). The first argument for semop, semid, is 

the semaphore identifier returned by a previous successful call to semget. The second 

argument, sops, is a reference to the base address of an array of semaphore 

operations that will be performed on the semaphore set associated with by the semid

value. The semop system call will attempt to perform, in an all-or-nothing manner, all of 

the semaphore operations indicated by sops. The third argument, nsops, is the number 

of elements in the array of semaphore operations.

Table 7.5. Summary of the semop System Call.

Include File(s) <sys/types.h>

<sys/ipc.h>

<sys/sem.h>

Manual Section 2

Summary int semop(int semid, struct sembuf *sops,

          unsigned nsops);

Return

Success Failure Sets errno

0 -1 Yes

Each element of the semaphore operation array is a structure of type sembuf.

/*

    User semaphore template for semop system calls.

 */

struct sembuf {

  unsigned short int sem_num;   // semaphore #: 0 = first

  short int sem_op;             // semaphore operation



  short int sem_flg;            // operation flags

};

The first member of the sembuf structure, sem_num, is the semaphore number 

(remember, the first semaphore is 0, the second 1, etc.). The second member of 

sembuf, sem_op, is the operation to be performed on the semaphore. A positive integer 

value means to increment the semaphore (in general, indicating a release or return of 

a resource), a negative value for sem_op means to decrement the semaphore (an 

attempt to acquire a resource), and a value of 0 means to test if the semaphore is 

currently at 0 (in use, all resource(s) allocated). Additional details on semaphore 

operations will be provided in a subsequent section. The third member of sembuf is an 

operation flag. These flags are

IPC_NOWAIT— If the semaphore operation cannot be performed (such as

when attempting to decrement a semaphore or test if it is equal to 0), the call

returns immediately. No other semaphores in the set are modified if one of the

specified semaphore operations fails with the IPC_NOWAIT flag.

SEM_UNDO— If IPC_NOWAIT has not been indicated, the SEM_UNDO flag

allows an operation to be undone if a blocked operation (one waiting for a

specific condition) subsequently fails. The system keeps track of the

adjustment values needed for each semaphore set. The adjustment values are

kept on a per-process basis and actually indicate how many resources are

being held, while the systemwide semaphore value indicates how many

resources are currently free.

Figure 7.6 shows a relationship of an arbitrary three-element semaphore operation 

array to an N element set of semaphores.

Figure 7.6. Three-semaphore operations for an N element set of semaphores.



7.4.1 Semaphore Operation Details

When the sem_op value is negative, the process specifying the operation is attempting 

to decrement the semaphore. The decrement of the semaphore is used to record the 

acquisition of the resource affiliated with the semaphore. When a semaphore value is 

to be modified, the accessing process must have alter permission for the semaphore 

set. The actions taken by the semop system call when the value for sem_op is negative 

are summarized in Table 7.6.

When the sem_op value is positive, the process is adding to the semaphore value. The 

addition is used to record the return (release) of the resource affiliated with the 

semaphore. Again, when a semaphore value is to be modified, the accessing process 

must have alter permission for the semaphore set. The actions taken by the semop

system call when the value for sem_op is positive are summarized in Table 7.7.

When the sem_op value is zero, the process is testing the semaphore to determine if it 

is at 0. When a semaphore is at 0, the testing process can assume that all the 

resources affiliated with the semaphore are currently allocated (in use). For a 

semaphore value to be tested, the accessing process must have read permission for 

the semaphore set. The action taken by the semop system call when the value for 

sem_op is 0 is summarized in Table 7.8.

Table 7.6. Actions Taken by semop when the Value for sem_op is Negative.

Condition Flag Set Action Taken by semop

semval >= 

abs(semop)
 Subtract abs(sem_op) from semval.

semval >= SEM_UNDO Subtract abs(sem_op) from semval and update the 



Condition Flag Set Action Taken by semop

abs(semop) undo counter for the semaphore.

semval < 

abs(semop)
 Increment semncnt for the semaphore and wait 

(block) until

• semval >= abs(semop), then adjust semncnt and 

subtract as noted in the previous two rows of table.

• semid is removed, then return -1 and set errno to 

EIDRM.

• A signal is caught, then adjust semncnt and set errno

to EINTR.

semval < 

abs(semop)
IPC_NOWAIT Return -1 immediately and set errno to EAGAIN.

Table 7.7. Actions Taken by semop when the Value for sem_op Is Positive.

Condition Flag Set Action Taken by semop

  Add sem_op to semval.

 SEM_UNDO Add sem_op to semval and update the undo counter for the 

semaphore.

The errors returned by semop, with an explanation of their meaning, are shown in 

Table 7.9.

If semop is successful, for each of the semaphores modified/referenced, semop sets the 

value of sempid to that of the calling process for each semaphore specified in the array 

referenced by sops. Additionally, both the sem_otime and sem_ctime members are set to 

the current time.

Program 7.4 demonstrates the use of the semop system call. Two semaphores are 

used to coordinate concurrent producer and consumer processes. The producer 

process generates (at its own pace) an integer value. The value is stored in a 



non-shareable resource (in this case a file in the local directory). The consumer 

process, once a new value has been generated, retrieves the value from the same file 

and displays the value to the screen. Two semaphores are used by the producer 

process to prevent it from overwriting a previously stored integer value before the 

consumer process has retrieved it (should the producer process be speedier than the 

consumer process). The consumer process uses the two semaphores to prevent it 

from retrieving the same value multiple times (should the producer process be slow in 

generating new values). The semaphores, which we will arbitrarily call READ and 

MADE, are treated in a binary manner. By convention, the MADE semaphore is set to 

1 by the producer process once the producer has stored its newly created integer 

value in the file. The READ semaphore is set to 1 by the consumer process once the 

consumer has read the value stored in the file by the producer. If the number has yet 

to be made by the producer or the number has not been read by the consumer, the 

corresponding semaphore value will be 0. The producer will gain access to the file to 

store the generated number only if the number currently in the file has been 

consumed. Likewise, the consumer can gain access to the file to read the stored 

number only if a new value has been made. Figure 7.7 shows the contents of the two 

semaphores in the producer and consumer processes and their relationship to one 

another. At the start we indicate that the current stored number has been read (we set 

READ to 1) and that a new number has not been generated (we set MADE to 0).

Figure 7.7. Semaphore values in the producer and consumer processes.

Table 7.8. Actions Taken by semop when the Value for sem_op is Zero.

Condition Flag Set Action Taken by semop

semval == 0  Return immediately.

semval != 0 IPC_NOWAIT Return -1 immediately and set errno to EAGAIN.



Condition Flag Set Action Taken by semop

semval != 0  Increment semzcnt for the semaphore and wait (block) 

until

semval == 0, then adjust semzcnt and return.

semid is removed, then return -1 and set errno to 

EIDRM.

A signal is caught, then adjust semzcnt and set 

errno to EINTR.



Table 7.9. semop Error Messages.

# Constant perror Message Explanation

4 EINTR Interrupted system 

call

While in a wait queue for the semaphore, a 

signal was received by the calling process.

7 E2BIG Argument list too 

long

The value for nsops is greater than the system 

limit.

11 EAGAIN Resource 

temporarily 

unavailable

The requested operation would cause the 

calling process to block, but IPC_NOWAIT was

specified.

12 ENOMEM Cannot allocate 

memory

The limit for number of processes requesting 

SEM_UNDO has been exceeded.

13 EACCES Permission denied The requested operation is forbidden by the 

current access permissions.

14 EFAULT Bad address The value for sops references an illegal address.

22 EINVAL Invalid argument
The semaphore identifier is invalid.

The number of semaphores requesting 

SEM_UNDO is greater than the system 

limit.

27 EFBIG File too large The value for sem_num is < 0 or >= to the number 

of semaphores in the set.

34 ERANGE Numerical result 

out of range

The requested operation would cause the 

system semaphore adjustment value to exceed

its limit.

43 EIDRM Identifier removed The semaphore set associated with semid value 

has been removed.

A high-level algorithm for the producer and consumer processes would be as follows:

Producer



While 10 new numbers not generated

Generate a new number

If the current stored number has not been read, then wait

Store the new number in the file

Indicate that a new number has been made

Consumer

Forever

If a new number has not been made, then wait

Retrieve the new number from the file

Indicate new number has been read

Display the retrieved number

For discussion purposes, the program (which actually resides in a single file) has been 

divided into three sections, shown as Programs 7.4A, 7.4B, and 7.4C. The first part of 

the program, which establishes the operations that will be performed on the 

semaphores, creates the set of two semaphores and initializes them, is shown in 

Program 7.4A.

Program 7.4A The first section of the producer/consumer problem.

File : p7.4.cxx

  |     /*

  |            The producer/consumer problem

  |      */

  |     #include <iostream>                    // Section ONE

  +     #include <cstdio>

  |     #include <unistd.h>

  |     #include <stdlib.h>

  |     #include <sys/types.h>

  |     #include <sys/ipc.h>

 10     #include <sys/sem.h>

  |     #define BUFFER "./buffer"



  |     #if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)

  |                                            // definition in <sys/sem.h>

  |     #else

  +     union semun {                          // We define:

  |       int val;                             // value  for SETVAL

  |       struct semid_ds *buf;                // buffer for IPC_STAT, IPC_SET

  |       unsigned short int *array;           // array  for GETALL, SETALL

  |       struct seminfo *__buf;               // buffer for IPC_INFO

 20     };

  |     #endif

  |     using namespace std;

  |     int

  |     main(int argc, char *argv[ ]) {

  +       FILE           *fptr;

  |       static struct sembuf acquire = {0, -1, SEM_UNDO},   <-- 1

  |                            release = {0,  1, SEM_UNDO};

  |       pid_t           c_pid;

  |       key_t           ipc_key;

 30       static unsigned short   start_val[2] = {1, 0};

  |       int             semid, producer = 0, i, n, p_sleep, c_sleep;

  |       union semun     arg;

  |       enum { READ, MADE };

  |       if (argc != 2) {

  +         cerr << argv[0] <<  " sleep_time" << endl;

  |         return 1;

  |       }

  |       ipc_key = ftok(".", 'S');

  |       if ((semid=semget(ipc_key, 2, IPC_CREAT|IPC_EXCL|0660)) != -1) {

 40         producer = 1;

  |         arg.array = start_val;

  |         if (semctl(semid, 0, SETALL, arg) == -1) {

  |           perror("semctl--producer--initialization");

  |           return 2;

  +         }

  |       } else if ((semid = semget(ipc_key, 2, 0)) == -1) {

  |         perror("semget--consumer--obtaining semaphore");

  |         return 3;

  |       }

 50       cout << (producer==1 ? "Producer" : "Consumer" )

               << " starting" << endl;

(1) Define the two operations that can be done on a semaphore.



The program uses the symbolic constant BUFFER to reference a local file named 

./buffer. This file acts as the non-shareable resource to be accessed by the producer 

and consumer processes. Following this definition is the declaration of the union semun

as an argument of type semun is required for the semctl system call.

Using the sembuf structure as a template, the program defines two operations—acquire

and release—that can be used with either of the semaphores. For both operations the

value for the member sem_num has been set to 0. This value acts as a placeholder and 

will be changed dynamically to indicate which of the two semaphores within the set we 

are referencing. The sem_op member of each is set to -1 and 1 for acquire and release

respectively. The value of -1 is used when we want to acquire a resource that is 

associated with a semaphore (indicated by decrementing the semaphore). The value 

1 is used when we want to indicate the return of the resource (thus incrementing the 

associated semaphore). In either case, we set the value for sem_flg to SEM_UNDO to 

allow rollback. The variable arg, of type union semun, is declared and used as the fourth 

argument to the semctl system call. The values in the array start_val (1, 0) are used to 

set the initial values for the two semaphores. The enumerated constants READ and 

MADE act as indices to reference which of the two semaphores we are using.

The program begins by checking the command line to determine if an argument has 

been passed. The program expects a small integer value to be passed. This value is 

used to indicate the number of seconds the process should sleep in its processing 

cycle. The inclusion of sleep allows the producer and consumer process to progress at 

different rates, thus providing the user with an easy way to check the integrity of the 

semaphore arrangement.

The semget system call is used to create/gain access to the semaphore set. The flag 

combination IPC_CREAT | IPC_EXCL insures that the first time the program is run it 

will create the two-semaphore set. As written, the first invocation of the program is 

considered to be the producer (the process that will generate the integer values). The 

variable producer is set to 1 in the producer process to indicate this. Once the 

semaphore set is successfully created, the program uses the semctl system call to 

initialize the semaphore set to the values stored in start_val.[3] When the program is run 

a second time, the resulting process is considered to be a consumer (a process that 

will obtain the stored integer value). In the second program invocation, the initial 

semget system call, which is within the if statement, fails, as the semaphore set has 

already been generated by the producer. The else-if branch of the same if statement 



invokes semget a second time without any flags set. This second invocation of semget

allows the consumer process to gain access to the previously generated semaphore 

set.

[3] Notice that the union member arg.array is assigned the base address 

of the array start_val prior to invoking semctl.

The second section of the program, which contains the logic executed by the 

producer, is shown in Program 7.4B.

Program 7.4B The second section of the producer/consumer problem—the producer logic.

 |                                            // Section TWO

 |       switch (producer) {

 |       case 1:                              // The PRODUCER

 |         p_sleep = atoi(argv[1]);

 +         srand((unsigned) getpid());

 |         for (i = 0; i < 10; i++) {

 |           sleep(p_sleep);

 |           n = rand() % 99 + 1;

 |           cout << "A. The number [" << n <<"] generated by producer" << endl;

60           acquire.sem_num = READ;

 |           if (semop(semid, &acquire, 1) == -1) {

 |             perror("semop -producer- waiting for consumer to read number");

 |             return 4;

 |           }

 +           if ((fptr = fopen(BUFFER, "w")) == NULL ){

 |             perror(BUFFER);

 |             return 5;

 |           }                                                  

 |           fprintf(fptr, "%d\n", n);

70           fclose(fptr);

 |           release.sem_num = MADE;

 |           cout << "B. The number [" << n <<"] deposited by producer" << endl;

 |           if (semop(semid, &release, 1) == -1) {

 |             perror("semop -producer- indicating new number has been made");

 +             return 6;

 |           }

 |         }

 |         sleep(5);

 |         if (semctl(semid, 0, IPC_RMID, 0) == -1) {

80           perror("semctl –producer-");



 |           return 7;

 |         }

 |         cout << "Semaphore removed" << endl;

 |         break;

As noted, the first time the program is run, the value of the variable producer is set to 1. 

When producer contains a 1, the case 1: section of program code, the producer logic, is 

executed. The small integer value passed on the command line to indicate the 

number of seconds the process should sleep is converted by the library function atoi

and stored for future reference in the variable p_sleep. Following this, the random 

number generator is initialized using the value of the current PID. A for loop that 

produces 10 random integer values in the range 1 to 99 is entered. After the program 

sleeps, a random number is generated and displayed to the screen (this allows the 

user to verify the activity of the program). Following this, the sem_num member of the 

acquire operation is set to the value READ. This directs the following semop system call 

to reference the READ semaphore, which is the first semaphore of the set. We use a 

value of 1 for the READ semaphore to indicate the current stored number has been 

read (consumed) and a value of 0 to indicate the number has not been read. As the 

initial value for the READ semaphore is 1, the very first time the producer tests the 

READ semaphore with the semop system call, the producer can acquire the 

semaphore. Once this occurs, the producer continues on to the next section of code 

where it opens the file, stores the generated value, and closes the file. In later passes 

through this code, the producer may or may not find the READ semaphore at 1. If the 

semaphore is at 0 (indicating the consumer has not read the value), the producer, by 

default, blocks (waits) for this event to occur. Once the produced value has been 

written to the file, the producer process, using the release operation, increments the 

MADE semaphore. By incrementing the MADE semaphore, the producer indicates a 

new number is now available for the consumer. When all 10 numbers have been 

generated, the producer exits the for loop and, after sleeping 5 seconds to allow for the 

consumption of the last produced value, it removes the semaphore set with the semctl

system command. If needed, the unlink call can be used to remove the temporary file.

The logic for the consumer is shown in Program 7.4C.

Program 7.4C The third section of the producer/consumer problem—the consumer logic.

  +       case 0:                              // Section THREE

  |         c_sleep = atoi(argv[1]);           // The CONSUMER

  |         c_pid = getpid();



  |         while (1) {

  |           sleep(c_sleep);

 90           acquire.sem_num = MADE;

  |           if (semop(semid, &acquire, 1) == -1) {

  |             perror("semop -consumer- waiting for new number to be made");

  |             return 8;

  |           }

  +           if ( (fptr = fopen(BUFFER, "r")) == NULL ){

  |             perror(BUFFER);

  |             return 9;

  |           }                                                 

  |           fptr = fopen(BUFFER, "r");

100           fscanf(fptr, "%d", &n);

  |           fclose(fptr);

  |           release.sem_num = READ;

  |           if (semop(semid, &release, 1) == -1) {

  |             perror("semop -consumer- indicating number has been read");

  +             return 10;

  |           }

  |          cout << "C. The number [" << n <<] obtained  by consumer "

  |               <<  c_pid << endl;

  |         }

110       }

  |       return 0;

  |     }

The consumer process, like the producer, converts the value passed on the command

line into an integer value by using the library function atoi. The consumer then obtains 

its PID using the getpid system call. The PID is used to identify individual consumer 

processes when more than one consumer process is present. The consumer then 

enters an endless loop. It sleeps c_sleep seconds and then tests the MADE 

semaphore. To accomplish this, the sem_num member of the acquire operation structure 

is set to MADE. The call to semop, which is passed the reference to acquire, causes the 

consumer to block (wait) if the semaphore is at 0. Once the MADE semaphore 

becomes 1, the consumer opens the file where the number was written, reads the 

number, and closes the file. The consumer then indicates that it has read the number. 

The release structure member, sem_num, is set to READ to reference the second 

semaphore of the set. The following semop system call causes the contents of the 

READ semaphore to be incremented. The consumer then displays a short message 

to the screen indicating the value retrieved and its PID value. The consumer continues 

to consume values until the call to semop fails due to the removal of the semaphore set 



by the producer.

We can run the program to simulate a number of conditions. We begin by making the 

producer process slower than a single consumer process. The output in Figure 7.8

shows how this is accomplished.

Figure 7.8 A single slow producer with a single consumer.

linux$ p7.4 2 & p7.4 0

Producer starting

[1] 31223

Consumer starting

A. The number [79] generated by producer

B. The number [79] deposited by producer

C. The number [79] obtained  by consumer 31224

A. The number [17] generated by producer

B. The number [17] deposited by producer

C. The number [17] obtained  by consumer 31224

   .

   .

   .

C. The number [53] obtained  by consumer 31224

A. The number [15] generated by producer

B. The number [15] deposited by producer

C. The number [15] obtained  by consumer 31224

Semaphore removed

semop -consumer- waiting for new number to be made: Identifier removed

[1]  + Done                          p7.4 2

In this example the program p7.4 is run twice on the command line. The first invocation 

of the program, which will be the producer,[4] is passed the value 2. This directs the 

producer process to sleep 2 seconds each time it cycles through the for loop. The 

producer process is placed in the background by specifying & after the command-line 

sleep value. In the second invocation of the program, the consumer is passed the 

value 0 as the sleep value. The system responds to the command sequence by 

displaying the PID of the commands that were placed in background. The display of

[4] This may be an invalid assumption on some systems, as process

scheduling may allow the program invoked second to be run first and

thus become the producer. If your output indicates this is happening,

enter the two commands on separate lines—do not forget to add the &



after the first command to place it in the background.

[1] 31223

means that, for this invocation, the producer PID is 31223. As the two processes 

execute, we can clearly see from the output that the producer must first generate and 

deposit the value in the file before the consumer can obtain it. As the producing 

process is slower than the consuming process, the consumer process spends a 

portion of its time waiting for the producer to deposit a number. When all of the 

numbers have been produced, the producer process removes the semaphore set. 

When this happens, the consumer process exits. If we run this command sequence 

several times, we should find it behaves in a consistent manner. Although the 

consumer process is faster than the producer process, the consumer should never 

read the same value twice from the file (unless, by chance, the same number was 

generated twice by the producer).

We can reverse the conditions and make the producer process faster than the 

consumer process. The output shown in Figure 7.9 shows how this can be 

accomplished.

Figure 7.9 A producer with a single slow consumer.

linux$ p7.4 0 & p7.4 2

[1] 31229

Producer starting

A. The number [28] generated by producer

B. The number [28] deposited by producer

A. The number [69] generated by producer

Consumer starting

C. The number [28] obtained  by consumer 31230

B. The number [69] deposited by producer

A. The number [83] generated by producer

C. The number [69] obtained  by consumer 31230

   .

   .

   .

A. The number [29] generated by producer

C. The number [65] obtained  by consumer 31230

B. The number [29] deposited by producer

C. The number [29] obtained  by consumer 31230

Semaphore removed

semop -consumer- waiting for new number to be made: Identifier removed



[1]  + Done                          p7.4 0

This output sequence is slightly different from the previous one. Notice, as before, the 

producer generates and deposits the number. The producer, being faster than the 

consumer, then goes on to generate another number. However, this number is not 

deposited until the slower consumer process has read the existing stored value. If we 

run this command sequence several times, we should again be able to confirm that 

the producer process never overwrites the existing stored value until the consumer 

process has read it.

7-5 EXERCISE

What if there are several competing consumer processes? Will the current 

set of semaphores handle things correctly? Will competing consumer 

processes alternate their access to the produced values? Will some 

consumer processes starve? Try the following command sequences 

(several times each) and explain what happens and why for each.

A) linux$ p7.4 2 & p7.4 1 & p7.4 0

B) linux$ p7.4 0 & p7.4 1 & p7.4 1 & p7.4 1

C) linux$ p7.4 2 & p7.4 1 & p7.4 0 & p7.4 1

7-6 EXERCISE

As shown by the code listed below, we can add another operation for semop

(called zero) that can be used to determine if a specified semaphore is at 0 

(see Table 7.8 for the actions taken by semop when the value for sem_op is 

zero).

static struct sembuf

     acquire = {0, -1, SEM_UNDO},

     release = {0,  1, SEM_UNDO},

     zero    = {0,  0, SEM_UNDO};

Modify Program 7.4, incorporating the zero operation, so the producer can 



use this operation on the appropriate semaphore to determine if it should 

continue its processing. To verify that your solution is not rapidly passing 

through the producer loop, comment out the producer's call to sleep (line 78). 

Once you are positive your implementation is solid, uncomment the call to 

sleep. Generate sufficient output to assure the user that the producer process 

never overwrites a value that has not been consumed and that a consumer 

process never consumes the same value twice.

7-7 EXERCISE

Modify Program 7.4 to support multiple producers as well as multiple 

consumers accessing a single non-shareable resource. Hint: You may need 

additional semaphores to coordinate activities.
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7.5 Semaphore Class

As with message queues, the syntax and manipulation of semaphores is somewhat 

complex, making them a prime candidate for incorporation into a C++ class. A 

semaphore class would define the relationships between semaphore data and the 

functions (methods) that manipulate this data. A declaration of a simplified semaphore 

class called SSemaphore
[5] is shown in Figure 7.10.

[5] The name SSemaphore (with the extra 'S') was chosen to minimize any 

conflicts with existing semaphore definitions.

Figure 7.10 Header file for a basic semaphore class.

File : SSemaphore.h

  |     /*

  |       A VERY simplified semaphore class for use in a std UNIX

  |       environment.  See the text for instructions on how to use

  |       this class.  Copyright (c) 2002 J. S. Gray

  +

  |       Exit codes for class operations:

  |

  |       1 - Semaphore allocation failure   2 - Unable remove semaphore

  |       3 - Unable to LOCK semaphore       4 - Unable to UNLOCK semaphore

 10       5 - Failure on wait for ZERO       6 - Unable to assign value

  |       7 - Unable to return value

  |     */

  |

  |     #ifndef SSemaphore_h

  +     #define SSemaphore_h

  |     #define _GNU_SOURCE

  |     #include <iostream>

  |     #include <cstdio>

  |     #include <sys/types.h>

 20     #include <sys/ipc.h>

  |     #include <sys/sem.h>

  |     #include <stdlib.h>

  |     #include <unistd.h>



  |     using namespace std;

  +

  |     class SSemaphore {

  |       public:

  |         SSemaphore ( );                 // Constructor

  |         ~SSemaphore( );                 // Destructor - remove semaphore

 30         int  P( );                      // LOCK (decrement semaphore)

  |         void V( );                      // UNLOCK (increment semaphore)

  |         int  Z( );                      // WAIT while semaphore is NOT 0

  |         void Put( const int );          // Assign a value to semaphore

  |         int  Get( );                    // Return value of the semaphore

  +       private:

  |         #if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)

  |                                         // definition in <sys/sem.h>

  |         #else

  |         union semun {                   // We define:

 40           int val;                      // value  for SETVAL

  |           struct semid_ds *buf;         // buffer for IPC_STAT, IPC_SET

  |           unsigned short int *array;    // array  for GETALL, SETALL

  |           struct seminfo *__buf;        // buffer for IPC_INFO

  |         };

  +         #endif

  |         union  semun  arg;              // For semctl call

  |         struct sembuf zero,lock, unlock; // hoo ha's for P,V & Z operations

  |         int   semid;                    // ID of semaphore

  |         pid_t my_pid;                   // PID of creator

 50     };

  |     #endif

As defined, the SSemaphore class creates a private semaphore set with a single 

element. There are seven public methods and six private data members in the class. 

The functionality of each method is shown in Table 7.10.

Table 7.10. SSemaphore Class Methods.

Method 

Name

Explanation

SSemaphore This is the class constructor. This method assigns the proper values 

to the zero, lock, and unlock sembuf structures and saves the PID of the 

calling process. Additionally, it generates the private, single element 

semaphore and sets it to 0.



Method 

Name

Explanation

~SSemaphore This method removes the semaphore from the system if the calling 

function is the process that generated the semaphore.

P This method atomically tests and decrements the semaphore. It 

blocks if the semaphore is 0.

V This method increments the semaphore.

Z This method tests whether or not the semaphore is at 0. If it is not at 

0, it blocks.

Put Put assigns a value to a semaphore.

Get Get returns the current value of a semaphore.

The C++ code that implements the semaphore class is found in the program file 

SSemaphore.cxx (Program 7.5). As shown, the code is bare bones—little is done to

handle errors, and only basic semaphore functionality is addressed.

Program 7.5 Program code for the semaphore class.

File : SSemaphore.cxx

  |     /*

  |         SSemaphore implementation - Copyright (c)  2002  J. S. Gray

  |      */

  |     #include "SSemaphore.h"

  +                                           // Generate a private semaphore

  |     SSemaphore::SSemaphore(  ){

  |       zero.sem_num   = 0, zero.sem_op   =  0, zero.sem_flg   = SEM_UNDO;

  |       lock.sem_num   = 0, lock.sem_op   = -1, lock.sem_flg   = SEM_UNDO;

  |       unlock.sem_num = 0, unlock.sem_op =  1, unlock.sem_flg = SEM_UNDO;

 10       my_pid = getpid( );

  |       if((semid = semget( IPC_PRIVATE, 1, 0660 )) == -1 ){

  |           exit( 1 );

  |       }

  |       Put( 0 );                           // Default - set to zero @ start

  +     }

  |                                           // Remove semaphore if creator

  |     SSemaphore::~SSemaphore( ) {

  |       if ( getpid( ) == my_pid )



  |         if ( semctl( semid, 0, IPC_RMID ) == -1 )

 20           exit( 2 );

  |     }

  |                                          // LOCK semaphore

  |     int                                  // Atomic test & decrement

  |     SSemaphore::P( ){

  +       if ( semop( semid, &lock, 1 ) == -1 )

  |         exit( 3 );

  |       return 0;

  |     }

  |                                          // UNLOCK semaphore

 30     void                                 // Increment semaphore

  |     SSemaphore::V( ){

  |       if ( semop( semid, &unlock, 1 ) == -1 )

  |         exit( 4 );

  |     }

  +

  |     int                                  // Wait for semaphore to be 0

  |     SSemaphore::Z( ){

  |       if ( semop( semid, &zero, 1 ) == -1 )

  |         exit( 5 );

 40       return 0;

  |     }

  |                                          // Assign value to the semaphore

  |     void

  |     SSemaphore::Put( int const value ){

  +       arg.val = value;

  |       if ( semctl(semid, 0, SETVAL, arg ) == -1 )

  |         exit( 6 );

  |     }

  |                                          // Return value of the semaphore

 50     int

  |     SSemaphore::Get( ){

  |       int sem_value;

  |       if ((sem_value=semctl(semid, 0, GETVAL, 0)) == -1 )

  |         exit( 7 );

  +       return sem_value;

  |     }

To use this class, the files SSemaphore.h and SSemaphore.cxx should reside locally. The 

SSemaphore class is compiled into object code with the command line

linux$  g++ SSemaphore.cxx –c

At the top of the source file that uses a SSemaphore object, add the statement



#include "SSemaphore.h"

to make the class definition available to the compiler. When compiling the source file, 

include the message queue object code file

linux$  g++  your_file_name.cxx   SSemaphore.o

In 1965 Dijkstra presented what is now considered to be a classic synchronization 

problem involving a group of dining philosophers. In brief, the group of philosophers is 

sitting around a table. Each engages in the activity of thinking and eating. To eat, the 

philosopher must obtain the forks on his or her left and right. Both forks are needed for 

dining, and once obtained, neither fork is released until the philosopher is done. For N

philosophers, there are N forks (not 2 x N). Clearly, if all the philosophers are to eat, 

some sort of synchronization of their activities is needed.

We can use the recently presented SSemaphore class to implement a naive solution to 

the dining philosophers' problem. In essence, each fork will be represented by a single 

binary semaphore. If a philosopher can obtain both the left and right fork (think 

semaphore), he or she will eat for a random number of seconds, and when done, 

return the forks. If either instrument is not available, he or she will wait. Keep in mind 

that this solution has a very basic flaw. Should all the philosophers pick up their left 

fork at the same time, we would have deadlock. This could occur, as each left fork is 

also the right fork of the philosopher to the left. With every philosopher waiting for his 

or her right fork (the left fork of the philosopher on his or her right), no progress can be

made. Program 7.6 implements our less-than-perfect solution.

Program 7.6 A rudimentary dining philosophers' solution using semaphore objects.

File : p7.6.cxx

  |     /*

  |          The dining philosophers

  |      */

  |     #include <iostream>

  +     #include "SSemaphore.h"                // Our basic semaphore class

  |     const int MAX = 5;

  |     SSemaphore Forks[MAX];

  |     void Philosopher( int );

  |     void Eat_It( const int,const int, const int );

 10     int

  |     main(int argc, char *argv[] ) {

  |       int i;



  |       if ( argc < 2 ) {

  |         cerr << "Usage: " << argv[0] << " secs_to_wait " << endl;

  +         return 1;

  |       }

  |       for( i=0; i < MAX; ++i )

  |         Forks[i].Put(true);

  |       for(i = 0; i < MAX; ++i )

 20         Philosopher( i );

  |       sleep(atoi(argv[1]));                // Parent process waits a bit

  |       return 0;

  |     }

  |     void

  +     Philosopher(int number ){

  |       if (fork() == 0) {                   // Run in the child

  |         int left, right;

  |         srand(getpid( ));

  |         left = number;

 30         right= (number+1) % MAX;

  |         do {

  |           cout << "A. P" << number << " is thinking\n";

  |           sleep(rand( ) % 3 + 1);          // Take a while to THINK

  |           cout << "B. P" << number << " ASKS to eat with forks "

  +                << left << " & " << right << endl;

  |           Forks[left].P( );                 // Acquire left fork

  |             Forks[right].P( );              // Acquire right fork

  |               Eat_It(number, left, right);

  |             Forks[right].V( );

 40           Forks[left].V( );

  |         } while( true );

  |       }

  |     }

  |     void

  +     Eat_It(const int number, const int left, const int right) {

  |       cout << "C. P" << number << " is EATING   with forks "

  |            << left << " & " << right << endl;

  |       sleep(rand( ) % 3 + 1);              // Take a while to EAT

  |       cout << "D. P" << number << " is now DONE with forks "

 50            << left << " & " << right << endl;

  |     }

As written, the program expects the user to pass an integer command-line value that 

will be used for the number of seconds the program should run. A value of 10 seems 

to produce a reasonable amount of output. In line 7 of the program, an array of five 

private semaphore objects is instantiated. This array represents the five forks. The 

loop at line 17 sets each of the semaphores to true (fork available). This is followed by 



a second loop that calls the Philosopher function MAX times. Upon each invocation, the 

Philosopher function generates a child process to carry on the activities of the 

philosopher. The philosopher's activities consist of thinking for a random amount of 

time and eating. To eat, the left and right fork (semaphore) must be acquired. When 

both semaphores have been procured, the Eat_It function is called where, for a random 

amount of time, the eating activity is carried out. While the child processes carry on 

their activities, the parent process sleeps for a period (see line 21). When the parent 

process exits, the destructor for the semaphore objects is called. The child processes 

exit as they encounter an error condition when the attempt to access a removed 

semaphore.

Figure 7.11 shows a typical run when the value 10 is passed to the program. To save 

space, the output is displayed as two columns.

Figure 7.11 10 seconds of output from the dining philosophers' program.

linux$ g++ p7.6.cxx SSemaphore.o -o p7.6     A. P2 is thinking

                                             D. P0 is now DONE with forks 0 & 1

linux$ p7.6 10                               A. P0 is thinking

A. P0 is thinking                            B. P1 ASKS to eat with forks 1 & 2

A. P1 is thinking                            C. P1 is EATING   with forks 1 & 2

A. P2 is thinking                            B. P3 ASKS to eat with forks 3 & 4

A. P3 is thinking                            C. P4 is EATING   with forks 4 & 0

A. P4 is thinking                            B. P2 ASKS to eat with forks 2 & 3

B. P1 ASKS to eat with forks 1 & 2           D. P4 is now DONE with forks 4 & 0

C. P1 is EATING   with forks 1 & 2           A. P4 is thinking

B. P3 ASKS to eat with forks 3 & 4           C. P3 is EATING   with forks 3 & 4

C. P3 is EATING   with forks 3 & 4           B. P0 ASKS to eat with forks 0 & 1

B. P0 ASKS to eat with forks 0 & 1           D. P1 is now DONE with forks 1 & 2

B. P2 ASKS to eat with forks 2 & 3           A. P1 is thinking

B. P4 ASKS to eat with forks 4 & 0           C. P0 is EATING   with forks 0 & 1

D. P1 is now DONE with forks 1 & 2           D. P3 is now DONE with forks 3 & 4

A. P1 is thinking                            C. P2 is EATING   with forks 2 & 3

D. P3 is now DONE with forks 3 & 4           A. P3 is thinking

A. P3 is thinking                            B. P1 ASKS to eat with forks 1 & 2

C. P0 is EATING   with forks 0 & 1           B. P4 ASKS to eat with forks 4 & 0

C. P2 is EATING   with forks 2 & 3           D. P0 is now DONE with forks 0 & 1

D. P2 is now DONE with forks 2 & 3           D. P2 is now DONE with forks 2 & 3

                                             B. P3 ASKS to eat with forks 3 & 4



7-8 EXERCISE

As presented, the SSemaphore class generates a private semaphore. Private 

semaphores are fine for use with related processes but are difficult to use 

with unrelated processes. Modify the SSemaphore class to allow for the 

generation of a nonprivate semaphore. Rewrite the producer/consumer 

program (Program 7.4) using this newly defined class. Be sure to provide 

output to show that your class works and that it removes all semaphores 

when done.

7-9 EXERCISE

What if in Program 7.6 (the dining philosophers), odd-number philosophers 

acquired their forks as right and then left, and even-number philosophers 

acquired their forks as left and then right. Would this prevent deadlock? 

Modify Program 7.6 to implement this approach. Run your program a 

sufficient number of times to reasonably assure yourself that this approach 

does or does not work. Hint: Here is a command sequence to collect some 

summary information for a 100-second period:

linux$  p7.6 100 | sort | uniq -c
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7.6 Summary

Semaphores are specialized data structures used to coordinate access to a 

non-shareable resource (section of code). Cooperating (or possibly competing) 

processes use the semaphore(s) to determine if a specific resource is available. If the 

resource is unavailable, by default the system places the requesting process in an 

associated queue. The system notifies the waiting process when the resource is 

available. This alleviates the process from using polling to determine the availability of 

the resource. Semaphores can be categorized as binary or counting. Binary 

semaphores are used to synchronize access to a single instance of a non-shareable 

resource, while counting semaphores are used with multiple instances of a 

non-shareable resource.

The actions needed to manipulate semaphores are provided by a series of system 

calls. The semget system call is used to generate a new semaphore/ semaphore set 

(array) or to gain access to an existing semaphore. The semctl system call allows the 

user to set initial semaphore values, obtain their current value, and remove the 

semaphore. Operations on semaphores are performed with the semop system call. 

These operations (which are atomic) are used to decrement (obtain), increment 

(release), and test for zero-specific semaphores. Sets of operations can be specified if 

several semaphores are needed to coordinate access to a specific resource. The sets 

of operations may also be marked as being atomic.

While the syntax for using semaphores is somewhat complex, they do provide a 

standardized way of implementing classic primitive semaphore operations referenced 

in most operating system texts. As with many of the previous communication 

techniques, controlling access to a resource by using semaphores implies all involved 

processes will follow the rules. Semaphores cannot prevent processes from accessing

a controlled resource.
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7.7 Key Terms and Concepts

binary semaphore

counting semaphore

critical region

ctime library function

deadlock

dining philosophers

GETALL

GETNCNT

GETVAL

GETZCNT

IPC_CREAT

IPC_EXCL

IPC_NOWAIT

IPC_PRIVATE

IPC_RMID

IPC_SET

IPC_STAT



sem structure

SEM_UNDO

semaphore class

semctl system call

semget system call

semid_ds structure

semop system call

semun union

SETALL

SETVAL

starvation
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8.1 Introduction

Shared memory allows multiple processes to share virtual memory space. This is the 

fastest but not necessarily the easiest (synchronization-wise) way for processes to 

communicate with one another. In general, one process creates or allocates the 

shared memory segment. The size and access permissions for the segment are set 

when it is created. The process then attaches the shared segment, causing it to be 

mapped[1] into its current data space. If needed, the creating process then initializes 

the shared memory. Once created, and if permissions permit, other processes can 

gain access to the shared memory segment and map it into their data space. Each 

process accesses the shared memory relative to its attachment address. While the 

data that these processes are referencing is in common, each process uses different 

attachment address values. For each process involved, the mapped memory appears 

to be no different from any other of its memory addresses. Figure 8.1 presents a 

diagrammatic way to envision three processes sharing a common memory segment. 

As there are no intrinsic shared memory synchronization constructs, semaphores are 

normally used to coordinate access to a shared memory segment. When a process is 

finished with the shared memory segment, it can detach from it. Additionally, the 

creator of the segment may grant ownership of the segment to another process. 

When all processes are finished with the shared memory segment, the process that 

created the segment is usually responsible for removing it.

[1] The actual mapping of the segment to virtual address space is 

dependent upon the memory management (MMU) hardware for the 

system.

Figure 8.1. Envisioning three processes sharing a common memory segment.
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8.2 Creating a Shared Memory Segment

The shmget system call is used to create the shared memory segment and generate 

the associated system data structure or to gain access to an existing segment. The 

shared memory segment and the system data structure are identified by a unique 

shared memory identifier that the shmget system call returns (see Table 8.1).

Providing no system parameters are exceeded, the shmget system call creates a new

shared memory segment if

The value for its first argument, key, is the symbolic constant IPC_PRIVATE, or

the value key is not associated with an existing shared memory identifier and 

the IPC_CREAT flag is set as part of the shmflg argument (otherwise, the 

existing shared memory identifier associated with the key value is returned), or

Table 8.1. Summary of the shmget System Call.

Include File(s) <sys/ipc.h>

<sys/shm.h>
Manual Section 2

Summary int shmget(key_t key, int size,int shmflg);

Return

Success Failure Sets errno

Shared memory identifier. -1 Yes

the value key is not associated with an existing shared memory identifier and 

the IPC_CREAT along with the IPC_EXCL flag have been set as part of the 

shmflg argument. With IPC_CREAT and IPC_EXCL set, the user can be 

assured of creating a unique shared memory segment without inadvertently 

gaining access to a preexisting segment.

As with previous IPC system calls for message queues and semaphores, the ftok

library function can be used to generate a key value.



The argument size determines the size in bytes of the shared memory segment. If we 

are using shmget to access an existing shared memory segment, size can be set to 0, 

as the segment size is set by the creating process. Common overall default system 

maximums, as related to shared memory, are shown in Table 8.2.

Table 8.2. Shared Memory Limits.

Shared Memory Segment Defaults Constant Value

Maximum segment size SHMMAX 4 MB

Minimum segment size SHMMIN 1 byte

Systemwide maximum number of segments SHMMNI 4096

Maximum number of segments per process SHMSEG Not specified

The last argument for shmget, shmflg, is used to indicate segment creation conditions 

(e.g., IPC_CREAT, IPC_EXCL) and access permissions (stored in the low order 9 bits

of shmflg). At this time the system does not use the execute permission settings. To 

specify creation conditions along with access permissions, the individual items are 

bitwise ORed (e.g., 0660 | IPC_CREAT).

The shmget system call does not entitle the creating process to actually use the 

allocated memory; it merely reserves the requested memory. To be used by the 

process, the allocated memory must be attached to the process using a separate 

system call. The technique for accomplishing this is discussed in Section 8.4.

If shmget is successful in allocating a shared memory segment, it returns an integer 

shared memory identifier. At creation time, the system data structure shmid_ds, defined 

in the <bits/shm.h> header file, is generated and initialized. As with other System V IPC 

facilities, the user does not directly include <bits/shm.h> but instead includes the 

standard header file for shared memory <sys/shm.h>, which in turn includes the 

<bits/shm.h>. The standard definition for the shmid_ds data structure follows:

struct shmid_ds {

    struct ipc_perm shm_perm;        /* operation permission struct     */

    size_t shm_segsz;                /* size of segment in bytes        */

    __time_t shm_atime;              /* time of last shmat()            */

    unsigned long int __unused1;



    __time_t shm_dtime;              /* time of last shmdt()            */

    unsigned long int __unused2;

    __time_t shm_ctime;              /* time of last change by shmctl() */

    unsigned long int __unused3;

    __pid_t shm_cpid;                /* pid of creator                  */

    __pid_t shm_lpid;                /* pid of last shmop               */

    shmatt_t shm_nattch;             /* number of current attaches      */

    unsigned long int __unused4;

    unsigned long int __unused5;

  };

The source files for the kernel for System V IPC (found in /usr/src/ linux-XX.XX.XX/ipc

where XX are the version numbers of the operating system) defines a similar private 

kernel shared memory structure called shmid_kernel.

The shmid_ds structure contains an ipc_perm permission structure called shm_perm. 

When created, the shm_perm.cuid and shm_perm.uid members are assigned the effective 

user ID of the calling process, and the shm_perm.cgid and shm_perm.gid members are set

to the group ID of the calling process. The access permission bits, stored in the 

shm_perm.mode member, are set according to the value specified by the shmflg value. 

The shm_segsz member is set to the specified size from the shmget system call. The 

shm_lpid, shm_nattch, shm_atime, and shm_dtime members are each set to 0, while the 

shm_ctime member is set to the current time. The shm_cpid member stores the ID of the 

creating process.

If shmget fails, it returns a value of -1 and sets the value in errno to indicate the specific 

error condition. The values that errno may be assigned and their interpretations are 

shown in Table 8.3.

Table 8.3. shmget Error Messages

# Constant perror Message Explanation

2
EOENT No such file or 

directory

The shared memory identifier does not exist for 

this key, and IPC_CREAT was not set.

12 ENOMEM Cannot 

allocate 

memory

When creating a shared memory segment, 

insufficient memory is available.



# Constant perror Message Explanation

13 EACCES Permission 

denied

The shared memory identifier exists for this key, 

but the requested operation is not allowed by the 

current access permissions.

17 EEXIST File exists Shared memory identifier exists for this key, but 

IPC_CREAT and IPC_EXCL are both set.

22 EINVAL Invalid 

argument The value of size is less than system 

minimum or greater than system maximum.

The shared memory identifier exists, but 

the requested size is too large.

28 ENOSPC No space left 

on device

System-imposed limit for number of shared 

memory segments has been reached.

43 EIDRM Identifier 

removed

Memory segment is marked as removed.

Program 8.1 attempts to create two shared memory segments of differing sizes.

Program 8.1 Creating shared memory segments.

File : p8.1.cxx

  |     /*

  |           Allocating a shared memory segment

  |      */

  |     #include <iostream>

  +     #include <cstdio>

  |     #include <sys/ipc.h>

  |     #include <sys/shm.h>

  |     using namespace std;

  |     int

 10     main( ) {

  |       key_t  key = 15;

  |       int    shmid_1, shmid_2;

  |       if ((shmid_1=shmget(key, 1000, 0640|IPC_CREAT)) == -1){

  |         perror("shmget shmid_1");

  +         return 1;



  |       }

  |       cout << "First shared memory identifier is : " << shmid_1 << endl;

  |       if ((shmid_2=shmget(IPC_PRIVATE, 20, 0640)) == -1){

  |         perror("shmget shmid_2");

 20         return 2;

  |       }

  |       cout << "Second shared memory identifier is: " <<  shmid_2 << endl;

  |       return 0;

  |     }

Figure 8.2 shows the output of Program 8.1 when invoked twice in succession.

Figure 8.2 Output of Program 8.1.

linux$ p8.1                                          <-- 1

First shared memory identifier is : 40665091

Second shared memory identifier is: 40697860

linux$ ipcs -m                                       <-- 2

------ Shared Memory Segments --------

key        shmid     owner     perms     bytes     nattch    status

0x0000000f 40665091  gray      640       1000      0

0x00000000 40697860  gray      640       20        0

linux$ p8.1                                          <-- 3

First shared memory identifier is : 40665091

Second shared memory identifier is: 40730629

linux$ ipcs -m                                       <-- 4

------ Shared Memory Segments --------

key        shmid     owner     perms     bytes     nattch    status

0x0000000f 40665091  gray      640       1000      0

0x00000000 40697860  gray      640       20        0

0x00000000 40730629  gray      640       20        0

(1) Run the program.

(2) Check with ipcs.



(3) Run the program again.

(4) Recheck with ipcs.

Examination of the output shows the first invocation created two shared memory 

segments with the identifier values of 40665091 and 40697860. The first segment, with 

the shared memory identification value of 40665091, was created by the first call to 

shmget, as the key value (15) coded in the program was not associated with any other 

previously allocated memory segment. The second segment, identified by the 

40697860, was created by shmget, since IPC_PRIVATE was specified. However, when 

the program was invoked the second time, the results were slightly different. The first 

call to shmget returned the shared memory identifier from the first invocation of the 

program, as the shared memory segment already existed for the key value of 15. The 

second call to shmget, since it uses IPC_PRIVATE, produced another unique shared 

memory segment (40730629). Notice that the output for the ipcs command shows that 

the key value entries for both of the unique shared memory segments generated with 

IPC_PRIVATE are set to zero.

8-1 EXERCISE

Write a program that determines by trial and error if the maximum shared 

memory segment size is or is not the 4 MB noted. If the maximum is not this 

value, what is the maximum (to the nearest 1K)? Note: Please be sure to 

remove any shared memory segments you generate for this exercise. You 

may want to look ahead to Section 8.3 to obtain the proper syntax to 

accomplish the removal of the shared memory segment within your program

(versus using the ipcrm command on the command line). Of course, if you 

modified the cleanup script (Exercise 7.1), you could use it to remove your 

shared memory segments.
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8.3 Shared Memory Control

The shmctl system call permits the user to perform a number of generalized control 

operations on an existing shared memory segment and on the system shared memory

data structure (see Table 8.4).

Table 8.4. Summary of the shmctl System Call.

Include File(s) <sys/ipc.h>

<sys/shm.h>
Manual Section 2

Summary int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Return

Success Failure Sets errno

0 -1 Yes

There are three arguments for the shmctl system call. The first, shmid, is a valid shared 

memory segment identifier generated by a prior shmget system call. The second 

argument, cmd, specifies the operation shmctl is to perform. The third argument, buf, is a 

reference to a structure of the type shmid_ds.

The operations that shmctl will perform, which are specified by the following defined 

constants, consist of

IPC_STAT— Return the current values of the shmid_ds structure for the 

memory segment indicated by the shmid value. The returned information is 

stored in a user-generated structure, which is passed by reference as the third 

argument to shmctl. To specify IPC_STAT, the process must have read

permission for the shared memory segment.

IPC_SET— Modify a limited number of members in the permission structure

found within the shmid_ds structure. The permission structure members that can 

be modified are shm_perm.uid, shm_perm.gid, and shm_perm.mode. The accessing 
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process must have the effective ID of the superuser or have an ID that is 

equivalent to either the shm_perm.cuid or shm_perm.uid value. To modify structure 

members, the following steps are usually taken. A structure of the type 

shmid_ds is allocated. The structure is initialized to the current system settings 

by calling shmctl with the IPC_STAT flag set and passing the reference to the 

new shmd_ds structure. The appropriate members of the structure are then 

assigned their new values. Finally, with the cmd argument set to IPC_SET, the 

shmctl system call is invoked a second time and passed the reference to the 

modified structure. To carry out this modification sequence, the accessing 

process must have read and write permissions for the shared memory segment. 

When IPC_SET is specified, the shm_ctime member is automatically updated 

with the current time.

IPC_RMID— Remove the system data structure for the referenced shared

memory identifier (shmid). When specifying IPC_RMID, an address value of 0 is 

used for buf. The 0 address value is cast to the proper type, with (shmid_ds *). 

Once all references to the shared memory segment are eliminated (i.e., 

shm_nattch equals 0), the system will remove the actual segment. If a shmctl

system call, specifying IPC_RMID, is not done, the memory segment will 

remain active and associated with its key value.

SHM_LOCK— Lock, in memory, the shared memory segment referenced by

the shmid argument. A locked shared segment is not swapped out by the 

system thus avoiding I/O faults when referenced. Locking can only be specified 

by processes that have an effective ID equal to that of the superuser.

SHM_UNLOCK— Unlock the shared memory segment referenced by the shmid

argument. Once unlocked the shared segment can be swapped out. Again, 

this can only be specified by processes that have an effective ID equal to that 

of the superuser.

If shmctl is successful, it returns a value of 0; otherwise, it returns a value of -1 and sets 

the value in errno to indicate the specific error condition. The values that errno may be 

assigned and their interpretation are shown in Table 8.5.



Table 8.5. shmctl Error Messages

# Constant perror

Message
Explanation

1 EPERM Operation not 

permitted The value for cmd is IPC_RMID or 

IPC_SET, and the calling process is not the 

owner, creator, or superuser.

The value for cmd is SHM_LOCK or 

SHM_UNLOCK, and the calling process is 

not the superuser.

13 EACCES Permission 

denied

The requested operation is not allowed by current 

access permissions.

12 ENOMEM Cannot 

allocate 

memory

The cmd is SHM_LOCK, but there is insufficient 

memory available.

14 EFAULT Bad address The third argument to shmctl, buf, contains a 

reference to an illegal address.

22 EINVAL Invalid 

argument The shared memory identifier is invalid.

The value for cmd is invalid.

The value for cmd is IPC_SET, but the value 

for shm_perm.uid or shm_perm.gid is invalid.

43 EIDRM  Memory segment is marked as removed.

8-2 EXERCISE

Justin could not understand all the brouhaha over shared memory. Why not, 

he reasoned, just use variables that were global to say parent/child 



processes and control their access with semaphores? Using the SSemaphore

object from the previous chapter, he wrote the program below to test his 

theory:

File : justin.cxx

  |     #include <iostream>

  |     #include <sys/types.h>

  |     #include <sys/wait.h>

  |     #include "SSemaphore.h"

  +     using namespace std;

  |     char c = 0;                     // 'global' variable

  |     int

  |     main( ){

  |       SSemaphore S;                 // SSemaphore object

 10       S.Put(1);                     // Start it at 1

  |       switch(fork( )){

  |         case -1:

  |           perror("fork failure");

  |           return 1;

  +         case 0:                     // Child - lowercase

  |           srand(getpid( ));

  |           for (int i=0; i < 10; ++i){

  |             S.P( );                 // Obtain semaphore

  |               cout << char(c+'a'); cout.flush( );

 20               ++c;

  |             S.V( );                 // Release semaphore

  |             sleep(rand( ) % 3 + 1);

  |           }

  |           break;

  +         default:                    // Parent - uppercase

  |           srand(getpid( ));

  |           for (int i=0; i < 10; ++i){

  |             S.P( );                 // Obtain semaphore

  |               cout << char(c+'A'); cout.flush( );

 30               ++c;

  |             S.V( );                 // Release semaphore

  |             sleep(rand( ) % 3 + 1);

  |           }

  |           break;

  +       }

  |       wait(0);

  |       return 0;

  |     }

Before he ran his program, Justin expected his output to be similar to 



AbcDefGhiJ (ten characters with alternating case). He was quite taken back 

when his output looked more like the following: AabBcCdDeEFfGgHhIiJj. Why

did Justin get the output he did—what was the flaw in his reasoning?
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8.4 Shared Memory Operations

There are two shared memory operation system calls. The first, shmat, is used to 

attach (map) the referenced shared memory segment into the calling process's data 

segment. See Table 8.6.

Table 8.6. Summary of the shmat System Call.

Include File(s) <sys/types.h>

<sys/shm.h>
Manual Section 2

Summary
void *shmat(int shmid, const void

            *shmaddr, int shmflg);

Return

Success Failure Sets errno

Reference to the data segment -1 Yes

The first argument to shmat, shmid, is a valid shared memory identifier. The second 

argument, shmaddr, allows the calling process some flexibility in assigning the location 

of the shared memory segment. If a nonzero value is given, shmat uses this as the 

attachment address for the shared memory segment. If shmaddr is 0, the system picks 

the attachment address. In most situations (especially if portability is of concern), it is 

advisable to use a value of 0 and have the system pick the address. The third 

argument, shmflg, is used to specify the access permissions for the shared memory 

segment and to request special attachment conditions, such as an aligned address or 

a read-only segment. The values of shmaddr and shmflg are used by the system to 

determine the attachment address, using the algorithm shown in Figure 8.3.

Figure 8.3. Determining the attachment address.
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By default, attached segments are accessible for reading and writing. If needed, the 

SHM_RDONLY flag can be bitwise ORed with the shmflg value to indicate a read-only 

segment. There is no flag to specify a write-only memory segment. The SHM_RND 

flag is used to specify whether or not the attachment address should be aligned on a 

page boundary. The value in the defined constant SHMLBA (found in <bits/shm.h>) is 

used by the system as the page size. For reference, a page is a unit of virtual address 

space. When a page is mapped to physical memory it is called a page frame.

When shmat is successful, it returns the address of the actual attachment. It also sets 

shm_atime to the current time, shm_lpid to the ID of the calling process, and increments 

shm_nattch by one. If shmat fails, it returns a value of -1 and sets errno to indicate the 

source of the error. Table 8.7 lists the error codes generated and their interpretation 

when the shmat system call fails. Remember that after a fork, the child inherits the 

attached shared memory segment(s). However, after an exec or an exit attached, 

shared memory segment(s) are detached but are not destroyed.

Table 8.7. shmat Error Messages.

# Constant perror Message Explanation

12 ENOMEM Cannot allocate 

memory

There is insufficient memory available to 

accommodate the shared memory segment.

13 EACCES Permission 

denied

The requested operation is not allowed by 

current access permissions.

22 EINVAL Invalid argument
The shared memory identifier is invalid.

Illegal address.

24 EMFILE Too many open 

files

Number of attached memory segments has 

exceeded system limits.



8-3 EXERCISE

Create three 1-byte shared memory segments. Specify a shmaddr of 0 when 

attaching the segments. Does the system place the segments at contiguous 

locations? Why? Will the system allow reference to or modification of an 

address just "outside" the segment size (say, segment size +1 [or 2]) without 

generating an error? Why? Does the system respond the same way if the 

segment size is 4096? Why?

The second shared memory operation, shmdt, is used to detach the calling process's 

data segment from the shared memory segment. See Table 8.8.

Table 8.8. Summary of the shmdt System Call

Include File(s) <sys/types.h>

<sys/shm.h>
Manual Section 2

Summary int shmdt ( const void *shmaddr);

Return

Success Failure Sets errno

0 -1 Yes

The shmdt system call has one argument, shmaddr, which is a reference to an attached 

memory segment. If shmdt is successful in detaching the memory segment, it returns a 

value of 0. It also sets shm_atime to the current time, shm_lpid to the ID of the calling 

process, and decrements shm_nattch by one. If shm_nattch becomes 0 and the memory 

segment is marked for deletion by the operating system, it is removed. If the shmdt call 

fails, it returns a value of -1 and sets errno. Table 8.9 gives the error code that is 

generated when shmdt fails.

Table 8.9. shmdt Error Message

# Constant perror

Message
Explanation

22 EINVAL Invalid 

argument

The value in shmaddr does not reference a valid 

shared memory segment.



In Program 8.2, a private shared memory segment, 30 bytes in length, is created at 

line 18. The shared memory segment is mapped to the process's data space (line 22) 

using the first available address (as picked by the system). The actual attachment 

address along with the addresses for etext, edata, and end are displayed for reference.

A character pointer is set to reference the shared memory segment, and then a

sequence of uppercase alphabetic characters is written to the referenced location

(lines 31–33). A fork system call is used to generate a child process. The child process 

redisplays the contents of the shared memory segment. The child process then 

modifies the contents of the shared memory by converting the uppercase alphabetics 

to lowercase (line 49). After it converts the alphabetics, the child process detaches the 

shared memory segment and exits. The parent process, after waiting for the child to 

exit, redisplays the contents of shared memory (which now is in lowercase), detaches 

the shared memory segment, and removes it.

Program 8.2 Creating, attaching, and manipulating shared memory.

File : p8.2.cxx

  |     /*

  |            Using shared memory

  |     */

  |     #include <iostream>

  +     #include <cstdio>

  |     #include <unistd.h>

  |     #include <sys/types.h>

  |     #include <sys/ipc.h>

  |     #include <sys/shm.h>

 10     #include <sys/wait.h>

  |     #define SHM_SIZE 30

  |     using namespace std;

  |     extern int etext, edata, end;

  |     int

  +     main( ) {

  |        int    shmid;

  |        char   c, *shm, *s;

  |        if ((shmid=shmget(IPC_PRIVATE,SHM_SIZE,IPC_CREAT|0660))< 0) {

  |          perror("shmget fail");

 20          return 1;

  |        }

  |        if ((shm = (char *)shmat(shmid, 0, 0)) == (char *) -1) {

  |          perror("shmat : parent");

  |          return 2;

  +        }



  |        cout << "Addresses in parent"  << endl;

  |        cout << "shared mem: " << hex << int(shm) << " etext: "

  |             << &etext << " edata: "  << &edata

  |             << " end: " << &end << endl << endl;

 30       s = shm;                             // s now references shared mem

  |       for (c='A'; c <= 'Z'; ++c)           // put some info there

  |          *s++ = c;

  |        *s='\0';                            // terminate the sequence

  |        cout << "In parent before fork, memory is: " << shm << endl;

  +        switch (fork( )) {

  |        case -1:

  |          perror("fork");

  |          return 3;

  |        default:

 40          wait(0);                          // let the child finish

  |          cout << "In parent after fork, memory is : " << shm << endl;

  |          cout << "\nParent removing shared memory" << endl;

  |          shmdt(shm);

  |          shmctl(shmid, IPC_RMID, (struct shmid_ds *) 0);

  +          break;

  |        case 0:

  |          cout << "In child after fork, memory is  : " << shm << endl;

  |          for ( ; *shm; ++shm)              // modify shared memory

  |            *shm += 32;

 50          shmdt(shm);

  |          break;

  |        }

  |       return 0;

  |     }

When Program 8.2 is run (output shown in Figure 8.4), we find that the address the 

system picks for the shared memory segment is not in the text or data segment 

address space for the process. In addition, the child process, via the fork system call, 

obtains access to the shared memory segment without having to make its own calls to 

shmget and shmat. As shown, the modifications to the shared memory segment made 

by the child process are seen by the parent even after the child process has detached 

its reference to the shared memory segment and terminated.

Figure 8.4 Output of Program 8.2.

linux$ p8.2

Addresses in parent

shared mem: 40018000 etext: 0x8048c6e edata: 0x8049f6c end: 0x8049fb4



In parent before fork, memory is: ABCDEFGHIJKLMNOPQRSTUVWXYZ

In child after fork, memory is  : ABCDEFGHIJKLMNOPQRSTUVWXYZ

In parent after fork, memory is : abcdefghijklmnopqrstuvwxyz

Parent removing shared memory

8-4 EXERCISE

Run Program 8.2 on your system and record the addresses it displays. 

Modify the program by adding a variety of static and automatic variable 

declarations. Does the first free address the system picks for the shared 

memory segment remain constant? If not, is there a consistent set distance 

the system uses as an offset from the etext, edata, or end values? Why might 

this be? If the shared memory segment is not in the text or data segment of 

the process, is it actually found in the stack segment of the process? How 

did you determine this?

Using our previous producer/consumer example from Program 7.4 as a base, we can 

implement a producer/consumer relationship that uses shared memory in place of a 

file to convey information from one process to another. In our example, the producing 

process generates a series of random messages that are stored in a shared memory 

segment for the consumer process to read. To facilitate communication between the 

two processes, which may operate at differing rates, an array with six message 

buffers (slots) is used. The message buffer array is treated as a queue, whereby new 

messages are added to the tail of the list and messages to be processed are removed

from the head of the list. The two integer indices, referencing the head and tail of the 

list respectively, are also stored in the shared memory segment. The basic 

configuration of the shared memory segment is shown in Figure 8.5.

Figure 8.5. Conceptual configuration of memory.



We will use two semaphores to coordinate access to the shared memory segment. 

The first semaphore, treated as a counting semaphore, will contain the number of 

available slots that can be written to. As long as this semaphore is nonzero, the 

producing process can continue to write its messages to the shared memory segment.

Initially, this semaphore is set to indicate that six slots are available. The second 

semaphore, also treated as a counting semaphore, indicates the number of slots 

available for consumption (reading). Both the producer and consumer processes 

execute concurrently and reference the same shared memory segment. The activities 

of the processes are shown in Figure 8.6 with the areas within the boxes indicating 

access to the shared memory segment.

Figure 8.6. Producer and consumer activities.

To reduce the amount of coding and to provide programming consistency, a common 



local header file, called local.h, is generated. The local.h file contains the include

statements and variable declarations needed by each of the programs that make up 

this example. Each program references this file in its first lines of program code via the 

preprocessor statement #include "local.h". The contents of the local.h file are shown in 

Figure 8.7. Lines 35 through 38 define the makeup of the shared memory segment.

Figure 8.7 The common header file.

File : local.h

  |     /*

  |        Common header file: parent, producer and consumer

  |     */

  |     #ifndef LOCAL_H

  +     #define LOCAL_H

  |     #define _GNU_SOURCE

  |     #include <iostream>

  |     #include <cstdio>

  |     #include <unistd.h>

 10     #include <stdlib.h>

  |     #include <string.h>

  |     #include <sys/types.h>

  |     #include <sys/ipc.h>

  |     #include <sys/sem.h>

  +     #include <sys/shm.h>

  |     #include <signal.h>

  |     #include <wait.h>

  |     #define ROWS 5                        // Establish some common values

  |     #define COLS 3

 20     #define SLOT_LEN 50

  |     #define N_SLOTS  6

  |     using namespace std;

  |     #if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)

  |                                           // definition in <sys/sem.h>

  +     #else

  |     union semun {                         // We define:

  |       int val;                            // value  for SETVAL

  |       struct semid_ds *buf;               // buffer for IPC_STAT, IPC_SET

  |       unsigned short int *array;          // array  for GETALL, SETALL

 30       struct seminfo *__buf;              // buffer for IPC_INFO

  |     };

  |     #endif

  |     enum {AVAIL_SLOTS, TO_CONSUME};

  |                                           // Layout for shared memory

  +     struct MEMORY {



  |       char buffer[N_SLOTS][SLOT_LEN];

  |       int  head, tail;

  |     };

  |                                           // Actions for semaphores

 40     struct sembuf acquire = { 0, -1, SEM_UNDO},

  |                   release = { 0,  1, SEM_UNDO};

  |     #endif

In this example, a parent process is responsible for creating and initializing the shared 

memory segment and the two semaphores that control access to it. Once this has 

been done, the parent process will fork two child processes. The first process will be 

the producing process and the second, the consuming process. The code for the 

parent process is shown in Program 8.3.

Program 8.3 The parent process.

File : parent.cxx

  |     /*

  |        The PARENT

  |     */

  |     #include "local.h"

  +     int

  |     main(int argc, char *argv[ ]) {

  |       static struct MEMORY   memory;

  |       static unsigned int short   start_val[2] = {N_SLOTS, 0};

  |       int             semid, shmid, croaker;

 10       char            *shmptr;

  |       pid_t           p_id, c_id, pid = getpid( );

  |       union semun     arg;

  |       memory.head = memory.tail = 0;

  |                                         // Check command line arguments

  +       if ( argc != 3 ) {

  |         cerr << argv[0] << " producer_time  consumer_time" << endl;

  |         return 1;

  |       }

  |                                         // Create, attach, clear segment

 20       if ((shmid=shmget((int)pid, sizeof(memory),

  |                          IPC_CREAT | 0600 )) != -1){

  |         if ((shmptr=(char *)shmat(shmid, 0, 0)) == (char *) -1){

  |           perror("shmptr -- parent -- attach ");

  |           return 2;

  +         }

  |         memcpy(shmptr, (char *)&memory, sizeof(memory));

  |       } else {



  |         perror("shmid -- parent -- creation ");

  |         return 3;

 30       }

  |                                         // Create & initialize semaphores

  |       if ((semid=semget((int)pid, 2, IPC_CREAT | 0666)) != -1) {

  |         arg.array = start_val;

  |         if (semctl(semid, 0, SETALL, arg) == -1) {

  +           perror("semctl -- parent -- initialization");

  |           return 4;

  |         }

  |       } else {

  |         perror("semget -- parent -- creation ");

 40         return 5;

  |       }

  |                                            // Fork PRODUCER process

  |       if ( (p_id=fork( )) == -1) {

  |         perror("fork -- producer");

  +         return 6;

  |       } else if ( p_id == 0 ) {

  |         execl( "producer", "./producer", argv[1], (char *) 0);

  |         perror("execl -- producer");

  |         return 7;

 50       }

  |                                            // Fork CONSUMER process

  |       if ( (c_id =fork( )) == -1) {

  |         perror("fork -- consumer");

  |         return 8;

  +       } else if ( c_id == 0 ) {

  |         execl( "consumer", "./consumer", argv[2], (char *) 0);

  |         perror("execl -- consumer");

  |         return 9;

  |       }                                    // Wait for 1 to die -

 60       croaker = (int) wait( (int *) 0 );   // kill remaining process

  |       kill( ((croaker == p_id ) ? c_id : p_id), SIGKILL);

  |       shmdt( shmptr );

  |       shmctl(shmid,IPC_RMID,(struct shmid_ds *)0);

  |       semctl( semid, 0, IPC_RMID, 0);

  +       return 0;

  |     }

The parent process expects two integer values to be passed via the command line

(program lines 15–18). These values indicate a maximum time, in seconds, for a

process to sleep during its execution cycle. The first value is passed to the producing

process and the second to the consuming process. By specifying differing values on

the command line, we can easily simulate producer/consumer relationships that



operate at different speeds. In lines 20 through 25, we create and attach the shared

memory segment. Once this is done, we copy the contents of our memory structure

(which has been set to its initial values) to the shared memory segment using the

library function memcpy. The memcpy function is one of a group of functions that work 

with sequences of bytes bounded by a byte count value rather than by a terminating 

NULL character. See Table 8.10.

The memcpy function copies n number of bytes from the location referenced by src to 

the location referenced by dest. Upon completion, a pointer to the dest location is 

returned. Be careful: The memcpy function does not check for overflow.

In lines 32 through 41 of the parent program, the two semaphores that control access 

to the shared memory segment are created and set to their initial values. The 

AVAIL_SLOTS semaphore is set to 6 to reflect the six available slots, and the 

TO_CONSUME semaphore is set to 0. A child process is then forked and overlaid 

with the producer process code (line 47). The producing process is passed a single 

integer argument to be used as its sleep time. Following this, the parent process forks 

a second child process, which it then overlays with the consumer process code (line 

56). The consumer process is also passed an integer sleep value as its first argument. 

Once this is done, the parent process waits for one of its child processes (either the 

producer or consumer) to terminate. When this occurs, the PID is returned and stored 

in the program variable croaker. The parent process then checks the contents of this 

variable to determine which child process remains. The remaining process is removed

with a call to kill, and the shared memory segment is detached and removed. The 

code for the producer process is shown in Program 8.4.

Table 8.10. Summary of the memcpy Library Function.

Include File(s) <string.h> Manual Section 3

Summary void *memcpy(void *dest, const void *src,size_t n);

Return

Success Failure Sets errno

A pointer to dest   

Program 8.4 The producer process.



File : producer.cxx

  |     /*

  |             The PRODUCER ...

  |     */

  |     #include "local.h"

  +     int

  |     main(int argc, char *argv[]) {

  |       static char    *source[ROWS][COLS] = {

  |                      {"A", "The", "One"},

  |                      {" red", " polka-dot", " yellow"},

 10                      {" spider", " dump truck", " tree"},

  |                      {" broke", " ran", " fell"},

  |                      {" down", " away", " out"}

  |       };

  |       static char     local_buffer[SLOT_LEN];

  +       int             i, r, c, sleep_limit, semid, shmid;

  |       pid_t           ppid = getppid( );

  |       char            *shmptr;

  |       struct MEMORY   *memptr;

  |                                            // Check command line

 20       if ( argc != 2 ) {

  |         cerr << argv[0] << " sleep_time" << endl;

  |         return 20;

  |       }

  |                                            // Access, attach & ref mem

  +       if ((shmid=shmget((int) ppid, 0, 0)) != -1 ){

  |         if ((shmptr=(char *)shmat(shmid,(char *)0,0))==(char *)-1){

  |            perror("shmat -- producer -- attach ");

  |            return 21;

  |         }

 30         memptr = (struct MEMORY *) shmptr;

  |       } else {

  |         perror("shmget -- producer -- access ");

  |         return 22;

  |       }

  +                                            // Access semaphore set

  |       if ( (semid=semget((int) ppid, 2, 0)) == -1 ) {

  |         perror("semget -- producer -- access ");

  |         return 23;

  |       }

 40       sleep_limit = atoi(argv[1]) % 20;

  |       i = 20 - sleep_limit;

  |       srand((unsigned)getpid());

  |       while( i-- ) {

  |         memset(local_buffer, '\0', sizeof(local_buffer));

  +         for (r = 0; r < ROWS; ++r) {       // Make a random string



  |           c = rand() % COLS;

  |           strcat(local_buffer, source[r][c]);

  |         }

  |         acquire.sem_num = AVAIL_SLOTS;

 50         if (semop(semid, &acquire, 1 ) == -1 ){   <-- 1

  |           perror("semop -- producer -- acquire ");  <-- 1

  |           return 24;                             <-- 1

  |         }                                        <-- 1

  |         strcpy(memptr->buffer[memptr->tail], local_buffer);  <-- 1

  +         cout << "P: [" << memptr->tail << "] "   <-- 1

  |              << memptr->buffer[memptr->tail] << endl;  <-- 1

  |         memptr->tail = (memptr->tail +1) % N_SLOTS;  <-- 1

  |         release.sem_num = TO_CONSUME;            <-- 1

  |         if (semop( semid, &release, 1 ) == -1 ) {

 60           perror("semop -- producer -- release ");

  |           return 25;

  |         }

  |         sleep( rand( ) % sleep_limit + 1 );

  |       }

  +       return 0;

  |     }

(1) Once the random string is generated, acquire the AVAIL_SLOTS

semaphore, store the string, update the tail index, and increment the 

TO_CONSUME semaphore.

The producer process allocates a two-dimensional array, source, that contains a series 

of strings used to generate random messages to store in the shared memory 

segment. A storage location, local_buffer, is created that temporarily holds the 

message. Next, the PID of the parent is obtained via the getppid system call. The 

parent PID is used as the key value for the shmget system call. This enables the 

producer process to reference the shared memory segment that was created by the 

parent process. Another approach would be to pass the shared memory identifier from

the parent process to the producer via the command line. If this were done, the parent 

process would convert the integer shared memory identifier to a character string 

before passing it, and the producing process would convert the string back to its 

original integer format.

In program lines 25 through 29, the producer process gains access to the shared 

memory segment and attaches it. The producer uses a local pointer, memptr, to assign 



the shared memory address at program line 30 in order to reference the shared 

memory location. The producer process then gains access to the semaphore set 

(again using the parent PID as the semget key value). After this is done, the limit for the 

time to sleep during its processing cycle is obtained (line 40), and the maximum 

number of messages to be generated is calculated.

The program then loops through the following steps. It clears the local_buffer by filling it 

with null characters. A short random message is produced and stored in the 

local_buffer. The producer then evaluates the AVAIL_SLOTS semaphore. Once the 

producer can acquire the semaphore (which by definition will occur only if the 

semaphore is nonzero),[2] the message in local_buffer is copied to the shared memory 

location using the value in the memory->tail location as an offset index. The message 

that is stored is displayed to the screen for reference. The memory->tail value is then 

incremented in a modular fashion so as to reference the next valid storage location. 

The TO_CONSUME semaphore is incremented next to indicate the addition of 

another message. The producer then sleeps a maximum of sleep_limit seconds and 

continues its processing loop. The producer exits when all messages have been 

produced and written to the shared memory segment or when it receives a termination

signal (such as from its parent process). The code for the consumer process is shown 

in Program 8.5.

[2] The contents of the AVAIL_SLOTS semaphore is decremented when

it is acquired.

Program 8.5 The consumer process.

File : consumer.cxx

  |     /*

  |             The CONSUMER

  |      */

  |     #include "local.h"

  +     int

  |     main(int argc, char *argv[]) {

  |       static char    local_buffer[SLOT_LEN];

  |       int            i, sleep_limit, semid, shmid;

  |       pid_t          ppid = getppid( );

 10       char           *shmptr;

  |       struct MEMORY  *memptr;

  |                                            // Check command line

  |       if ( argc != 2 ) {



  |         cerr << argv[0] << " sleep_time" << endl;

  +         return 30;

  |       }

  |                                            // Access, attach & ref memory

  |       if ((shmid=shmget((int) ppid, 0, 0)) != -1 ){

  |         if ( (shmptr=(char *)shmat(shmid,(char *)0,0)) == (char *) -1){

 20           perror("shmat -- consumer -- attach");

  |           return 31;

  |         }

  |         memptr = (struct MEMORY *) shmptr;

  |       } else {

  +         perror("shmget -- consumer -- access");

  |         return 32;

  |       }

  |                                            // Access semaphore set

  |       if ( (semid=semget((int) ppid, 2, 0)) == -1 ) {

 30         perror("semget -- consumer -- access ");

  |         return 33;

  |       }

  |       sleep_limit = atoi(argv[1]) % 20;

  |       i = 20 - sleep_limit;

  +       srand((unsigned)getpid());

  |       while( i ) {

  |         acquire.sem_num = TO_CONSUME;

  |         if (semop(semid, &acquire, 1 ) == -1 ){

  |           perror("semop -- consumer -- acquire ");

 40           return 34;

  |         }

  |         memset(local_buffer, '\0', sizeof(local_buffer));

  |         strcpy(local_buffer, memptr->buffer[memptr->head]);

  |         cout << "C: [" << memptr->head << "] "

  +              << local_buffer << endl;

  |         memptr->head = (memptr->head +1) % N_SLOTS;

  |         release.sem_num = AVAIL_SLOTS;

  |         if (semop( semid, &release, 1 ) == -1 ) {

  |           perror("semop -- consumer -- release ");

 50           return 35;

  |         }

  |         sleep( rand( ) % sleep_limit + 1 );

  |       }

  |       return 0;

  +     }

In most aspects, the logic for the consumer process is similar to that of the producer 

process. However, the consumer will be allowed access to the shared memory 



segment via the TO_CONSUME semaphore. If this semaphore is nonzero, it indicates

there are messages available for the consumer to read. When a message is available,

the consumer copies the message to its local_buffer array from the shared memory 

location using the value in memory->head as an offset index. The local_buffer contents are 

then displayed on the screen for reference. As in the producer process, the value 

referenced by memory->head is incremented in a modular fashion to reference the next 

valid location. The AVAIL_SLOTS semaphore is incremented, and the consumer 

continues its processing.

When viewing the output of a run of the program, note that if the parent process is 

passed a set of values that allow the producer process to be faster than the consumer 

process, the shared memory location will eventually become full. When this occurs, 

the producer must block and wait[3] for the consumer to read a message. Only after a 

message has been read by the consumer is a slot released and a new message 

stored by the producer. See Figure 8.8.

[3] The default action when attempting to acquire a zero value 

semaphore.

Figure 8.8 Output when the producer process works faster than the consumer process.

linux$ parent 1 3

P: [0] The yellow tree broke out

C: [0] The yellow tree broke out

P: [1] One yellow spider broke away

C: [1] One yellow spider broke away

P: [2] One red dump truck fell away                                                     <-- 1                                                    |

P: [3] The polka-dot dump truck broke away                                                      <-- 1

P: [4] One red spider broke away                                                      <-- 1

C: [2] One red dump truck fell away                  <-- 1

P: [5] The yellow dump truck ran out

P: [0] A red dump truck broke away

. . .

(1) The producer is working faster than the consumer.

If values are passed to the producer/consumer that permit them to work at similar 

rates, we should find the six-element message array sufficient to allow both processes 



to continue their work without each having an inordinate amount of waiting for the 

other process to finish its task. However, the consumer process will still wait should no

new messages be available. See Figure 8.9.

Figure 8.9 Output when the consumer process works at the same rate the producer process.

linux$ parent 3 3

P: [0] One yellow spider fell away

C: [0] One yellow spider fell away

P: [1] One yellow spider fell away

C: [1] One yellow spider fell away

P: [2] One yellow tree broke out

P: [3] A yellow dump truck ran away

C: [2] One yellow tree broke out

C: [3] A yellow dump truck ran away

P: [4] The polka-dot dump truck broke out

C: [4] The polka-dot dump truck broke out

. . .

8-5 EXERCISE

In this producer/consumer example, the code to display the message to the 

screen and the adjusting of the head/tail indices was done within the critical 

regions bounded by the two semaphores. Is this actually necessary? Why, 

why not? If both the producer and consumer know there are six buffer slots, 

are two semaphores actually needed? Why?

8-6 EXERCISE

Modify the producer/consumer example to support multiple consumers. Can 

this be done without adding another semaphore? Support your findings with 

output.

8-7 EXERCISE



Modify the producer/consumer example to support multiple producers. Is yet 

another semaphore needed to coordinate process activity? Supply output to 

support your findings.
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8.5 Using a File as Shared Memory

Most versions of Linux-UNIX also support the mmap system call, which can be used to 

map a file to a process's virtual memory address space. In many ways mmap is more 

flexible than its shared memory system call counterpart. Once a mapping has been 

established, standard system calls rather than specialized system calls can be used to 

manipulate the shared memory object (Table 8.11). Unlike memory, the contents of a 

file are nonvolatile and will remain available even after a system has been shut down 

(and rebooted).

Table 8.11. Summary of the mmap System Call.

Include 

File(s)

<unistd.h>

<sys/nman.h>
Manual 

Section
2

Summary #ifdef _POSIX_MAPPED_FILES                           <-- 1

void *mmap(void *start, size_t length, int prot,

      int flags, int fd, off_t offset);

#endif

(1) If _POSIX_MAPPED_FILES has been defined.

Return

Success Failure Sets errno

A pointer to the mapped 

area

MAP_FAILED ((void *) 

-1)

Yes

The mmap system call requires six arguments. The first, start, is the address for 

attachment. As with the shmat system call, this argument is most often set to 0, which 

directs the system to choose a valid attachment address. The number of bytes to be 

attached is indicated by the second argument, length. While the call will allow the user 

to specify a number of bytes for length that will extend beyond the end of the mapped 



file, an actual reference to these locations will generate an error (a SIGBUS signal). 

The third argument, prot, is used to set the type of access (protection) for the segment. 

The specified access should not be in conflict with the access permissions for the 

associated file descriptor. The prot argument uses the defined constants found in the 

include file <sys/mman.h>. These constants are shown in Table 8.12.

Table 8.12. Defined Protection Constants.

Defined Constant Access

PROT_READ Read access to specified region.

PROT_WRITE Write access to specified region.

PROT_EXEC Execute access to specified region.

PROT_NONE No access.

Constants can be ORed to provide different combinations of access. The manual page 

for mmap notes that on some systems PROT_WRITE is implemented as PROT_READ

| PROT_WRITE, and PROT_EXEC as PROT_READ | PROT_EXEC. In any case, 

PROT_WRITE must be set if the process is to write to the mapped segment. The 

fourth argument, flags, specifies the type of mapping. Mapping types are also indicated 

using defined constants from the <sys/mman.h> include file. These constants are shown 

in Table 8.13.

Table 8.13. Defined Mapping Type Constants.

Defined Constant Mapping Type

MAP_SHARED Share all changes.

MAP_PRIVATE Do not share changes.

MAP_FIXED Interpret the value for the start argument exactly.

The first two constants specify whether writes to the shared memory will be shared with 

other processes or be private. MAP_SHARED and MAP_PRIVATE are exclusionary. 

When specifying MAP_PRIVATE, a private copy is not generated until the first write to 



the mapped object has occurred. These specifications are retained across a fork

system call but not across a call to exec. MAP_FIXED directs the system to explicitly

use the address value in start. When MAP_FIXED is indicated, the values for start and 

length should be a multiple of the system's page size. Specifying MAP_FIXED greatly 

reduces the portability of a program, and its use is discouraged. When specifying the 

flags argument, either MAP_SHARED or MAP_PRIVATE must be indicated. Linux 

also supports the flags shown in Table 8.14.

Table 8.14. Linux-Specific Defined Mapping Type Constants.

Defined Constant Mapping Type

MAP_GROWSDOWN Treat the segment as a stack.

MAP_EXECUTABLE Mark the segment as executable.

MAP_DENYWRITE Do not allow writing.

MAP_NORESERVE Do not check for reservations.

MAP_LOCKED Lock the mapped segment.

The fifth argument, fd, is a valid open file descriptor. Once the mapping is established, 

the file can be closed. The sixth argument, offset, is used to set the starting position for 

the mapping.

If the mmap system call is successful, it returns a reference to the mapped memory 

object. If the call fails, it returns the defined constant MAP_FAILED (which is actually 

the value -1 cast to a void *). A failed call will set the value in errno to reflect the error 

encountered. The errors for mmap are shown in Table 8.15.

Table 8.15. mmap Error Messages.

# Constant perror Message Explanation

6 ENXIO No such device 

or address

The values for off or off + len are illegal for the 

specified device.

9 EBADF Bad file The file referenced by fd is invalid.



# Constant perror Message Explanation

descriptor

11 EAGAIN Resource 

temporarily 

unavailable

Insufficient swap space for the mapping.

Mapping could not be locked in memory.

Mapped file is already locked.

12 ENOMEM Cannot allocate 

memory

Insufficient address space to implement the 

mapping.

13 EACCES Permission 

denied MAP_PRIVATE indicated and file 

descriptor is not open for reading.

File descriptor is not open for writing, and

PROT_WRITE was indicated with a 

mapping type of MAP_SHARED.

19 ENODEV No such device fd references an invalid device (such as a 

terminal).

22 EINVAL Invalid argument
MAP_FIXED specified, and value for start

or offset are not multiples of the system's 

page size.

Illegal flag value.

Argument length is less than 1.

26 ETXTBSY Text file busy MAP_DENYWRITE was set but fd is open for 

writing.

While the system will automatically unmap a region when a process terminates, the 

system call munmap, shown in Table 8.16, can be used to explicitly unmap pages of 



memory.

Table 8.16. Summary of the munmap System Call.

Include File(s) <unistd.h>

<signal.h>
Manual Section 2

Summary #ifdef _POSIX_MAPPED_FILES

int munmap(void *start, size_t length);

#endif

Return

Success Failure Sets errno

0 -1 Yes

The munmap system call is passed the starting address of the memory mapping 

(argument start) and the size of the mapping (argument length). If the call is successful, 

it returns a value of 0. Future references to unmapped addresses generate a 

SIGVEGV signal. If the munmap system call fails, it returns the value -1 and sets the 

value in errno to EINVAL. The interpretation of munmap-related error is given in Table 

8.17.

Table 8.17. munmap Error Messages.

# Constant perror

Message
Explanation

22 EINVAL Invalid 

argument Argument length is less than 1.

Argument start is not a multiple of the system 

page size.

Argument start or start + length is outside the 

process's address space.

The msync system call is used in conjunction with mmap to synchronize the contents of 

mapped memory with physical storage (Table 8.18). A call to msync will cause the 

system to write all modified memory locations to their as sociated physical storage 



locations. If MAP_SHARED is specified with mmap, the storage location is a file. If 

MAP_PRIVATE is specified, then the storage location is the swap area.

Table 8.18. Summary of the msync Library Function.

Include File(s) <unistd.h>

<sys/mman.h>
Manual Section 2

Summary #ifdef _POSIX_MAPPED_FILES

#ifdef _POSIX_SYNCHRONIZED_IO

int msync(const void *start, size_t length, 

          int flags);

#endif

#endif

Return

Success Failure Sets errno

0 -1 Yes

The start argument for msync specifies the address of the mapped memory; the length

argument specifies the size (in bytes) of the memory. The flags argument directs the 

system to take the actions shown in Table 8.19.

Table 8.19. Defined Flag Constants for msync.

Defined 

Constant

Action

MS_ASYNC Return immediately once all writes have been scheduled.

MS_SYNC Return once all writes have been performed.

MS_INVALIDATE Invalidate cached copies of memory—system reloads memory

from the associated storage location.

If msync fails, it returns a -1 and sets errno (Table 8.20). If the call is successful, it 

returns a value of 0.



Table 8.20. mmap Error Messages.

# Constant perror

Message
Explanation

1 EPERM Operation not 

permitted

MS_INVALIDATE indicated but some of the 

referenced locations are locked in memory.

14 EFAULT Bad address Invalid address reference.

16 EBUSY Device or 

resource busy

MS_SYNC and MS_INVALIDATE specified but 

some of the referenced addresses are currently 

locked.

22 EINVAL Invalid 

argument Argument addr is not a multiple of the page 

size.

Argument flags not a combination of 

MS_ASYNC | MS_INVALIDATE | 

MS_SYNC.

Program 8.6 demonstrates the use of the mmap system call.

Program 8.6 Using mmap.

File : p8.6.cxx

  |     /*

  |            Using the mmap system call

  |      */

  |     #define _GNU_SOURCE

  +     #include <iostream>

  |     #include <cstdio>

  |     #include <sys/types.h>

  |     #include <sys/mman.h>

  |     #include <sys/stat.h>

 10     #include <fcntl.h>

  |     #include <stdlib.h>

  |     #include <unistd.h>

  |     #include <signal.h>

  |     #include <string.h>

  +     using namespace std;

  |     int



  |     main(int argc, char *argv[]){

  |       int          fd, changes, i, random_spot, kids[2];

  |       struct stat  buf;

 20       char         *the_file, *starting_string="ABCDEFGHIJKLMNOPQRSTUVWXYZ";

  |       if (argc != 3) {

  |         cerr << "Usage " << *argv << " file_name #_of_changes" << endl;

  |         return 1;

  |       }

  +       if ((changes = atoi(argv[2])) < 1) {

  |         cerr << "# of changes < 1" << endl;

  |         return 2;

  |       }

  |       if ((fd = open(argv[1], O_CREAT | O_RDWR, 0666)) < 0) {

 30         perror("file open");

  |         return 3;

  |       }

  |       write(fd, starting_string, strlen(starting_string));

  |                                            // Obtain size of file

  +       if (fstat(fd, &buf) < 0) {

  |         perror("fstat error");

  |         return 4;

  |       }

  |                                            // Establish the mapping

 40       if ((the_file = (char *) mmap(0, (size_t) buf.st_size,

  |                       PROT_READ | PROT_WRITE, MAP_SHARED,

  |                       fd, 0)) == (void *) - 1) {

  |         perror("mmap failure");

  |         exit(5);

  +       }

  |       for (i = 0; i < 2; ++i)

  |         if ((kids[i] = (int) fork()) == 0)

  |           while (1) {

  |             cout << "Child " << getpid() << " finds: " << the_file << endl;

 50             sleep(1);

  |           }

  |       srand((unsigned) getpid());

  |       for (i = 0; i < changes; ++i) {

  |         random_spot = (int) (rand() % buf.st_size);

  +         *(the_file + random_spot) = '*';

  |         sleep(1);

  |       }

  |       cout << "In parent, done with changes" << endl;

  |       for (i = 0; i < 2; ++i)

 60         kill(kids[i], 9);

  |       cout << "The file now contains: " << the_file << endl;

  |       return 0;



  |     }

Program 8.6 uses a parent/two-child process arrangement to demonstrate the use of 

mmap. The parent process modifies the contents of a memory-mapped file. Each child 

process repetitively displays the contents of the mapped files to allow verification of 

the changes. The program is passed two command-line arguments. The first 

argument is the name of a file that it will use for mapping. The second argument 

indicates the number of modifications that should be made to the file. Upon execution 

of the program, the validity of the command-line arguments is checked. If problems 

are encountered, an appropriate error message is generated and the program exits. If 

the command-line arguments are good, the program opens, for reading and writing, 

the file whose name was passed as the first command-line argument. As the 

O_CREAT flag is specified, if the file does not exist, it will be created. Next, the string 

"ABCDEFGHIJKLMNOPQRSTUVWXYZ" is written to the first part of the file. Following this, 

the fstat call is used to determine the size of the file.

In our example, if we start with an empty file, the size of the file is actually the length of

the string that is written to the file. However, this would not be true if the file contained

previous data. In many cases we will want to know the full size of the file to be

mapped—fstat provides us with a handy way of determining the file's size (it is returned 

as part of the stat structure). The call to mmap (line 40) establishes the actual mapping. 

We allow the system to pick the address and indicate that we want to be able to read 

from and write to the mapped memory region. We also specify the region be marked 

as shared, be associated with the open file descriptor fd, and have an offset (starting 

position within the file) of 0. Two child processes are then generated. Each child 

process displays the contents of the memory-mapped file using the the_file reference 

which was returned from the initial call to mmap. It is important to note that a call to read

was not needed. The child process then sleeps one second and repeats the same 

sequence of activities until a terminating signal is received. The parent process loops 

for the number of times specified by the second command-line argument. Within this 

loop the parent process randomly picks a memory-mapped location and changes it to 

an asterisk (*). Again, this is done by direct reference to the location using the the_file

reference; notice no write function is used. Between changes, the parent sleeps one 

second to slow down the processing sequence. Once the parent process is done, it 

displays the final contents of the memory-mapped file, removes the child processes, 

and exits. A sample run of the program is shown in Figure 8.10.



Figure 8.10 A sample run of Program 8.6.

linux$ p8.6 demo 7

Child 16592 finds: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Child 16593 finds: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Child 16592 finds: ABCDEFG*IJKLMNOPQRSTUVWXYZ

Child 16593 finds: ABCDEFG*IJKLMNOPQRSTUVWX*Z

Child 16592 finds: ABCDEFG*IJKLMNOPQRSTUVWX*Z

Child 16593 finds: ABCDEF**IJKLMNOPQRSTUVWX*Z

Child 16592 finds: ABCDEF**IJKLMNOPQRSTUVWX*Z

Child 16593 finds: ABCDEF**IJ*LMNOPQRSTUVWX*Z

Child 16592 finds: ABCDEF**IJ*LMNOPQRSTUVWX*Z

Child 16593 finds: ABCDEF**I**LMNOPQRSTUVWX*Z

Child 16592 finds: ABCDEF**I**LMNOPQRSTUVWX*Z

Child 16593 finds: ABCDEF**I**LMNOPQRS*UVWX*Z

Child 16592 finds: ABCDEF**I**LMNOPQRS*UVWX*Z

Child 16593 finds: ABCDEF**I**L*NOPQRS*UVWX*Z

Child 16592 finds: ABCDEF**I**L*NOPQRS*UVWX*Z

In parent, done with changes

The file now contains: ABCDEF**I**L*NOPQRS*UVWX*Z

In this invocation the child processes, PIDs 16592 and 16593, initially find the mapped 

location to contain the unmodified starting string. A second check of the mapped 

location shows that each child now sees the string with a single '*' replacing the letter 

H. Additional passes reveal further modifications. When all of the processes have 

terminated, we will find that the file demo will contain the fully modified string.

8-8 EXERCISE

If we replace MAP_SHARED with MAP_PRIVATE, will the output from 

Program 8.6 remain the same? Why, why not? Will the file test contain the *

modified string or the original string? Why, why not? Why is the 

MAP_SHARED specification retained across a fork but not an exec system 

call?

8-9 EXERCISE

What if the file that we map resides on a shared file system? Can we then 



have unrelated processes residing on different workstations use this file as a

means of communication? Support your answer with a program example.
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8.6 Shared Memory Class

A shared memory class is shown in Figure 8.11. As defined, this class can be used 

only with processes that have access to the same shared memory ID.

Figure 8.11 Header file for a basic shared memory class.

File : Shared_mem.h

  |     /*

  |       A VERY simplified shared memory class for use in a std UNIX

  |       environment.  See the text for instructions on how to use

  |       this class.  Copyright (c) 2002 J. S. Gray

  +

  |       Exit codes for class operations:

  |

  |       1 - Unable to allocate memory      2 - Unable map memory

  |       3 - Could not remove shared memory

 10     */

  |     #pragma interface                                                     <-- 1

  |     #ifndef Shared_mem_h

  |     #define Shared_mem_h

  |     #define _GNU_SOURCE

  +     #include <iostream>

  |     #include <cstdio>

  |     #include <sys/types.h>

  |     #include <unistd.h>

  |     #include <stdlib.h>

 20     #include <sys/ipc.h>

  |     #include <sys/shm.h>

  |     using namespace std;

  |     template <class S_type>         // Allow for different data types

  |     class Shared_mem {

  +       public:

  |         Shared_mem ( );             // Constructor

  |         ~Shared_mem( );             // Destructor - remove shared memory

  |         void   Put( const S_type ); // Assign value to shared memory

  |         S_type Get(  );             // Return value from shared memory

 30

  |       private:



  |         int    shmid;               // ID of shared memory

  |         S_type *shm_ptr;            // Reference to shared memory

  |         pid_t  my_pid;              // Hang on to originator PID

  +     };

  |     #endif

(1) This notifies the compiler that a template class is being declared.

The shared memory class is templated to allow the passing of a data type. The 

shared memory class generates a private shared memory segment of the appropriate 

size for the data type. There are four public methods and three private data members 

in the shared memory class. The public methods and their functionality are described 

in Table 8.21.

Table 8.21. Shared_mem Class Methods.

Method 

name

Explanation

Shared_mem This is the class constructor. This method generates the shared 

memory segment. The size of the segment is set by the data type. 

Once created, the segment is attached. The creating PID is saved in 

the my_pid data member.

~Shared_mem The class destructor. This method removes the shared memory 

segment from the system if the calling function is the process that 

created the segment.

Put Put assigns a value to the shared memory segment.

Get Get retrieves the current value stored in the memory segment.

The C++ code that implements the shared memory methods is found in Program 8.7, 

Shared_mem.cxx. Again, as with the previously defined System V IPC classes 

(Message_que and SSemaphore), this is a very rudimentary implementation.

Program 8.7 Program code for the shared memory class.



File : Shared_mem.cxx

  |     #pragma implementation                                                     <-- 1

  |     /*

  |         Shared memory implementation -  Copyright (c) 2002 J. S. Gray

  |         Compile with: -fexternal-templates

  +      */

  |     #include "Shared_mem.h"

  |                                            // Generate private mem segment

  |     template <class S_type>                // Generalize data type

  |     Shared_mem<S_type>::Shared_mem(  ){

 10       my_pid = getpid( );           // Save PID of creating process

  |       if ((shmid = shmget(IPC_PRIVATE, sizeof(S_type), 

               IPC_CREAT | 0660)) < 0)

  |         exit(1);

  |       if ((shm_ptr = (S_type *) shmat(shmid, NULL, 0)) == NULL)

  |         exit(2);

  +     }

  |                                            // Remove memory if creator

  |     template <class S_type>

  |     Shared_mem<S_type>::~Shared_mem(  ) {

  |       if ( getpid( ) == my_pid ) {

 20         shmdt( (char *) shm_ptr );

  |         if ( shmctl(shmid, IPC_RMID, (struct shmid_ds *) 0) == -1 )

  |           exit( 3 );

  |       }

  |     }

  +                                            // Assign value to this location

  |     template <class S_type>

  |     void

  |     Shared_mem<S_type>::Put( const S_type stuff  ){

  |       *shm_ptr = stuff;

 30     }

  |                                            // Retrieve value from location

  |     template <class S_type>

  |     S_type

  |     Shared_mem<S_type>::Get(  ){

  +       static S_type stuff;

  |       stuff = *shm_ptr;

  |       return stuff;

  |     }

  |                                            // Force instantiation

 40     typedef Shared_mem<int>    Shared_int;

  |     typedef Shared_mem<char>   Shared_char;

  |     typedef Shared_mem<float>  Shared_float;

  |     typedef Shared_mem<double> Shared_double;



(1) This notifies the compiler that a template class is being defined.

Note that since templates are involved, a few more gymnastics are called for if we 

want to keep our class declaration and definition code in separate files. To accomplish 

this, using the g++ compiler, the directive #pragma interface must be placed at the top of 

the code in the header file containing the class declaration, while the directive #pragma 

implementation is placed in the file with the class definition (the corresponding .cxx file). 

At the bottom of the class definition, a typedef is used to coerce the compiler into 

generating object code for each specified data type. Lastly, when we compile the 

shared memory class into object code, the command-line compile option 

-fexternal-templates (generate external templates) must be specified along with the -c

option. As if this were not enough, newer versions of the compiler may notify the user 

that the external templates option is deprecated (may not be supported in future 

versions). The compiler switch: -Wno-deprecated can be used to silence these warnings. 

The compilation of code containing templates can be somewhat daunting. The latest 

information on the g++ compiler can be obtained from the site http://www.gnu.org.

To use the shared memory class, the files Shared_mem.h and Shared_mem.cxx should 

reside locally. The Shared_mem class is compiled into object code with the command 

line

linux$  g++ Shared_mem.cxx -c -fexternal-templates

At the top of the source file that uses a Shared_mem object, add the statement

#include "Shared_mem.h"

to make the class definition available to the compiler. When compiling the source file, 

include the message queue object code file

linux$  g++  your_file_name.cxx   Shared_mem.o

Program 8.8 uses the Shared_mem class. This program is passed a small integer value

(1–6) on the command line. It goes on to generate a number of child processes. The

first process generated is considered to be process 0, the next 1, and so on. As each

process is generated, it displays its number in the sequence. To make things a bit

more interesting, the output is displayed in a tree-like format. The height of the tree

http://www.gnu.org


being the value passed in on the command line. Common information, such as the

process sequence number, the width of field for output, etc. are stored in a shared

memory which is available to the parent and all child processes. The source for the

program is shown as in Program 8.8.

Program 8.8 Using the shared memory class.

File : p8.8 .cxx

  |     #include <iostream>

  |     #include <iomanip>

  |     #include <sys/types.h>

  |     #include <sys/wait.h>

  +     #include "Shared_mem.h"

  |     int

  |     main(int argc, char *argv[]) {

  |       int    n;

  |       Shared_mem<int> s[4];                      <-- 1

 10       if (argc < 2 || (n = atoi(argv[1])) > 6 || n < 1 ) {

  |         cerr << "Usage: " << argv[0] << " value 1-6" << endl;

  |         return 1;

  |       }

  |       setbuf(stdout, NULL);                // Standard output is unbuffered

  +                                            // Starting values

  |       s[0].Put(0);                         // Process counter

  |       s[1].Put(1);                         // Process # when @ end of line

  |       s[2].Put(64);                        // Output width

  |       s[3].Put(0);                         // Process # that starts new line

 20       cout <<  "\t\t\tTree of level " << n << endl << endl;

  |       for (int i=0; i < n; ++i) {

  |         if ( !fork() ) {                   // in the child

  |           int temp_width = s[2].Get();     // get output width

  |           if ((s[0].Get()) == s[3].Get())  // if @ start of line use 1/2

  +             temp_width /= 2;

  |           cout << setiosflags(ios::uppercase) << hex

  |                << setw(temp_width) << (s[0].Get()) % 16;

  |           s[0].Put(s[0].Get()+1);          // count the process

  |         }

 30         if ( s[0].Get() == s[1].Get() ){   // If at the end of line

  |          s[1].Put( s[1].Get() * 2 + 1 );   // update end of line process #

  |          s[2].Put( s[2].Get() / 2 );       // decrease output width

  |          s[3].Put( s[0].Get() );           // new sart of line process #

  |           cout << endl << endl;

  +         }

  |         wait(0);                           // wait for the child to finish!



  |       }

  |       return 0;

  |     }

(1) Instantiate an array of shared memory objects—each to hold an

integer value.

In line 9 of the program, a four-element array of shared memory objects is 

instantiated. In line 14 the setbuf library function is used to turn off line buffering of 

standard out. Data streams can be block buffered, line buffered, or unbuffered. With 

block buffering, the operating system saves data in a temporary location until it has a 

block, at which time it performs the I/O operation. File I/O is normally block buffered. 

With line buffering, data is saved until a newline is encountered, while unbuffered data 

is made available immediately. The fflush library function can also be used to force the 

system to transfer data, as will the closing of a stream (fclose). By default, standard 

output (stdout, cout) is line buffered, while standard error (stderr, cerr) is not. Setting I/O 

to unbuffered causes the standard library I/O functions to call the underlying I/O 

system call for each character of data, which in turn increases the amount of CPU 

time the process requires. Beneath the covers, setbuf is actually an alias to the setvbuf

library call. As used in the program example, the first argument of setbuf references the 

file stream, while second argument references the buffer where data is to be stored. If 

the second argument is set to NULL (as is our case), only the mode of the stream is 

affected.

Lines 16 through 20 establish the initial contents of the shared memory segments. 

The for loop is driven by the value passed on the command line. Each pass through 

the loop generates one level of the output display. The call to fork generates a child 

process. Each child process announces its presence by displaying a hexadecimal 

sequence value at a specific location. Back in the parent, a check is made to 

determine if the current shared memory values need to be adjusted (such as when at 

the end of a line of output). The parent process waits for the child to terminate (line 

36).

Figure 8.12 shows the output generated when the program is run and passed the 

value 4. Note the dotted lines were not produced by the program.

Figure 8.12. A run of program p8.7 when passed the value 4.



8-10 EXERCISE

Program 8.8 will fail if the call to wait (line 36) is removed (verify this by 

commenting it out and recompiling the program). Why is this? Modify 

Program 8.8 so that it will produce correct output without using the call to wait

in line 36. Hint: Consider using a semaphore to synchronize the access to 

the shared memory segment(s).

8-11 EXERCISE

As presented, the shared memory class allocates a segment to hold a single 

occurrence of the specified data type. While this is fine for a small number of 

individual values, it is not a good solution for, say, long sequences of 

character data. Rewrite the shared memory class to support the passing of 

an integer value to the class constructor to indicate a repetition number. For 

example, passing a 3 would allocate a segment large enough to store 3 of 

the specified data type (the default would be 1). Rewrite Program 8.8 using 

your modified shared memory class. Keep in mind that you may need to 

adjust other methods in the class to accommodate this change.
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8.7 Summary

Shared memory provides the user with an efficient means of communication via the 

sharing of data that resides in memory. Unlike pipe-based communications, this data 

can be accessed in a nonserial (random) manner. To prevent inconsistencies, 

semaphores are often used to coordinate access to shared memory segments. When 

using System V-based shared memory techniques, shared memory segments are 

generated with the shmget system call. If a shared memory segment has already been 

created, the shmget call provides the process with access to the segment. The shmctl

system call is used to obtain the status of a memory segment, set permissions, and 

remove a shared memory segment. The shmat and shmdt system calls are used to 

attach (map the segment into the process's address space) and detach memory 

segments.

The mmap system call may also be used to map the virtual memory space of a process

to a file. As files remain after a process has terminated, mmaped files provide a means 

for communicating information between processes that exist at different times. 

Overall, mmap-based techniques are less complex and somewhat more portable than 

their System V-based counterparts.
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8.8 Key Terms and Concepts

#pragma implementation

#pragma interface

MAP_DENYWRITE

MAP_EXECUTABLE

MAP_FIXED

MAP_GROWSDOWN

MAP_LOCKED

MAP_NORESERVE

MAP_PRIVATE

MAP_SHARED

memcpy library function

mmap system call

msync system call

munmap system call

PROT_EXEC

PROT_NONE

PROT_READ



PROT_WRITE

setbuf library function

Shared memory

SHM_LOCK

SHM_RND

SHM_UNLOCK

shmat system call

shmctl system call

shmdt system call

shmget system call

SHMLBA

SHMMAX

SHMMIN

SHMMNI

SHMSEG
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Chapter 9. Remote Procedure Calls
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9.1 Introduction

So far, the examples we have worked with have been run on the same workstation or host. However, 

as we gain expertise with interprocess communication techniques, it becomes evident that there will 

be many occasions when we will want to communicate with processes that may reside on different 

workstations. These workstations might be on our own local area network or part of a larger wide area 

network. In a UNIX-based, networked computing setting, there are several ways that communications 

of this nature can be implemented. This chapter examines the techniques involved with remote 

procedure calls (RPC).[1] As a programming interface, RPCs are designed to resemble standard, local 

procedure (function) calls. The client process (the process making the request) invokes a local 

procedure commonly known as a client stub that contains the network communication details and the 

actual RPC. The server process (the process performing the request) has a similar server stub, which 

contains its network communication details. Neither the client nor the server needs to be aware of the 

underlying network transport protocols. The programming stubs are usually created using a protocol 

compiler, such as Sun Microsystems rpcgen. This chapter is based on Sun's RPC implementation as 

ported to Linux. The protocol compiler is passed a protocol definition file written in a C-like language. 

For rpcgen, the language used is called RPC language. The protocol definition file contains a definition 

of the remote procedure, its parameters with data types, and its return data type.

[1] The word remote in RPC is somewhat misleading. RPCs can also be used by 

processes residing on the same host (indeed, this approach is often used when 

debugging routines that contain RPCs).

When the client invokes an RPC (generates a request), the client waits for the server to reply. Since 

the client must wait for a response, several coordination issues are of concern:

How long should a client wait for a reply from the server (the server could be down or very 

busy)? In general, RPCs address this problem by using a default timeout to limit the client's 

wait time.

If the client makes multiple, identical requests, how should the server handle it? The resolution 

of this problem proves to be program-specific. Depending upon the type of processing (such as 

a read request), the requested activity may indeed be done several times. In other settings, 

such as transaction processing, the request must be done only once. In these settings, the 

software must implement its own management routines. By definition, RPCs are independent 

of transport protocols; however, if an RPC runs on top of a reliable transport (such as TCP), 

the client can infer from receiving a reply from the server process that its request will be 

executed.



How can call-by-reference (the passing of address pointers) be implemented when the 

processes reside in separate process spaces? Further, it is entirely possible that the client and 

server processes, while not being on the same system, may even be executing on different 

platforms (e.g., Sun, VAX, IBM, etc.). To resolve these issues and to ensure that client and 

server processes can communicate using RPC, the data that is passed between the processes 

is converted to an architecture-independent representation. The data format used by Sun is 

known as XDR (eXternal Data Representation). The client and server program stubs are 

responsible for translating the transmitted data to and from the XDR format. This process is 

known as serialization and deserialization. The high-level relationships of client and server 

processes using an RPC are shown in Figure 9.1.

Figure 9.1. An RPC client–server communications overview.

We will find that, while hidden from the casual user, RPC uses socket-based communication. The 

details of socket-based communication are covered in Chapter 10, "Sockets."

At a system level, the rpcinfo command can be used to direct the system to display all of the currently 

registered RPC services. When the -p flag is passed to rpcinfo, the services for the current host are 

displayed. The rpcinfo command is often located in /usr/sbin. If this is the case on your system, /usr/sbin

should be part of the search path (so you will not have to fully qualify the path for each invocation). 

Some versions of rpcinfo require the host name to be specified. If you do not know the host name, the 

hostname command will display the name of the host upon which you are working.
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9.2 Executing Remote Commands at a System Level

Before delving into the fine points of RPCs from a programming standpoint, it is 

instructive to look at the execution of remote commands at a system (command-line) 

level. Most UNIX systems offer several commands that allow the user to execute 

commands on a remote system. Historically, the most commonly supported remote 

execution command is rsh (the remote shell command).

The rsh command connects to a specified host and executes the indicated command. 

Standard input from the local host is copied to standard input on the remote host. The 

remote host's standard output and error will be copied to the local host's standard 

output and error respectively. Signals such as interrupt, quit, and terminate are 

passed on to the remote host. As the rsh command has proven to be a security risk, 

users are encouraged to use, in its place, the ssh command found in the OpenSSH 

suite of tools. The ssh command provides secure encrypted communication between 

two hosts and supports more secure methods for authenticating a user (more on this 

will follow in a bit).

The general syntax for the ssh command is

linux$ ssh remote_host_name the_command

Figure 9.2 demonstrates using ssh on a system called linux to run the who command on 

the remote system called morpheus.

Figure 9.2 A typical ssh command.

linux$ ssh morpheus who

gray@morpheus's password:                            <-- 1

root     console    Feb 18 11:54     (:0)

root     pts/6      Mar 28 14:03     (:0.0)

gray     pts/2      Apr  8 11:29     (zeus)

root     pts/7      Apr  5 12:37     (:0.0)

root     pts/8      Mar 28 13:02     (:0.0)

root     pts/3      Mar 14 12:11     (:0.0)



root     pts/9      Apr  4 12:10     (:0.0)

root     pts/10     Apr  4 12:15     (:0.0)

(1) No echo of password when entered.

The remote system (in this case morpheus) prompts for the user's password (as 

required for the remote system). The output of the command is displayed on the local 

host linux. It is possible to redirect the output produced by the remote command. 

However, there are some interesting wrinkles that we should be aware of when we 

specify I/O redirection with the command to be remotely executed. For example, the 

two command sequences that follow appear to be very similar:

linux$ ssh morpheus who > /tmp/whoosie

linux$ ssh morpheus who ">" /tmp/whoosie

The first command sequence places the output of the who command in the file whoosie

in the tmp directory of the local host linux. The second command sequence places the 

output of the who command in the file whoosie in the tmp directory of the remote host 

morpheus! This occurs because in the second command sequence the redirection, 

which has been placed in quotes, is passed as part of the remote command and is not

acted upon by the local host. If ssh is passed just the host name and not passed a 

command to execute, it will log into the specified host and provide the shell specified 

in the user's password entry. All communications with the remote shell are encrypted.

For ssh to execute a remote command, the user issuing the command must be 

authenticated.[2] This can be accomplished in a number of ways. Similar to rsh, if the 

host the user is logging in from is listed in the remote host's /etc/hosts.equiv (or 

/etc/shosts.equiv) file, and the user's login name is the same on both systems, the user 

is permitted access. Failing this, if the user's $HOME/.rhosts (or $HOME/.shosts) file on

the remote host has the name of the local host and user's login name, then the user is

are granted access. However, as this sort of authentication is inherently insecure (due

to IP, DNS, and routing spoofing), it is normally combined with public–private key

encryption authentication.

[2] The need for system security today is much different than it was, say, 

even 5 years ago. An in-depth discussion of security is beyond the 

scope of this text.



For ssh public–private authentication can be specified in a number of ways (the

following is an overview—see the manual page on ssh for the all the gory details). The 

configuration file sshd_config (which is most often in the /etc/ssh directory) designates 

the authentication method. While four different approaches are available, most system 

administrators opt to let the system authenticate a request either by checking the 

user's public key or by prompting the user for his or her normal login password (the 

default).

The public–private key approach deserves some additional discussion. A user

generates a public–private key pair by running the ssh-keygen utility. Newer versions of 

this utility permit the user to specify the type (-t) of key to be created. The choices are 

protocol version 1 (specified as rsa1) or protocol version 2 (specified as rsa or dsa). If 

rsa1 is specified, the keys are placed in separate files (usually called identity and 

identity.pub for private and public keys respectively) in the $HOME/.ssh directory. While 

permission-wise the identity.pub file is accessible to all, the identity file should not be 

readable by anyone other than its owner. The first time ssh is used to access a remote 

system, authentication information is added by ssh to the user's $HOME/.ssh/known_hosts

file. Figure 9.3 shows the process of generating a public–private key and then using

ssh to connect from a remote host back to the author's base system 

(linux.hartford.edu).

Figure 9.3 Creating a public–private key and using ssh to access a system for the first time.

[View full width]

[gray@remote_sys ~]$ ssh-keygen -t rsa1              <-- 1

Generating public/private rsa1 key pair.

Enter file in which to save the key (/home/gray/.ssh/identity):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/gray/.ssh/identity.

Your public key has been saved in /home/gray/.ssh/identity.pub.

The key fingerprint is:

6b:8d:a5:32:7d:8e:cc:66:56:c2:60:5b:a3:76:23:10 gray@remote_sys.somewhere.edu

[gray@remote_sys ~] ssh linux.hartford.edu           <-- 2

The authenticity of host 'linux.hartford.edu(137.49.6.1)' can't be established.

http://linux.hartford.edu


RSA key fingerprint is 4b:a4:ac:a6:4f:22:43:e1:1a:35:6d:b9:19:41:fd:ba.

Are you sure you want to continue connecting (yes/no)? yes

Warning:Permanently added 'linux.hartford.edu,137.49.6.1' (RSA) to the list of known 

hosts.

gray@linux.hartford.edu's password:

Last login: Tue Apr  9 08:20:26 2002 from remote_sys.somewhere.edu

Red Hat Linux Thu Mar 29 18:44:10 CST 2001

[gray@linux ~]$

(1) Create a rsa1 type public and private key pair.

(2) From remote system, use ssh to access home system.
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9.3 Executing Remote Commands in a Program

The library function rexec can be used in a program to execute a system-level 

command on a remote host. In many ways we can think of the rexec library function as 

a remote version of the system call system that was discussed earlier, as it allows us to 

request the execution of a command on a remote system. The syntax for rexec is 

summarized in Table 9.1.

Table 9.1. Summary of the rexec Library Call.

Include File(s) <netdb.h> Manual Section 3

Summary
int rexec( char **ahost,    unsigned short inport,

           char *user,      char *passwd,

           char *cmd,       int *fd2p );

Return

Success Failure Sets errno

A stream socket file descriptor -1  

The rexec library call takes six arguments. The first is a reference to the name of the 

remote host. This reference is passed by rexec to the gethostbyname network call for 

authentication (the details of the gethostbyname function are covered in Chapter 10). 

The second argument, inport, is an integer value that indicates the port to be used for 

the connection. Most often, the port number used with rexec is 512 (the port associated 

with the execution of remote commands, using TCP protocol). The port argument is 

followed by two character-string reference arguments that indicate the user's name 

and password respectively. If these entries are set to NULL, the system checks the 

contents of the file .netrc that resides in the user's home directory for machine (host), 

login (user name), and password information. If the $HOME/.netrc file does not exist or it 

contains only partial information, the user is prompted for his or her name and/or 

password. The sixth argument to rexec is a reference to an integer. If this value is not 

0, rexec assumes it is a reference to a valid file descriptor and maps a standard error 

from the execution of the remote command to the indicated file descriptor. If the rexec



command is successful, it returns a valid stream socket file descriptor that is mapped 

to the local host's standard input and output. If the rexec function fails, it returns a -1.

Program 9.1 demonstrates the use of the rexec library call.

Program 9.1 Using rexec in a program.

[View full width]

File : p9.1.cxx                           Note that on some systems you may need to 

install

  |     /*                                the nfs-utils, rsh, and rsh-server

  |          Using rexec                  packages to run this program. The package

  |     */                                manager rpm can be used to check if these

  |     #define _GNU_SOURCE               packages have been installed, e.g.,

  +     #include <iostream>

  |     #include <cstdio>                 $ /bin/rpm -qv nfs-utils

  |     #include <sys/types.h>

  |     #include <unistd.h>               Additionally, the rexec server service may need to

  |     #include <netinet/in.h>           be turned on. This can be accomplished with the

 10     #include <netdb.h>                chkconfig utility:

  |     using namespace std;

  |     int                               # /sbin/chkconfig --level 5 rexec on

  |     main(int argc, char *argv[]) {

  |       int    fd, count;

  +       char   buffer[BUFSIZ], *command, *host;

  |       if (argc != 3) {

  |         cerr <<  "Usage " << argv[0] << " host command" << endl;

  |         return 1;

  |       }

 20       host   = argv[1];

  |       command= argv[2];

  |       if ((fd=rexec(&host,htons(512),NULL,NULL,command,(int *)0)) == -1) {

  |         perror("rexec ");

  |         return 2;

  +       }

  |       while ((count = read(fd, buffer, BUFSIZ)) > 0)

  |         fwrite(buffer, count, 1, stdout);

  |       return 0;

  |     }

In Program 9.1 the first command-line argument is the host on which the remote 

command will be executed. The second command-line argument is the command that



will be passed to the remote host. The invocation of the rexec function (line 22) uses 

the htons network call on its second argument to ensure the proper network byte 

ordering when specifying the port number.[3] The prototype for htons resides in the 

include file <netinet/in.h>. The arguments for the user name and password are set to 

NULL. This directs rexec to first check the .netrc file in the owner's home directory for 

user name and password information. If the .netrc file is not present or is incomplete, 

rexec prompts the user for this information. Note that while this is technically how 

things should work, on our system (running Red Hat Linux version 7.1) unless the 

.netrc file is present and its contents complete (includes the host and the user's login 

and password), the rexec call will fail. In a weak attempt to gain at least a semblance of 

security, rexec will read .netrc files whose permissions are read only for the file's owner. 

If the rexec call completes without error, the output from the execution of the command 

on the remote host is read and displayed to standard output on the local host. Figure 

9.4 shows a compilation and run of Program 9.1. Note in some versions of the OS the 

library -lnsl and/or -lsocket may need to be included as the object code for the network 

functions may reside in these separate libraries.

[3] On i80x86 platforms the host byte order is LSB (least significant byte 

first), while on the Internet the byte order is MSB (most significant byte 

first).

Figure 9.4 Using Program 9.1.

linux$ g++ p9.1.cxx -o p9.1

linux$ p9.1 morpheus df

/                  (/dev/dsk/c0t0d0s0 ): 1066026 blocks   241598 files

/usr               (/dev/dsk/c0t0d0s4 ): 3538746 blocks   384628 files

/proc              (/proc             ):       0 blocks     3768 files

/dev/fd            (fd                ):       0 blocks        0 files

/etc/mnttab        (mnttab            ):       0 blocks        0 files

. . .

The rexec function communicates with rexecd (the remote execution daemon) on the 

host system. While the rexec function is interesting and does provide a somewhat

painless (but generally insecure) way to execute commands on a remote host, we

more frequently will want to write our own client– server pairs that will perform

specific, directed tasks.

To round out the discussion, a command-line version of rexec can also be found in 



Linux. Usually, it resides in the /usr/bin directory. Its general syntax is

linux$  rexec [options] -l user_name  -p password  host  the_command

Unlike its library function counterpart, the command-line version of rexec does not 

seem to choke if the user's .netrc file is not fully qualified, and it will know enough to 

prompt if a user's login or password are omitted.
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9.4 Transforming a Local Function Call into a Remote Procedure

We begin our exploration of RPC programming by converting a simple program with a

single local function call into a client–server configuration with a single RPC. Once

generated, this RPC-based program can be run in a distributed setting whereby the

server process, which will contain the function to be executed, can reside on a host

different from the client process. The program that we will convert (Program 9.2) is a C

program[4] that invokes a single local function, print_hello, which generates the 

message Hello, world. As written, the print_hello function will display its message and 

return to the function main the value returned from printf. The returned value indicates 

whether printf was successful in carrying out its action.[5]

[4] Up to this point, our examples have been primarily C++-based. Due to 

the inability of the compiler to handle full blown C++ code in conjunction 

with rpcgen-generated output, we will stick to C program examples in this 

section. Think of this as an opportunity to brush up on your C 

programming skills!

[5] Many programmers are not aware that printf returns a value. However, 

a pass of any C program with a printf function through the lint utility will 

normally return a message indicating that the value returned by printf is 

not being used.

Program 9.2 A simple C program to display a message.

File : hello.c

  |     /*

  |           A C program with a local function

  |     */

  |     #include <stdio.h>

  +     int print_hello( );

  |     int

  |     main( ){

  |       printf("main : Calling function.\n");



  |       if (print_hello())

 10         printf("main : Mission accomplished.\n");

  |       else

  |         printf("main : Unable to display message.");

  |       return 0;

  |     }

  +     int

  |     print_hello( ) {

  |       return printf("funct: Hello, world.\n");

  |     }

In its current configuration, the print_hello function and its invocation reside in a single 

source file. The output of Program 9.2 when compiled and run is shown in Figure 9.5.

Figure 9.5 Output of Program 9.2.

linux$ hello

main : Calling function.

funct: Hello, world.

main : Mission accomplished

The first step in converting a program with a local function call to an RPC is for the

programmer to create a protocol definition file. This file will help the system keep track

of what procedures are to be associated with the server program. The definition file is

also used to define the data type returned by the remote procedure and the data types

of its arguments. When using RPC, the remote procedure is part of a remote program

that runs as the server process. The RPC language is used to define the remote

program and its component procedures. The RPC language is actually XDR with the

inclusion of two extensions—the program and version types. Appendix C addresses the 

syntax of the RPC language. For the diligent, the manual pages on xdr provide a good 

overview of XDR data type definitions and syntax.

Figure 9.6 contains the protocol definition file for the print_hello function. Syntactically, 

the RPC language is a mix of C and Pascal. By custom, the extension for protocol 

definition files is .x.

The keyword program marks the user-defined identifier DISPLAY_PRG as the name of 

the remote procedure program.[6] The program name, like the program name in a 

Pascal program, does not need to be the same as the name of the executable file. 

The program block encloses a group of related remote procedures. Nested within the 



program definition block is the keyword version followed by a second user-generated 

identifier, DISPLAY_VER, which is used to identify the version of the remote procedure. 

It is permissible to have several versions of the same procedure, each indicated by a 

different integer value. The ability to have different versions of the same procedure 

eases the upgrade process when updating software by facilitating backward 

compatibility. If the number of arguments, the data type of an argument, or the data 

type returned by the function change, the version number should be changed.

[6] Most often, the identifiers placed in the protocol definition file are in 

capitals. Note that this is a convention, not a requirement.

Figure 9.6 Protocol definition file hello.x.

File : hello.x

  |     /*

  |         This is the protocol definition file. The programmer writes

  |         this file using the RPC language. This file is passed to the

  |         protocol generator rpcgen. Every remote procedure is part of

  +         a remote program. Each procedure has a name and number. A

  |         version number is also supplied so different versions of the

  |         same procedure may be generated.

  |     */

  |     program DISPLAY_PRG {

 10       version DISPLAY_VER {

  |         int print_hello( void ) = 1;

  |       } = 1;

  |     } = 0x20000001;

As this is our first pass at generating a remote procedure, the version number is set to 

1 after the closing brace for the version block. Inside the version block is the 

declaration for the remote procedure (line 11).[7] A procedure number follows the 

remote procedure declaration. As there is only one procedure defined, the value is set 

to 1. An eight-digit hexadecimal program number follows the closing brace for the 

program block. The program, version, and procedure numbers form a triplet that 

uniquely identifies a specific remote procedure. To prevent conflicts, the numbering 

scheme shown in Table 9.2 should be used in assigning version numbers.

[7] If the procedure name is placed in capitals, the RPC compiler, rpcgen, 

will automatically convert it to lowercase during compilation.



Protocol specifications can be registered with Sun by sending a request (including the 

protocol definition file) to rpc@sun.com. Accepted specifications will receive a unique

program number from Sun (in the range 00000000–1FFFFFFF).

Table 9.2. RPC Program Numbers.

Numbers Description

00000000 - 1FFFFFFF Defined by Sun

20000000 - 3FFFFFFF User-defined

40000000 - 5FFFFFFF User-defined for programs that dynamically allocate numbers

60000000 - FFFFFFFF Reserved for future use

A check of the file /etc/rpc on your system will display a list of some of the RPC 

programs (and their program numbers) known to the system.

As shown below, the name of the protocol definition file is passed to the RPC protocol 

compiler, rpcgen, on the command line

$ rpcgen -C hello.x

The rpcgen compiler produces the requisite C code to implement the defined RPCs. 

There are a number of command-line options for rpcgen, of which we will explore only 

a limited subset. A summary of the command-line options and syntax for rpcgen is 

given in Figure 9.7.

Figure 9.7 Command-line options for rpcgen.

usage: rpcgen infile

   rpcgen [-abkCLNTM][-Dname[=value]] [-i size] [-I [-K seconds]] [-Y path] infile

   rpcgen [-c | -h | -l | -m | -t | -Sc | -Ss | -Sm] [-o outfile] [infile]

   rpcgen [-s nettype]* [-o outfile] [infile]

   rpcgen [-n netid]* [-o outfile] [infile]

options:

-a              generate all files, including samples

-b              backward compatibility mode (generates code for SunOS 4.1)

-c              generate XDR routines

-C              ANSI C mode



-Dname[=value]  define a symbol (same as #define)

-h              generate header file

-i size         size at which to start generating inline code

-I              generate code for inetd support in server (for SunOS 4.1)

-K seconds      server exits after K seconds of inactivity

-l              generate client side stubs

-L              server errors will be printed to syslog

-m              generate server side stubs

-M              generate MT-safe code

-n netid        generate server code that supports named netid

-N              supports multiple arguments and call-by-value

-o outfile      name of the output file

-s nettype      generate server code that supports named nettype

-Sc             generate sample client code that uses remote procedures

-Ss             generate sample server code that defines remote procedures

-Sm             generate makefile template

-t              generate RPC dispatch table

-T              generate code to support RPC dispatch tables

-Y path         directory name to find C preprocessor (cpp)

9-1 EXERCISE

Other than standard C comments, rpcgen will attempt to interpret all of the 

lines in the protocol definition file. How do you notify rpcgen that you would 

like to have a statement passed on without having it interpreted? Hint: Read 

the manual page for rpcgen carefully.

In our invocation, we have specified the -C option requesting rpcgen output conform to 

the standards for ANSI C. While some versions of rpcgen generate ANSI C output by 

default, the extra keystrokes ensure rpcgen generates the type of output you want. 

When processing the hello.x file, rpcgen creates three output files—a header file, a client

stub, and a server stub file. Again, by default rpcgen gives the same name to the 

header file as the protocol definition file, replacing the .x extension with .h.[8] In 

addition, the client stub file is named hello_clnt.c (the rpcgen source file name with _clnt.c

appended), and the server stub file is named hello_svc.c (using a similar algorithm). 

Should the default naming convention be too restrictive, the header file as well as the 

client and server stub files can be generated independently and their names uniquely 

specified. For example, to generate the header file with a uniquely specified name, 

rpcgen would be passed the following options and file names:



[8] This can be a troublesome default if, per chance, you have also 

generated your own local header file with the same name and 

extension.

linux$ rpcgen -C -h -o unique_file_name  hello.x

With this invocation, rpcgen will generate a header file called unique_file_name.h. Using a 

similar technique, unique names for the client and server stub files can be specified 

with the -Sc and -Ss options (see Figure 9.7 for syntax details).

The contents of the header file, hello.h, generated by rpcgen is shown in Figure 9.8.

Figure 9.8 File hello.h generated by rpcgen from the protocol definition file hello.x.

File : hello.h

  |     /*

  |      * Please do not edit this file.

  |      * It was generated using rpcgen.

  |      */

  +

  |     #ifndef _HELLO_H_RPCGEN

  |     #define _HELLO_H_RPCGEN

  |

  |     #include <rpc/rpc.h>

 10

  |

  |     #ifdef __cplusplus

  |     extern "C" {

  |     #endif

  +

  |

  |     #define DISPLAY_PRG 0x20000001

  |     #define DISPLAY_VER 1

  |

 20     #if defined(__STDC__) || defined(__cplusplus)

  |     #define print_hello 1

  |     extern  int * print_hello_1(void *, CLIENT *);

  |     extern  int * print_hello_1_svc(void *, struct svc_req *);

  |     extern int display_prg_1_freeresult (SVCXPRT *, xdrproc_t, caddr_t);

  +

  |     #else /* K&R C */

  |     #define print_hello 1

  |     extern  int * print_hello_1();



  |     extern  int * print_hello_1_svc();

 30     extern int display_prg_1_freeresult ();

  |     #endif /* K&R C */

  |

  |     #ifdef __cplusplus

  |     }

  +     #endif

  |

  |     #endif /* !_HELLO_H_RPCGEN */

The hello.h file created by rpcgen is referenced as an include file in both the client and 

server stub files. The #ifndef _HELLO_H_RPCGEN, #define _HELLO_H_RPCGEN, and #endif

preprocessor directives prevent the hello.h file from being included multiple times. 

Within the file hello.h, the inclusion of the file <rpc/rpc.h>, as noted in its internal 

comments, ". . . just includes the billions of rpc header files necessary to do remote 

procedure calling."[9] The variable __cplusplus (see line 20) is used to determine if a 

C++ programming environment is present. In a C++ environment, the compiler 

internally adds a series of suffixes to function names to encode the data types of its 

parameters. These new "mangled" function names allow C++ to check functions to 

ensure parameters match correctly when the function is invoked. The C compiler does

not provide the mangled function names that the C++ compiler needs. The C++ 

compiler has to be warned that standard C linking conventions and non-mangled 

function names are to be used. This is accomplished by the lines following the #ifdef 

__cplusplus compiler directive.

[9] While this comment is somewhat tongue-in-cheek, it is not all that 

farfetched (check it out)!

The program and version identifiers specified in the protocol definition file are found in 

the hello.h file, as defined constants (lines 17 and 18). These constants are assigned 

the value specified in the protocol definition file. Since we indicated the -C option to 

rpcgen (standard ANSI C), the if branch of the preprocessor directive (i.e., #if defined 

(__STDC__)) contains the statements we are interested in. If the remote procedure 

name in the protocol definition file was specified in uppercase, it is mapped to 

lowercase in the header file. The procedure name is defined as an integer and 

assigned the value previously given as its procedure number. Note that we will find 

this defined constant used again in a switch statement in the server stub to select the 

code to be executed when calling the remote procedure.



Following this definition are two print_hello function prototypes. The first prototype, 

print_hello_1, is used by the client stub file. The second, print_hello_1_svc, is used by the 

server stub file. The naming convention used by rpcgen is to use the name of the 

remote procedure as the root and append an underscore (_), version number (1), for 

the client stub, and underscore, version number, underscore, and svc for the server. 

The else branch of the preprocessor directive contains a similar set of statements that 

are used in environments that do not support standard C prototyping.

Before we explore the contents of the client and server stub files created by rpcgen, we 

should look at how to split our initial program into client and server components. Once 

the initial program (for example hello.c) is split, and we have run rpcgen, we will have 

the six files shown in Figure 9.9 available to us.

Figure 9.9. Client-server files and relationships.

We begin with writing the client component. As in the initial program, the client 

invokes the print_hello function. However, in our new configuration, the code for the 

print_hello function, which used to be a local function, resides in a separate program 

that is run by the server process. The code for the client component program, which 

has been placed in a file named hello_client.c, is shown in Program 9.3.



Program 9.3 The client program hello_client.c.

File : hello_client.c

  |     /*

  |         The CLIENT program:  hello_client.c

  |         This will be the client code executed by the local client process.

  |      */

  +     #include <stdio.h>

  |     #include "hello.h"             /* Generated by rpcgen from hello.x  */

  |     int

  |     main(int argc, char *argv[]) {

  |       CLIENT         *client;

 10       int            *return_value, filler;

  |       char           *server;

  |     /*

  |         We must specify a host on which to run.  We will get the host name

  |         from the command line as argument 1.

  +      */

  |       if (argc != 2) {

  |         fprintf(stderr, "Usage: %s host_name\n", *argv);

  |         exit(1);

  |       }

 20        server = argv[1];

  |     /*

  |         Generate the client handle to call the server

  |      */

  |        if ((client=clnt_create(server,      DISPLAY_PRG,

  +                                DISPLAY_VER, "tcp")) == (CLIENT *) NULL) {

  |         clnt_pcreateerror(server);

  |         exit(2);

  |       }

  |       printf("client : Calling function.\n");

 30       return_value = print_hello_1((void *) &filler, client);

  |       if (*return_value)

  |         printf("client : Mission accomplished.\n");

  |       else

  |         printf("client : Unable to display message.\n");

  +       return 0;

  |     }

While much of the code is similar to the original hello.c program, some changes have 

been made to accommodate the RPC. Let's examine these changes point by point. At 

line 6 the file hello.h is included. This file, generated by rpcgen and whose contents 

were discussed previously, is assumed to reside locally.



In this example, we pass information from the command line to the function main in the 

client program. Therefore, the empty parameter list for main has been replaced with 

standard C syntax to reference the argc and argv parameters. Following this, in the 

declaration section of the client program, a pointer to the data type CLIENT is 

allocated. A description of the CLIENT data type is shown in Figure 9.10.

The CLIENT typedef is found in the include file <rpc/clnt.h>. The reference to the 

CLIENT data structure will be used when the client handle is generated. Following the 

declarations in Program 9.3 is a section of code to obtain the host name on which the 

server process will be running. In the previous invocation, this was not a concern, as 

all code was executed locally. However, in this new configuration, the client process 

must know the name of the host where the server process is located; it cannot 

assume the server program is running on the local host. The name of the host is 

passed via the command line as the first argument to hello_client. As written, there is no

checking to determine if a valid, reachable host name has been passed. The client 

handle is created next (line 24). This is done with a call to the clnt_create library 

function. The clnt_create library function, which is part of a suite of remote procedure 

functions, is summarized in Table 9.3.

Figure 9.10 The CLIENT data structure.

struct CLIENT {

  AUTH  *cl_auth;                                /* authenticator           */

  struct clnt_ops {

    enum clnt_stat (*cl_call) (CLIENT *, u_long, xdrproc_t, caddr_t, xdrproc_t,

                               caddr_t, struct timeval);

                                                 /* call remote procedure   */

    void (*cl_abort) (void);                     /* abort a call            */

    void (*cl_geterr) (CLIENT *, struct rpc_err *);

                                                 /* get specific error code */

    bool_t (*cl_freeres) (CLIENT *, xdrproc_t, caddr_t);

                                                 /* frees results           */

    void (*cl_destroy) (CLIENT *);               /* destroy this structure  */

    bool_t (*cl_control) (CLIENT *, int, char *);

                                                  /* the ioctl() of rpc     */

  } *cl_ops;

  caddr_t cl_private;                             /* private stuff          */

};



Table 9.3. Summary of the clnt_create Library Call.

Include File(s) <rpc/rpc.h> Manual Section 3N

Summary
CLIENT *clnt_create(char *host,  u_long prog,

                    u_long vers, char *proto );

Return

Success Failure Sets errno

A valid client handle NULL Yes

The clnt_create library call requires four arguments. The first, host, a character string 

reference, is the name of the remote host where the server process is located. The 

next two arguments, prog and vers, are, respectively, the program and version number. 

These values are used to indicate the specific remote procedure. Notice the defined 

constants generated by rpcgen are used for these two arguments. The proto argument 

is used to designate the class of transport protocol. In Linux, this argument may be set 

to either tcp or udp. Keep in mind that UDP (Unreliable Datagram Protocol) encoded 

messages are limited to 8KB of data. Additionally, UDP is, by definition, less reliable 

than TCP (Transmission Control Protocol). However, UPD does require less system 

overhead.

Table 9.4. Summary of the clnt_pcreateerror Library Call.

Include 

File(s) <rpc/rpc.h>

Manual 

Section

3N

Summary void clnt_pcreateerror(char *s);

Return

Success Failure Sets errno

Print an RPC create error message to 

standard error.

  

If the clnt_create library call fails, it returns a NULL value. If this occurs, as shown in the 

example, the library routine clnt_pcreateerror can be invoked to display a message that 

indicates the reason for failure. See Table 9.4.

The error message generated by clnt_pcreateerror, which indicates why the creation of 

the client handle failed, are appended to the string passed as clnt_pcreateerror's single 

argument (see Table 9.5 for details). The argument string and the error message are 



separated with a colon, and the entire message is followed by a newline. If you want 

more control over the error messaging process, there is another library call, 

clnt_spcreateerror (char *s ), that will return an error message string that can be 

incorporated in a personalized error message. In addition, the cf_stat member of the 

external structure rpc_createerr may be examined directly to determine the source of the 

error.

Table 9.5. clnt_creat Error Messages.

# Constant clnt_pcreate error

Message

Explanation

13 RPC_UNKNOWNHOST Unknown host Unable to find the referenced host 

system.

17 RPC_UNKNOWNPROTO Unknown 

protocol

The protocol indicated by the proto

argument is not found or is 

invalid.

19 RPC_UNKNOWNADDR Remote server 

address 

unknown

Unable to resolve address of 

remote server.

21 RPC_NOBROADCAST Broadcast not 

supported

System does not allow 

broadcasting of messages (i.e., 

sending to all rpcbind daemons on 

a network).

Returning to the client program, the prototype for the print_hello function has been 

eliminated. The function prototype is now in the hello.h header file. The invocation of 

the print_hello function uses its new name, print_hello_1. The function now returns not an 

integer value but a pointer to an integer, and has two arguments (versus none). By 

design, all RPCs return a pointer reference. In general, all arguments passed to the 

RPC are passed by reference, not by value. As this function originally did not have 

any parameters, the identifier filler is used as a placeholder. The second argument to 

print_hello_1, client, is the reference to the client structure returned by the clnt_create call. 

The server component, which now resides in the file hello_server.c, is shown in Program

9.4.



Program 9.4 The hello_server.c component.

File : hello_server.c

  |     /*

  |         The SERVER program: hello_server.c

  |         This will be the server code executed by the "remote" process

  |     */

  +     #include <stdio.h>

  |     #include "hello.h"          /* is generated by rpcgen from hello.x  */

  |     int *

  |     print_hello_1_svc(void * filler, struct svc_req * req) {

  |       static int  ok;

 10       ok = printf("server : Hello, world.\n");

  |       return (&ok);

  |     }

The server component contains the code for the print_hello function. Notice that to 

accommodate the RPC, several things have been added and/or modified. First, as 

noted in the discussion of the client program, the print_hello function now returns an 

integer pointer, not an integer value (line 7). In this example, the address that is to be 

returned is associated with the identifier ok. This identifier is declared to be of storage 

class static (line 9). It is imperative that the return identifier referenced be of type static, 

as opposed to local. Local identifiers are allocated on the stack, and a reference to 

their contents would be invalid once the function returns. The name of the function has 

had an additional _1 appended to it (the version number). As the -C option was used 

with rpcgen, the auxiliary suffix _svc has also been added to the function name. Do not 

be concerned by the apparent mismatch of function names. The mapping of the 

function invocation as print_hello_1 in the client program to print_hello_1_svc in the server 

program is done by the code found in the stub file hello_svc.c produced by rpcgen.

The first argument passed to the print_hello function is a pointer reference. If needed, 

multiple items (representing multiple parameters) can be placed in a structure and the 

reference to the structure passed. In newer versions of rpcgen, the -N flag can be used 

to write multiple argument RPCs when a parameter is to be passed by value, not 

reference, or when a value, not a pointer reference, is to be returned by the RPC. A 

second argument, struct svc_req *req, has also been added. This argument will be used 

to communicate invocation information.

The client component (program) is compiled first. When only a few files are involved, a 

straight command-line compilation sequence is adequate. Later we will discuss how to 



generate a make file to automate the compilation process. The compiler is passed the 

names of the two client files, hello_client.c (which we wrote) and hello_clnt.c (which was 

generated by rpcgen). We specify the executable to be placed in the file client. Figure 

9.11 shows details of the compilation command.

Figure 9.11 Compiling the client component.

linux$ gcc hello_client.c hello_clnt.c -o client

The server component (program) is compiled in a similar manner (Figure 9.12).

Figure 9.12 Compiling the server component.

linux$ gcc hello_server.c hello_svc.c -o server

9-2 EXERCISE

Is the filler variable really needed? Try commenting out the references to filler

in the hello_client.c and hello_server.c files. Adjust the hello.x protocol definition 

file as well. Run rpcgen and recompile the modified components. What 

happens? Why?

9-3 EXERCISE

Modify the server component of the hello application so that the server will 

remove itself if it has not been referenced over a specified period of time 

(say, 5 minutes). Use the signal system call to associate the receipt of an alarm

with a terminating function. Note that you will need to place code in both the 

hello_server.c and hello_svc.c files to accomplish this task.

Initially, we test the program by running both the client and server programs on the 

same workstation. We begin by invoking the server by typing its name on the 

command line. The server process is not automatically placed in the background, and 

thus a trailing & is needed.[10] A check of the ps command will verify the server process 

is running (see Figure 9.13).



[10] This is just the opposite of what happens in a Sun Solaris 

environment where no trailing & is needed, as the process is 

automatically placed in the background.

Figure 9.13 Running the server program and checking for its presence with ps.

linux$ server &

[1] 21149

[linux$ ps -ef | grep server

. . .

gray     21149 15854  0 08:09 pts/5    00:00:00 server

gray     21154 15854  0 08:10 pts/5    00:00:00 grep server

The ps command reports that the server process, in this case process ID 21149, is in 

memory. Its parent process ID is 15854 (in this case the login shell) and its associated 

controlling terminal device is listed as pts/5. The server process will remain in memory 

even after the user who initiated it has logged out. When generating and testing RPC 

programs, it is important the user remember to remove extraneous RPC-based server 

type processes before they log out.

When the process is run locally, the client program is invoked by name and passed 

the name of the current workstation. When this is done, the output will be as shown in 

Figure 9.14. Notice that since our system has an existing program called client that 

resides in the /usr/sbin directory, the call to our client program is made with a relative 

reference (i.e., ./client).

Figure 9.14 Running the client program on the same host as the server program.

linux$ ./client linux

client : Calling function.

server : Hello, world.

client : Mission accomplished.

While our client–server application still needs some polishing, we can test it in a

setting whereby the server runs on one host and the client on another. Say we have

the setting shown in Figure 9.15, where one host is called medusa and the other linux.

Figure 9.15. Running the client program on a remote host.



On the host linux the server program is run in the background. On the host medusa the 

client program is passed the name of the host running the server program. 

Interestingly, on the host medusa the messages Calling function. and Mission accomplished. 

are displayed, but the message Hello, world. is displayed on the host linux. This is not 

surprising, as each program writes to its standard output, which in turn is associated 

with a controlling terminal (in our example this is the same terminal that is associated 

with the user's login shell). However, it is just as likely that the server program will 

write to its standard output, but what it has written will not be seen. This happens 

when there is no controlling terminal device associated with the server process. 

Remember that the server process remains in memory until removed. It is not 

removed when the user logs out. However, when the user does log out, the operating 

system drops the controlling terminal device for the process (a call to ps will list the 

controlling terminal device for the process as ?). If, in a standard setting, there is no 

controlling terminal device associated with a process, anything the process sends to 

standard output goes into the bit bucket!

There are several ways of correcting this problem. First, the output from the server 

could be hardcoded to be displayed on the console. In this scenario, the server would, 

upon invocation, execute an fopen on the /dev/console device. The FILE pointer returned 

by the fopen call could then be used with the fprintf function to display the output on the 

console. Unfortunately, there is a potential problem with this solution: The user may 

not have access to the console device. If this is so, the fopen will fail. A second 

approach is to pass the console device of the client process to the server as the first 



parameter of the RPC. This is a somewhat better solution, but will still fail when the 

client and server processes are on different workstations with different output devices. 

A third approach is to have the server process return its message to the client and 

have the client display it locally.

9-4 EXERCISE

The following program uses the ttyname library function to display the output 

device associated with stdout.

File : ttyname.c

  |     #include <stdio.h>

  |     int

  |     main( ){

  |       char *dev = (char *)ttyname(fileno(stdout));

  +       if (dev)

  |         printf("My standard output device is %s\n", dev);

  |       else

  |         fprintf(stderr, "I don't know my standard output

  |                 device!\n");

  |       return 0;

 10     }

Modify the client and server programs so the output device associated with 

stdout is determined by the client and passed to the server as the first 

argument to the print_hello function. The server will open the device for writing 

to display the Hello, world message. Hint: The output device must be stored as 

an array of characters by the client so that it may be passed to the server. 

The void argument in the protocol definition file must be changed to reflect 

the passing of the character array. However, when making this change, you 

cannot use the data type char *, as it is ambiguous—it could be a reference

to a single character or an array of characters. In the RPC language, the

data type string is used to indicate a NULL-terminated array of characters.

9-5 EXERCISE

Write an RPC-based "time" server. When contacted by the client, the server 



should return the time. When displayed, the output should be in a 

user-friendly format.

We should also examine the two RPC stub files generated by rpcgen. The hello_clnt.c

file is quite small (Figure 9.16). This file contains the actual call to the print_hello_1

function.

Figure 9.16 The hello_clnt.c file.

File : hello_clnt.c

  |     /*

  |      * Please do not edit this file.

  |      * It was generated using rpcgen.

  |      */

  +

  |     #include <memory.h>            /* for memset */

  |     #include "hello.h"

  |

  |     /* Default timeout can be changed using clnt_control() */

 10     static struct timeval TIMEOUT = { 25, 0 };

  |

  |     int *

  |     print_hello_1(void *argp, CLIENT *clnt) {

  |             static int clnt_res;

  +             memset((char *)&clnt_res, 0, sizeof(clnt_res));

  |             if (clnt_call (clnt, print_hello,

  |                           (xdrproc_t) xdr_void, (caddr_t) argp,

  |                           (xdrproc_t) xdr_int,  (caddr_t) &clnt_res,

  |                           TIMEOUT) != RPC_SUCCESS) {

 20                             return (NULL);

  |                           }

  |             return (&clnt_res);

  |     }

As we are using rpcgen to reduce the complexity of the RPC, we will not formally 

present the clnt_call. However, in passing, we note that the clnt_call function (which 

actually does the RPC) is passed, as its first argument, the client handle that was 

generated from the previous call to clnt_creat. The second argument for clnt_call is 

obtained from the hello.h include file and is actually the print_hello constant therein. The 

third and fifth arguments are references to the XDR data encoding/ decoding routines. 

Sandwiched between these arguments is a reference, argp, to the initial argument that 

will be passed to the remote procedure by the server process. The sixth argument for 



clnt_creat is a reference to the location where the return data will be stored. The 

seventh and final argument is the TIMEOUT value. While the cautionary comments 

indicate you should not edit this file, and in general you should not, the TIMEOUT 

value can be changed from the default of 25 to some other reasonable user-imposed 

maximum.

The code in the hello_svc.c file is much more complex and, in the interest of space, not 

presented here. Interested readers are encouraged to enter the protocol definition in 

hello.x and to generate and view the hello_svc.c file. At this juncture it is sufficient to note 

that the hello_svc.c file contains the code for the server process. Once invoked, the 

server process will remain in memory. When notified by a client process, it will execute 

the print_hello_1_svc function.
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9.5 Debugging RPC Applications

Because of their distributed nature, RPC applications can be very difficult to debug. 

One easy way to test and debug an RPC application with, say, gdb, is to link the client 

and server programs without their rpcgen stubs. To do this, comment out the RPC 

reference in the client program. If the -C option was passed to rpcgen, then you must 

adjust the name of the function call appropriately (i.e., add the _svc suffix). In addition, 

you may need to cast the function call argument with the client reference to the correct 

type (i.e., struct svc_req *). Incorporating these changes with preprocessor directives, 

our hello_client.c file now would be as shown in Figure 9.17.

Figure 9.17 A "debug ready" version of hello_client.c.

File : hello_client_gdb.c

  |     /*

  |         The CLIENT program:  hello_client.c

  |         This will be the client code executed by the local client process.

  |      */

  +     #include <stdio.h>

  |     #include "hello.h"          /* Generated by rpcgen from hello.x  */

  |     int

  |     main(int argc, char *argv[]) {

   . . .                            /* SAME AS LINES 9-20 in hello_client.c */

  |     /*

  |         Generate the client handle to call the server

  |      */

  |     #ifndef DEBUG
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  +        if ((client=clnt_create(server,      DISPLAY_PRG,

  |                                DISPLAY_VER, "tcp")) == (CLIENT *) NULL) {

  |         clnt_pcreateerror(server);

  |         exit(2);

  |       }

 30       printf("client : calling function.\n");

  |       return_value = print_hello_1((void *) &filler, client);

  |     #else

  |       printf("client : calling function.\n");

  |       return_value = print_hello_1_svc((void *) &filler,

                                           (struct svc_req *)client);

  +     #endif

  |       if (*return_value)

  |         printf("client : Mission accomplished\n");

  |       else

  |         printf("client : Unable to display message\n");

 40       return 0;

  |     }

We would compile this modified version with the command sequence shown in Figure 

9.18. As none of the network libraries are referenced, the libnsl library does not need to 

be linked (for most versions of gcc, this is not a concern). The compiler is passed the -g

flag (to generate the symbol table information for gdb) and -DDEBUG is specified to 

define the DEBUG constant the preprocessor will test.

Figure 9.18 Debugging the client–server application with gdb.

linux$ gcc -DDEBUG -g hello_client_gdb.c hello_server.c   <-- 1

linux$ gdb -q a.out

(gdb) list 25,35

25         if ((client=clnt_create(server,      DISPLAY_PRG,

26                                 DISPLAY_VER, "tcp")) == (CLIENT *) NULL) {

27          clnt_pcreateerror(server);

28          exit(2);

29        }

30        printf("client : calling function.\n");

31        return_value = print_hello_1((void *) &filler, client);

32      #else

33        printf("client : calling function.\n");

34        return_value=print_hello_1_svc((void *) &filler,(struct svc_req *)client);

35      #endif

(gdb) break 34                                       <-- 2



Breakpoint 1 at 0x804853f: file hello_client_gdb.c, line 34.

(gdb) run kahuna

Starting program: /home/faculty/gray/revision/09/hello_files/a.out kahuna

client : calling function.

Breakpoint 1, main (argc=2, argv=0xbffffc34) at hello_client_gdb.c:34

34        return_value=print_hello_1_svc((void *)&filler,(struct svc_req *)client);

(gdb) step                                           <-- 3

print_hello_1_svc (filler=0xbffffbbc, req=0x80497ec) at hello_server.c:10

10        ok = printf("server : Hello, world.\n");

(gdb) list                                           <-- 4

5       #include <stdio.h>

6       #include "hello.h"        /* is generated by rpcgen from hello.x  */

7       int            *

8       print_hello_1_svc(void * filler, struct svc_req * req) {

9         static int  ok;

10        ok = printf("server : Hello, world.\n");

11        return (&ok);

12      }

(gdb) quit

The program is running.  Exit anyway? (y or n) y

(1) Compile with gcc. Define the DEBUG constant and generate the 

symbol table information.

(2) Set a break point at line 34 in the client program.

(3) Step into what was formerly the remote procedure.

(4) This is now the code for the server.
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9.6 Using RPCGEN to Generate Templates and a MAKEFILE

The rpcgen command has additional functionality to assist the developer of RPC 

applications. If the -a flag (see Figure 9.7) is passed to rpcgen, it will generate, in 

addition to the client and server stub files and header file, a set of template files for the 

client and server and a makefile for the entire application. Unlike the -C flag, which will 

cause rpcgen to overwrite preexisting stub files, the -a flag will cause rpcgen to halt with 

a warning message if the template files (with the default names) are present in the 

current directory. Therefore, it is best to use the -a flag only when you are positive the 

protocol definition file is accurate; otherwise, you must manually remove or rename 

the previously generated template files.

For example, suppose we have a program called fact.c (Program 9.5) that requests an 

integer value and returns the factorial of that value if it is within the range of values 

that can be stored in a long integer; otherwise, it returns a value of 0.

Program 9.5 The original factorial program, fact.c.

File : fact.c

  |     /*

  |         A program to calculate Factorial numbers

  |      */

  |     #include <stdio.h>

  +     int

  |     main( ){

  |       long int        f_numb, calc_fact(int);

  |       int             number;

  |       printf("Factorial Calculator\n");

 10       printf("Enter a positive integer value ");

  |       scanf("%d", &number);

  |       if (number < 0)

  |         printf("Positive values only!\n");

  |       else if ((f_numb = calc_fact(number)) > 0)

  +         printf("%d! = %d\n", number, f_numb);

  |       else

  |         printf("Sorry %d! is out of my range!\n", number);



  |       return 0;

  |     }

 20     /*

  |        Calculate the factorial number and return the result or return 0

  |        if value is out of range.

  |      */

  |     long int

  +     calc_fact(int n){

  |       long int        total = 1, last = 0;

  |       int             idx;

  |       for (idx = n; idx - 1; --idx) {

  |         total *= idx;

 30         if (total <= last)                 /* Have we gone out of range? */

  |           return (0);

  |         last = total;

  |       }

  |       return (total);

  +     }

We would like to turn the factorial program into a client–server application whereby

the client could make a request for a factorial value from the remote factorial server. 

To accomplish this, we begin by writing the protocol definition file shown in Figure 

9.19.

Figure 9.19 The protocol definition file for the factorial program.

File : fact.x

  |     /*

  |         The protocol definition file for the factorial program.

  |         The programmer generates this file.

  |     */

  +     program FACTORIAL {

  |       version ONE {

  |          long int CALC_FAC( int ) = 1;

  |       } = 1;

  |     } = 0x20000049;

We then use rpcgen with the -a and -C flags to generate the header file, the client and 

server stub files, the client and server template files, and the application Makefile. The 

details of and output from this process are shown in Figure 9.20.

Figure 9.20 Using rpcgen with the -a and -C flags.



linux$ ls

fact.x

linux$ rpcgen -a -C fact.x

linux$ ls -x

fact_client.c  fact_clnt.c  fact.h  fact_server.c  fact_svc.c  fact.x

Makefile.fact

As shown, passing rpcgen the protocol definition file with the -a and -C flags generates 

six files: the header file, fact.h, and the RPC stub files, fact_clnt.c and fact_svc.c, which 

are similar in content and nature to those in the previous example. The three new files 

created by rpcgen bear further investigation. The client template file is fact_client.c. 

Again, rpcgen has used the file name of the protocol definition file as the root for the file 

name and added the _client.c suffix. The contents of the fact_client.c file are shown in 

Figure 9.21.

Figure 9.21 The fact_client.c template client file generated by rpcgen.

File : fact_client.c

  |     /*

  |        This is sample code generated by rpcgen.

  |        These are only templates and you can use them

  |        as a guideline for developing your own functions.

  +     */

  |     #include "fact.h"

  |     void

  |     factorial_1(char *host) {

  |       CLIENT *clnt;

 10       long  *result_1;

  |       int  calc_fac_1_arg;

  |

  |     #ifndef DEBUG

  |       clnt = clnt_create (host, FACTORIAL, ONE, "udp");

  +       if (clnt == NULL) {

  |         clnt_pcreateerror (host);

  |         exit (1);

  |       }

  |     #endif                                 /* DEBUG */

 20       result_1 = calc_fac_1(&calc_fac_1_arg, clnt);

  |       if (result_1 == (long *) NULL) {

  |         clnt_perror (clnt, "call failed");

  |       }

  |     #ifndef DEBUG



  +       clnt_destroy (clnt);

  |     #endif                                 /* DEBUG */

  |     }

  |     int

  |     main (int argc, char *argv[]) {

 30       char *host;

  |

  |       if (argc < 2) {

  |         printf ("usage: %s server_host\n", argv[0]);

  |         exit (1);

  +       }

  |       host = argv[1];

  |       factorial_1 (host);

  |       exit (0);

  |     }

In the template file rpcgen has created a function called factorial_1 (lines 7 through 27). 

The function name is derived from the program name given in the protocol definition 

file with a suffix of _1 (the version number). As shown, the factorial_1 function is passed 

the host name. This function is used to make the RPC clnt_create call and the remote 

calc_fac_1 function call. Notice that variables for the correct argument type and function 

return type have been placed at the top of the factorial_1 function. By default, the 

transport protocol for the clnt_create call is specified as udp (versus tcp, which was used 

in the previous example). The call to the remote cal_fac_1 function is followed by a 

check of its return value. If the return value is NULL, indicating a failure, the library 

function clnt_perror (Table 9.6) is called to display an error message.

Table 9.6. Summary of the clnt_perror Library Call.

Include 

File(s) <rpc/rpc.h>

Manual 

Section

3N

Summary void clnt_perror(CLIENT *clnt, char *s );

Return

Success Failure Sets errno

Print message to standard error indicating 

why the RPC call failed.

  

The clnt_perror library call is passed the client handle from the clnt_create call and an 

informational message string. The clnt_perror message will have the informational 



message prefaced with an intervening colon.

A call to the library function clnt_destroy is also generated (Table 9.7).

The clnt_destroy function is used to return the resources allocated by the clnt_create

function to the system. As would be expected, once a client RPC handle has been 

destroyed, it is undefined and can no longer be referenced.

To facilitate testing, rpcgen has also placed a series of preprocessor directives in the 

template file. However, it seems to overlook the fact that the call to clnt_perror requires 

the network library and thus may also need to be commented out when debugging the

application. As in the previous example, if the -C option for rpcgen has been specified 

and a call to the remote factorial function (calc_fac_1) is to be made in a debug setting, 

the function name should have the string _svc appended, and the clnt argument should 

be cast to the data type ( struct svc_req * ).

Table 9.7. Summary of the clnt_destroy Library Call.

Include File(s) <rpc/rpc.h> Manual Section 3N

Summary void clnt_destroy( CLIENT *clnt );

Return

Success Failure Sets errno

   

We can now edit the fact_client.c program and add the appropriate code from the 

function main in our initial fact.c example. The modified fact_client.c program is shown in 

Figure 9.22. Note the change in the call to the calc_fact function to the factorial_1

function.

Figure 9.22 The fact_client.c template file with modifications.

File : fact_client.c

  |     /*

  |        This is sample code generated by rpcgen.

  |        These are only templates and you can use them

  |        as a guideline for developing your own functions.

  +     */

  |     #include "fact.h"



  |     long int                               /* Returns a long int  */

  |     factorial_1(int  calc_fac_1_arg, char *host) {

  |       CLIENT *clnt;

 10       long  *result_1;

  |                                            /* int  calc_fac_1_arg;*/

  |

  |     #ifndef DEBUG

  |       clnt = clnt_create (host, FACTORIAL, ONE, "udp");

  +       if (clnt == NULL) {

  |         clnt_pcreateerror (host);

  |         exit (1);

  |       }

  |     #endif                                 /* DEBUG */

 20       result_1 = calc_fac_1(&calc_fac_1_arg, clnt);

  |       if (result_1 == (long *) NULL) {

  |         clnt_perror (clnt, "call failed");

  |       }

  |     #ifndef DEBUG

  +       clnt_destroy (clnt);

  |     #endif                                 /* DEBUG */

  |       return *result_1;                   /* return value to main */

  |     }

  |     int

 30     main (int argc, char *argv[]) {

  |       char *host;

  |       long int f_numb;                     /* Own declarations     */

  |       int      number;

  |       if (argc < 2) {

  +         printf ("usage: %s server_host\n", argv[0]);

  |         exit (1);

  |       }

  |       host = argv[1];

  |                                            /* factorial_1 (host);  */

 40       /*

  |          Replace canned call with code from previous main in program fact.c

  |       */

  |       printf("Factorial Calculator\n");

  |       printf("Enter a positive integer value ");

  +       scanf("%d", &number);

  |       if (number < 0)

  |         printf("Positive values only!\n");

  |       else if ((f_numb = factorial_1(number, host)) > 0)

  |         printf("%d! = %d\n", number, f_numb);

 50       else

  |         printf("Sorry %d! is out of my range!\n", number);

  |       exit (0);



  |     }

In order, the modifications to the client program were as follows. First, the return type 

of the generated function (factorial_1) is changed from void to a long int. Second, the 

factorial_1 argument list is adjusted to include the numeric value that is passed. The 

data type and other information for this argument was listed at the top of the function. 

Note that to prevent the overshadowing of the parameter, this previous declaration 

must be deleted or commented out (as done in line 11). Third, the return type for the 

factorial_1 function is added at the foot of the function. Fourth, in main the appropriate 

declarations are added (see lines 32 and 33). Fifth, and last, the bulk of the code from 

main in the fact.c is copied into the main of this program. When this is done, the canned 

call to factorial_1 must be removed (or commented out) and, most importantly, the 

name of the function to be invoked must be changed from its original calc_fact to 

factorial_1.

Figure 9.23 Server template file fact_server.c generated by rpcgen.

File : fact_server.c

  |     /*

  |        This is sample code generated by rpcgen.

  |        These are only templates and you can use them

  |        as a guideline for developing your own functions.

  +      */

  |

  |     #include "fact.h"

  |     long *

  |     calc_fac_1_svc(int *argp, struct svc_req *rqstp) {

 10       static long  result;

  |       /*

  |        * insert server code here

  |        */

  |

  +       return &result;

  |     }

The server template file generated by rpcgen is shown in Figure 9.23.

As with the client template file, we now can modify the server template to incorporate 

the code for the remote procedure. The modified fact_server.c file is shown in Figure 

9.24.



Figure 9.24 The fact_server.c template file with modifications.

File : fact_server.c

  |     /*

  |        This is sample code generated by rpcgen.

  |        These are only templates and you can use them

  |        as a guideline for developing your own functions.

  +      */

  |

  |     #include "fact.h"

  |     long *

  |     calc_fac_1_svc(int *argp, struct svc_req *rqstp) {

 10       static long  result;

  |       /*

  |        * insert server code here

  |        */

  |       long int        total = 1, last = 0;

  +       int             idx;

  |       for (idx = *argp; idx - 1; ––idx) {

  |         total *= idx;

  |         if (total <= last) {               /* Have we gone out of range? */

  |           result = 0;

 20           return (&result);

  |         }

  |         last = total;

  |       }

  |       result = total;

  +       return &result;

  |     }

The changes for the server program are more straightforward than those for the client 

program. Essentially, the function code is pasted into the indicated location. The only 

coding adjustment occurs in line 17 where idx is initialized. As the argument passed to 

this function is as reference (versus a value) it must be dereferenced.

The Makefile generated by rpcgen is shown in Figure 9.25.

Figure 9.25 Makefile.fact, generated by rpcgen.

File : Makefile.fact

  |

  |     # This is a template Makefile generated by rpcgen

  |

  |     # Parameters



  +

  |     CLIENT = fact_client

  |     SERVER = fact_server

  |

  |     SOURCES_CLNT.c =

 10     SOURCES_CLNT.h =

  |     SOURCES_SVC.c =

  |     SOURCES_SVC.h =

  |     SOURCES.x = fact.x

  |

  +     TARGETS_SVC.c = fact_svc.c fact_server.c

  |     TARGETS_CLNT.c = fact_clnt.c fact_client.c

  |     TARGETS = fact.h   fact_clnt.c fact_svc.c fact_client.c fact_server.c

  |

  |     OBJECTS_CLNT = $(SOURCES_CLNT.c:%.c=%.o) $(TARGETS_CLNT.c:%.c=%.o)

 20     OBJECTS_SVC = $(SOURCES_SVC.c:%.c=%.o) $(TARGETS_SVC.c:%.c=%.o)

|     # Compiler flags

  |

  |     CFLAGS += -g

  |     LDLIBS += -lnsl

  +     RPCGENFLAGS =

  |

  |     # Targets

  |

  |     all : $(CLIENT) $(SERVER)

 30

  |     $(TARGETS) : $(SOURCES.x)

  |             rpcgen $(RPCGENFLAGS) $(SOURCES.x)

  |

  |     $(OBJECTS_CLNT) : $(SOURCES_CLNT.c) $(SOURCES_CLNT.h) $(TARGETS_CLNT.c)

  +

  |     $(OBJECTS_SVC) : $(SOURCES_SVC.c) $(SOURCES_SVC.h) $(TARGETS_SVC.c)

  |

  |     $(CLIENT) : $(OBJECTS_CLNT)

  |             $(LINK.c) -o $(CLIENT) $(OBJECTS_CLNT) $(LDLIBS)

 40

While the makefile can be used pretty much as generated, you may want to modify 

some of the entries in the compiler flag section. For example, you may want to add the 

-C flag to RPCGENFLAGS, or indicate that the math library should be linked by adding 

-lm to LDLIBS. If a compiler other than the default compiler (gcc on most systems) is to 

be used, you would add the notation in this section (e.g., CC = cc for Sun's C compiler 

or CC = CC for Sun's C++ compiler). The make utility will assume the Makefile it is to 

process is called makefile. As rpcgen creates a Makefile whose name is makefile with a 



period (.) root name of the protocol definition file (fact) appended, the user is left with 

two remedies. First, rename the generated Makefile to makefile by using the mv

command, or second, use the -f flag for make. If the -f flag is used with make, then the 

name of the file for make to use should immediately follow the -f flag.

Figure 9.26 presents the sequence of events on a local system when the make utility 

with the -f flag is used to generate the factorial application.

Figure 9.26 Using the Makefile.fact file.

linux$ make -f Makefile.fact

cc -g    -c -o fact_clnt.o   fact_clnt.c

cc -g    -c -o fact_client.o fact_client.c

cc -g       -o fact_client   fact_clnt.o   fact_client.o -lnsl

cc -g    -c -o fact_svc.o    fact_svc.c

cc -g    -c -o fact_server.o fact_server.c

cc -g       -o fact_server   fact_svc.o    fact_server.o -lnsl

Figure 9.27 shows a sequence for running the factorial client-server application.

In the previous example, the factorial server program is invoked on the workstation 

called linux. The ps command verifies the presence of the fact_server process. The 

factorial client program is invoked and passed the name of the host that is running the 

factorial server process. The client process requests the user to input an integer 

value. The user enters the value 11. The client process makes a remote call to the 

server process, passing it the value 11. The server process responds by calculating 

the factorial value and returning it to the client. The client process displays the 

returned result. The client process is invoked a second time and passed a value of 15. 

The value 15! is beyond the storage range for an integer on the server. Thus, the 

server returns the value 0, indicating it was unable to complete the calculation. The 

client displays the corresponding error message. Next, the user has logged onto 

another workstation on the same network (medusa) and changes to the directory where 

the executables for the factorial application reside. The ps command is used to check if

the factorial server process is present on this workstation—it is not. The factorial client

is invoked again and passed the name of the workstation running the server process

(linux). The client program requests an integer value (entered as 12). This value is 

passed, via the RPC, to the server process on the workstation linux. The factorial value 

is calculated by the server process on linux and returned to the client process on 

medusa, which displays the results to the screen.



Figure 9.27 Running the factorial client-server application.

linux$ fact_server &                                 <-- 1

[1] 24366

linux$ ps -ef | grep fact

gray     24366 24036  0 14:30 pts/2    00:00:00 fact_server

gray     24368 24036  0 14:30 pts/2    00:00:00 grep gray

linux$ fact_client linux                             <-- 2

Factorial Calculator

Enter a positive integer value 11

11! = 39916800

linux$ fact_client linux

Factorial Calculator

Enter a positive integer value 15

Sorry 15! is out of my range!

medusa$ ps -ef | grep fact_server                    <-- 3

gray     28332 28192  0 15:17 pts/1    00:00:00 grep fact_server

medusa$ fact_client linux                            <-- 4

Factorial Calculator

Enter a positive integer value 12

12! = 479001600

(1) Put the server in the background on the host called linux.

(2) Run the client program and pass it the host name linux.

(3) On a different host (medusa) verify the server program is not running.

(4) Run the client program and pass it the host name linux.



9-6 EXERCISE

Write an RPC-based client–server application that evaluates, in a single

pass in left to right order (ignoring operator precedence), a simple 

expression that consists of a series of single-digit operands and the binary 

operators +, -, / (integer division), and *. The client should process the 

expression and call the server application to perform the needed arithmetic 

operations. The server should have a separate procedure for each of the 

four operations. Try your application with the following input sequences (be 

sure to check for division by 0):

2 * 3 / 2 + 5 - 8

6 + 8 - 4 / 3

7 - 9 / 0

Hint: To pass multiple parameters, you should either make use of the -N

option for rpcgen or place the parameters to be passed in a structure and 

then pass the reference to the structure.
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9.7 Encoding and Decoding Arbitrary Data Types

For RPCs to pass data between systems with differing architectures, data is first 

converted to a standard XDR format. The conversion from a native representation to 

XDR format is called serialization. When the data is received in XDR format, it is 

converted back to the native representation for the recipient process. The conversion 

from XDR format to native format is called deserialization. To be transparent, the 

conversion process must take into account such things as native byte order,[11]

integer size, representation of floating-point values, and representation of character 

strings. Some of these differences may be hardware-dependent, while others may be 

programming language-dependent. Once the data is converted, it is assumed that 

individual bytes of data (each consisting of eight bits) are in themselves portable from 

one platform to another. Data conversion for standard simple data types (such as 

integers, floats, characters, etc.) are implemented via a series of predefined XDR 

primitive type library routines,[12] which are sometimes called filters. These filters 

return the simple data type if they successfully convert the data; otherwise, they return 

a value of 0. Each primitive routine takes a pointer to the result and a pointer to the 

XDR handle. The primitive routines are incorporated into more complex routines for 

complex data types, such as arrays. The specifics of how the data conversion is 

actually done, while interesting, is beyond the scope of a one-chapter overview of 

RPC. However, it is important to keep in mind that such routines are necessary and 

that when passing data with RPCs, the proper conversion routines must be selected. 

Fortunately, when using rpcgen, the references for the appropriate XDR conversion 



routines are automatically generated and placed in another C source file the 

application can reference. This file, containing the conversion routines for both the 

client and server, will have the suffix _xdr.c appended to the protocol definition file 

name.

[11] For example, with a 4-byte (32-bit) number, the most significant byte 

(MSB) is always leftmost and the least significant byte (LSB) rightmost. 

If the sequence of bytes composing the number is ordered from left to 

right, as in the SPARC, the order is called big endian. If the byte 

sequence is numbered from right to left, as in the i80x86 processor line, 

the order is called little endian.

[12] For more details, see the manual pages on xdr.

To illustrate how data conversion is done, we will create an application that performs a 

remote directory tree listing. When the server for this application is passed a valid 

directory name, it will traverse the indicated directory and produce an indented listing 

of all of the directory's underlying subdirectories. For example, say we have the 

directory structure shown in Figure 9.28.

Figure 9.28. A hypothetical directory structure.

If we request the application to produce a directory tree of the directory /usr0, the 

output returned from the directory tree application would be similar to that shown in 

Figure 9.29.



Figure 9.29 The directory tree listing of /usr0.

/usr0:

   home

      joe

      bill

   prgm

      ex0

      ex1

      ex2

The directory traversed is listed with a trailing colon. Following this, each subdirectory 

displayed is indented to indicate its relationship to its parent directory and sibling 

subdirectories. The subdirectories home and prgm are at the same level and thus are 

indented the same number of spaces. The subdirectories joe and bill, which are 

beneath the home directory, are indented to the same level as are the subdirectories 

ex0, ex1, and ex2, which are beneath the prgm directory.

As written, the application will pass from the client to the server the name of the 

directory to be traversed on the server. The server will allocate an array of a fixed 

size[13] to store the tree directory listing and will return the contents of the array if it is 

successful. If the server fails, it will return a NULL value. The server using the 

following high-level algorithm fills the array with the directory tree information.

[13] I know, I know, this is not the best way to do this—a dynamic

allocation would be more appropriate here, as we do not know in

advance how much storage room we will actually need. What is

presented is a pedagogical example. The modification of the text

example to use dynamic memory allocation is addressed in the exercise

section.

The passed directory reference is opened. While the directory reference is not NULL, 

each entry is checked to determine if it is accessible. Note that if the server process 

does not have root privileges, this may cause some entries to be skipped. If the entry 

is accessible and is a directory reference (versus a file reference) but not a dot entry 

(we are looking to skip the "." and ".." entries for obvious reasons), the entry is stored 

with the proper amount of indenting in the allocated array. For display purposes, each 

stored entry has an appended newline (\n) to separate it from the following entry. 

Since directory structures are recursive in nature, after processing an accessible 



directory entry, the tree display routine will call itself again, passing the name of the 

new directory entry. Once the entire contents of a directory have been processed, the 

directory is closed. When all directories and subdirectories have been processed, the 

array, with the contents of the directory tree, is returned to the client process, which 

will display its contents. The partial contents of the array returned for the previous 

example is shown in Figure 9.30.

Figure 9.30. A partial listing of the directory tree array for /usr0.

The protocol definition file tree.x for the tree program is shown in Figure 9.31.

Figure 9.31 The protocol definition file, tree.x.

File : tree.x

  |     /*

  |             Tree protocol definition file

  |     */

  |     const   MAXP  = 4096;   /* Upper limit on packet size it 8K.       */

  +     const   DELIM = "\n";   /* To separate each directory entry.       */

  |     const   INDENT= 5;      /* # of spaces to indent for one level.    */

  |     const   DIR_1 = 128;    /* Maximum length of any one directory

                                   entry.                                  */

  |

  |     typedef char line[MAXP]; /* A large storage location for all the

                                   entries                                 */

 10     typedef line *line_ptr; /* A reference to the storage location.    */

  |                             /* If no errors return reference else

                                   return void                             */

  |     union dir_result

  |       switch( int errno ) {

  |       case 0:

  +           line *line_ptr;

  |       default:

  |           void;

  |     };

  |     /*

 20      *   The do_dir procedure will take a reference to a directory and return

  |      *   a reference to an array containing the directory tree.

  |      */

  |     program TREE {



  |       version one{

  +          dir_result do_dir( string ) = 1;

  |       } = 1;

  |     } = 0x2000001;

In the protocol definition file there is a series of constants. These constants will be 

mapped into #define statements by the rpcgen compiler. Following the constant section 

are two type declarations. The first, typedef char line[MAXP], declares a new type called 

line that is an array of MAXP number of characters. To translate this type, rpcgen

creates a routine named xdr_line, which it places in the tree_xdr.c file. The contents of 

this routine are shown in Figure 9.32.

Figure 9.32 The xdr_line XDR conversion routine created by rpcgen.

File : tree_xdr.c

  |     /*

  |      * Please do not edit this file.

  |      * It was generated using rpcgen.

  |      */

  +

  |     #include "tree.h"

  |

  |     bool_t

  |     xdr_line (XDR *xdrs, line objp)

 10     {

  |             register int32_t *buf;

  |

  |              if (!xdr_vector (xdrs, (char *)objp, MAXP,

  |                     sizeof (char), (xdrproc_t) xdr_char))

  +                      return FALSE;

  |             return TRUE;

  |     }

  . . .

The generated xdr_line routine calls the predefined xdr_vector routine, which in turn 

invokes the xdr_char primitive. It is the xdr_char primitive that is found in both the client 

and server stub files that does the actual translation. A similar set of code is generated 

for the line pointer (line_ptr) declaration and the discriminated union that declares the 

type to be returned by the user-defined remote do_dir procedure. If we examine the 

tree.h file produced by rpcgen from the tree.x file, we find the discriminated union is 

mapped to a structure that contains a union (as shown in Figure 9.33). The single 

argument for the do_dir procedure is a string (a special XDR data type), which is 



mapped to a pointer to a pointer to a character. The argument to do_dir will be the 

directory to examine.

Figure 9.33 Structure, found in tree.h, generated by rpcgen from the discriminated union in tree.x.

File : tree.h

  |     /*

  |      * Please do not edit this file.

  |      * It was generated using rpcgen.

  |      */

  +

  |     #ifndef _TREE_H_RPCGEN

  |     #define _TREE_H_RPCGEN

  |

  |     #include <rpc/rpc.h>

  ...

  |     typedef line *line_ptr;

  |

  +     struct dir_result {

  |             int errno;

  |             union {

  |                     line *line_ptr;

  |             } dir_result_u;

 30     };

  |     typedef struct dir_result dir_result;

  ...

The code for the client portion (tree_client.c) of the tree program is shown in Program 

9.6, and the server portion (tree_server.c) is shown in Program 9.7.

Program 9.6 The directory tree client program tree_client.c.

File : tree_client.c

  |     /*

  |

  |     #####  #####   ######  ######   ####   #       #  ######  #    #  #####

  |       #    #    #  #       #       #    #  #       #  #       ##   #    #

  +       #    #    #  #####   #####   #       #       #  #####   # #  #    #

  |       #    #####   #       #       #       #       #  #       #  # #    #

  |       #    #   #   #       #       #    #  #       #  #       #   ##    #

  |       #    #    #  ######  ######   ####   ######  #  ######  #    #    #

  |      */

 10     #include "local.h"

  |     #include "tree.h"



  |

  |     void

  |     tree_1(char *host, char *the_dir ) {

  +       CLIENT         *client;

  |       dir_result     *result;

  |

  |     #ifndef DEBUG

  |       client = clnt_create(host, TREE, one, "tcp");

 20       if (client == (CLIENT *) NULL) {

  |         clnt_pcreateerror(host);

  |         exit(2);

  |       }

  |       result = do_dir_1(&the_dir, client);

  +     #else

  |       result = do_dir_1_svc(&the_dir, (svc_req *) client);

  |     #endif                        /* DEBUG */

  |       if (result == (dir_result *) NULL) {

  |     #ifndef DEBUG

 30         clnt_perror(client, "call failed");

  |     #else

  |         perror("Call failed");

  |     #endif                        /* DEBUG */

  |         exit(3);

  +       } else                      /* display the whole array       */

  |         printf("%s:\n\n%s\n",the_dir,result->dir_result_u.line_ptr);

  |     #ifndef DEBUG

  |       clnt_destroy(client);

  |     #endif                        /* DEBUG */

 40     }

  |     int

  |     main(int argc, char *argv[]) {

  |       char        *host;

  |       static char directory[DIR_1]; /* Name of the directory        */

  +       if (argc < 2) {

  |         fprintf(stderr, "Usage %s server [directory]\n", argv[0]);

  |         exit(1);

  |       }

  |       host = argv[1];             /* Assign the server            */

 50       if (argc > 2)

  |         strcpy(directory, argv[2]);

  |       else

  |         strcpy(directory , ".");

  |       tree_1(host, directory);    /* Give it a shot!              */

  +       return 0;

  |     }



The bulk of the tree_client.c program contains code that is either similar in nature to 

previous RPC examples or is self-documenting. The one statement that may bear 

further explanation is the printf statement that displays the directory tree information to 

the screen. Remember that the remote procedure returns a pointer to a string. This 

string is already in display format in that each directory entry is separate from the next 

with a newline. The reference to the string is written as result->dir_result_u.line_ptr. The 

proper syntax for this reference is obtained by examining the tree.h file produced by 

rpcgen.

Program 9.7 The directory tree client program tree_server.c.

File : tree_server.c

  |  /*

  |  #####  #####   ######  ######   ####   ######  #####   #    #  ######  #####

  |    #    #    #  #       #       #       #       #    #  #    #  #       #    #

  |    #    #    #  #####   #####    ####   #####   #    #  #    #  #####   #    #

  +    #    #####   #       #            #  #       #####   #    #  #       #####

  |    #    #   #   #       #       #    #  #       #   #    #  #   #       #   #

  |    #    #    #  ######  ######   ####   ######  #    #    ##    ######  #    #

  |  */

  |  #include "local.h"

 10  #include "tree.h"

  |

  |  static int cur = 0,                          /* Index into output array   */

  |         been_allocated = 0,                   /* Has array been allocated? */

  |         depth = 0;                            /* Indenting level           */

  +

  |  dir_result     *

  |  do_dir_1_svc( char **f, struct svc_req * rqstp) {

  |    static dir_result result;                  /* Either array or void      */

  |    struct stat       statbuff;                /* For status check of entry */

 20    DIR               *dp;                     /* Directory entry           */

  |    struct dirent     *dentry;                 /* Pointer to current entry  */

  |    char              *current;                /* Position in output array  */

  |    int               length;                  /* Length of current entry   */

  |    static char       buffer[DIR_1];           /* Temp storage location     */

  +

  |    if (!been_allocated)                       /* If not done then allocate */

  |      if ((result.dir_result_u.line_ptr=(line *)malloc(sizeof(line))) == NULL)

  |        return (&result);

  |      else{

 30        been_allocated = 1;                    /* Record allocation         */

  |    } else if ( depth == 0 )      {            /* Clear 'old' contents.     */



  |      memset(result.dir_result_u.line_ptr, 0, sizeof(line));

  |      cur = 0;                                 /* Reset indent level        */

  |    }

  +    if ((dp = opendir(*f)) != NULL) {          /* If successfully opened    */

  |      chdir(*f);                               /* Change to the directory   */

  |      dentry = readdir(dp);                    /* Read first entry          */

  |      while (dentry != NULL) {

  |        if (stat(dentry->d_name, &statbuff) != -1)        /* If accessible  */

 40          if ((statbuff.st_mode & S_IFMT) == S_IFDIR &&   /* & a directory  */

  |              dentry->d_name[0] != '.') {                 /* & not . or ..  */

  |            depth += INDENT;                              /* adjust indent  */

  |             /*

  |                Store the entry in buffer - then copy buffer into larger array.

  +             */

  |            sprintf(buffer, "%*s %-10s\n", depth, " ", dentry->d_name);

 |             length = strlen(buffer);

 |             memcpy((char *)result.dir_result_u.line_ptr + cur, buffer, length);

 |             cur += length;                    /* update ptr to ref next loc */

50             current = dentry->d_name;         /* the new directory          */

 |             (dir_result *)do_dir_1_svc(&current, rqstp);  /* call self      */

 |             chdir("..");                      /* back to previous level     */

 |             depth -= INDENT;                  /* adjust the indent level    */

 |           }

 +         dentry = readdir(dp);                 /* Read the next entry        */

 |       }

 |       closedir(dp);                           /* Done with this one         */

 |     }

 |     return (&result);                         /* Pass back the result       */

60   }

In the tree_server.c program, there are several static integers that are used either as 

counters or flags. The cur identifier references the current offset into the output array 

where the next directory entry should be stored. Initially, the offset is set to 0. The 

been_allocated identifier acts as a flag to indicate whether or not an output buffer has 

been allocated. Initially, this flag is set to 0 (FALSE). The last static identifier, depth, is 

used to track the current indent level. It is also set to 0 at the start.

The do_dir_1_svc procedure is passed a reference to a string (actually a character 

array) and a reference to an RPC client handle. Within the procedure, a series of local 

identifiers are allocated to manipulate and access directory information. Following this 

is an if statement that is used to test the been_allocated flag. If an output buffer has not 

been allocated, a call to malloc generates it. The allocated buffer is cast appropriately 

and is referenced by the line_ptr member of the dir_result_u structure. Once the buffer 



has been allocated, the been_allocated flag is set to 1 (TRUE). If the output buffer has 

already been allocated and this is the first call to this procedure (i.e., depth is at 0; 

remember this is a recursive procedure), a call to memset is used to clear the previous 

output contents by filling the buffer with NULL values. When the contents of the output 

buffer are cleared, the cur index counter is reset to 0.

The procedure then attempts to open the referenced directory. If it is successful, a call 

to chdir is issued to change the directory (this was done to eliminate the need to 

construct and maintain a fully qualified path when checking the current directory). 

Next, the first entry for the directory is obtained with the readdir function. A while loop is 

used to cycle through the directory entries. Those entries for which the process has 

access permission are tested to determine if they reference a directory. If they do, and

the directory does not start with a dot (.), the depth counter is incremented. The 

formatted directory entry is temporarily constructed in a buffer using the sprintf string 

function. The format descriptors direct sprintf to use the depth value as a dynamic 

indicator of the number of blanks it should insert prior to the directory entry. Each entry 

has a newline appended to it. The formatted entry is then copied (using memcpy) to the 

proper location in the output buffer using the value of cur as an offset. The directory 

name is then passed back to the do_dir_1_svc procedure via a call to itself. Upon return 

from parsing a subdirectory, the procedure returns up one level via a call to chdir and 

decrements the depth counter accordingly. Once the entire directory is processed, the 

directory file is closed. When the procedure finishes, it returns the reference to output 

buffer.

An output sequence for the directory tree client–server application is shown in Figure 

9.34. In this example, the directory tree server, tree_server, is run on the host called 

kahuna. The user, on host medusa, runs the tree_client program, passing the host name 

kahuna and the directory /usr/bin. The output, shown on the host medusa, is the directory 

tree found on kahuna (where the tree_server program is running in the background).

Figure 9.34 A sample run of the directory tree application.

medusa$ tree_client kahuna /usr/bin

/usr/bin:

      X11

      man

           man1

           man4

           man5



           man7

           man6

           man3

9-7 EXERCISE

On most UNIX-based systems the spell utility uses a file of words as a base 

for its spell checking. On our Linux system this file is in the /usr/share/dict

directory. Write an RPC-based client–server application in which the client

sends a word or partial word to the server. To process the request, the

server returns all the words that contain the requested word (partial word) or

the message "Nothing appropriate" if no match can be made.

9-8 EXERCISE

Modify the directory tree example so that the server process allocates, on 

the fly, a node (structure) for each directory entry. A list of the nodes should 

be returned to the client (versus the fixed array in the example). Be sure to 

dispose of all allocated memory once the application is finished with it.
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9.8 Using Broadcasting to Search for an RPC Service

It is possible for a user to send a message to all rpcbind daemons on a local network 

requesting information on a specific service. The request is generated using the 

clnt_broadcast network call. The broadcast requests are sent to all locally connected 

broadcast nets using connectionless UDP transport. When sent, multiple responses 

may be obtained from the same server and from multiple servers. As each response is

obtained, the clnt_broadcast call automatically invokes a predefined routine. Table 9.8

provides the syntax details of the clnt_broadcast call.

Table 9.8. Summary of the clnt_broadcast Library Call.

Include 

File(s) <rpc/rpc.h>

Manual 

Section

3N

Summary

[View full width]

enum clnt_stat clnt_broadcast(

     u_long prognum, u_long versnum, u_long 

procnum,

     xdrproc_t inproc,  char *in,

     xdrproc_t outproc, char *out,

     resultproc_t eachresult      );

Return

Success Failure Sets errno

An enumerated type value 

RPC_SUCCESS indicating the 

success of the broadcast call.

Use clnt_perrno 

for error 

message.

Yes

The clnt_broadcast call is similar in nature to the callrpc function (another call used to 

invoke a remote procedure). The first three arguments for clnt_broadcast are the 

program, version and procedure numbers of the service. The parameters inproc and in

reference the encoding procedure and the address of its argument(s) while outproc and



out reference the decoding procedure and the address of where to place the decoding 

output if it is successful. Every time the clnt_broadcast call receives a response, it calls 

the function referenced by the eachresult argument. The eachresult function has two 

arguments. The first is a char * that references the same value as the out argument 

used in the clnt_broadcast call. The second argument is a reference to a structure, struct 

sockaddr_in *, that has the address information from the host that responded to the 

broadcast request. Keep in mind that the system supplies these values when the 

function is invoked. Every time the eachresult referenced function returns a 0 (FALSE), 

the clnt_broadcast call continues to wait for additional replies. The clnt_broadcast call will 

eventually time out (the user has no control over the amount of time).

Program 9.8 demonstrates the use of the clnt_broadcast call.

Program 9.8 Program broad.c, sending a broadcast request.

File : broad.c

  |     #include <stdio.h>

  |     #include <rpc/rpc.h>

  |     #include <rpc/pmap_clnt.h>             // For resultproc_t cast

  |

  +     u_long   program_number, version;      // Note: These are global

  |     static bool_t

  |     who_responded(char *out, struct sockaddr_in *addr) {

  |       int my_port_T, my_port_U;

  |       my_port_T = pmap_getport(addr, program_number, version, IPPROTO_TCP);

 10       my_port_U = pmap_getport(addr, program_number, version, IPPROTO_UDP);

  |       if ( my_port_T )

  |         printf("host: %s \t TCP port: %d\n",inet_ntoa(addr->sin_addr),

  |                 my_port_T);

  |       if ( my_port_U )

  +         printf("host: %s \t UDP port: %d\n",inet_ntoa(addr->sin_addr),

  |                 my_port_U);

  |       return 0;

  |     }

  |     int

 20     main(int argc, char *argv[]) {

  |       enum clnt_stat  rpc_stat;

  |       struct rpcent  *rpc_entry;

  |       if (argc < 2) {

  |         fprintf(stderr, "usage: %s RPC_service_[name | #] version\n", *argv);

  +         return 1;

  |       }

  |       ++argv;                              // Step past your own prog name



  |       if (isdigit(**argv))                 // Check to see if # was passed

  |         program_number = atoi(*argv);      // If # passed use it otherwise

 30       else {                               // obtain RPC entry information

  |         if ((rpc_entry = getrpcbyname(*argv)) == NULL) {

  |           fprintf(stderr, "Unknown service: %s\n", *argv);

  |           return 2;

  |         }                                  // Get the program number

  +         program_number = rpc_entry->r_number;

  |       }

  |       ++argv;                              // Move to version #

  |       version = atoi(*argv);

  |       rpc_stat = clnt_broadcast(program_number, version, NULLPROC,

 40                                (xdrproc_t)xdr_void, (char *) NULL,

  |                                (xdrproc_t)xdr_void, (char *) NULL,

  |                                (resultproc_t) who_responded);

  |       if (rpc_stat != RPC_SUCCESS)

  |        if (rpc_stat != RPC_TIMEDOUT) {     // If error is not a time out

  +        fprintf(stderr, "Broadcast failure : %s\n", clnt_sperrno(rpc_stat));

  |        return 3;

  |       }

  |       return 0;

  |     }

The program checks the command line for the number of arguments. It expects to be 

passed the name (or number) of the service to check and its version number. The first 

character of the first argument is checked. If it is a digit, it is assumed that the number 

for the service was passed and the atoi function is used to convert the string 

representation of the number into an integer value. If the name of the service was 

passed, the getrpcbyname network call is used (line 31) to obtain details about the 

specified service. Table 9.9 summarizes the getrpcbyname network call.

Table 9.9. Summary of the getrpcbyname Network Call.

Include 

File(s) <rpc/rpc.h>

Manual 

Section

3N

Summary struct rpcent *getrpcbyname(char *name);

Return

Success Failure Sets errno

A reference to the rpcent structure for the 

service.

NULL  



The getrpcbyname call has one parameter, a reference to a character array containing 

the service name. If successful, the call returns a pointer to the rpcent structure for the 

service (as found in RPC program number database stored in the file /etc/rpc). The 

rpcent structure is defined as

struct rpcent {

               char *r_name;       /* name of this rpc service */

               char **r_aliases;   /* zero-terminated list of

                                      alternate names */

               long r_number;      /* rpc program number */

          };

In line 38 the program then converts the second command-line argument into a 

version number. The clnt_broadcast call is used to garner responses. Each time a server 

responds to a broadcast request, the user-defined function who_responded is 

automatically invoked.

The who_responded function contains two other function calls, pmap_getport and inet_ntoa. 

The pmap_getport library function is used to obtain the port associated with the service. 

Table 9.10 provides the syntax specifics for the pmap_getport library function.

Table 9.10. Summary of the pmap_getport Library Function.

Include 

File(s) <rpc/rpc.h>

Manual Section 3N

Summary u_short pmap_getport(struct sockaddr_in *addr,

        u_long prognum, u_long versnum, u_long

        protocol);

Return

Success Failure Sets errno

The associated port 

number.

0 No, it sets rpc_createerr, query with 
clnt_pcreateerror( )

The first argument for this call is a reference to an address structure. This structure is 

as follows:[14]

[14] In the gdb debugger the command ptype TYPE can be used to 

display definition of the type of the value for TYPE (assuming, of course, 



the type is referenced in the current code).

struct sockaddr_in {

    sa_family_t   sin_family;           // address family

    in_port_t     sin_port;             // port

    struct        in_addr    sin_addr;  // reference to the address structure

    unsigned char sin_zero[8];          // unused

};

The prognum and versnum arguments are the program and version number of the 

service. The last argument, protocol, should be set to either IPPROTO_TCP for TCP 

or IPPROTO_UDP for UPD. If the call is successful, it returns the port number; 

otherwise, it sets the variable rpc_createerr to indicate the error. If an error occurs, the 

library function clnt_pcreateerror should be used to retrieve the associated error 

message.

At this point some should be asking, why use pmap_getport at all? Couldn't we just call 

htons(addr->sin_port) in the who_responded function to get the port number? The answer 

is, we could if we wanted only the UDP-associated port for the service.

The second function used in who_responded is the network function inet_ntoa. This 

function takes an encoded four-byte network address and converts it to its dotted 

notation counterpart. A sample run of the program requesting information about the 

status service, version 1, is shown in Figure 9.35.

Figure 9.35 Output of the broad.c program showing servers providing status service.

medusa$ broad status 1

host: 137.49.6.1         TCP port: 32768

host: 137.49.6.1         UDP port: 32768                                                     <-- 1

host: 137.49.52.2        TCP port: 32782

host: 137.49.52.2        UDP port: 32791

host: 137.49.9.27        TCP port: 751

host: 137.49.9.27        UDP port: 749                                                     <-- 2

host: 137.49.52.152      TCP port: 984

host: 137.49.52.152      UDP port: 982

host: 137.49.240.157     TCP port: 1024

host: 137.49.240.157     UDP port: 1025

host: 137.49.6.1         TCP port: 32768

host: 137.49.6.1         UDP port: 32768                                                     <-- 3

host: 137.49.52.152      TCP port: 984

host: 137.49.52.152      UDP port: 982



host: 137.49.240.157     TCP port: 1024

host: 137.49.240.157     UDP port: 1025

host: 137.49.52.2        TCP port: 32782

host: 137.49.52.2        UDP port: 32791

. . .

(1) Same host, same ports.

(2) Different host, different ports.

(3) Hosts continue to respond.

Notice that before the broadcast call timed out, some servers responded more than 

once. Also note that the service can be associated with different ports on different 

hosts. This output should be somewhat similar to the output produced by the rpcinfo

command when called as

medusa$ rpcinfo -b status 1

9-9 EXERCISE

Modify the broad.c program to display the name (versus the IP address) of 

the host that responds to the broadcast. Hint: Check into the gethostbyaddr

network function that, when passed an address, will return a structure that 

contains a reference to the host name.
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9.9 Summary

Programming with RPC allows the programmer to write distributed applications 

whereby a process residing on one workstation can request another "remote" 

workstation to execute a specified procedure. Because of their complexity, most 

RPC-based programs make use of a protocol compiler such as Sun Microsystems's 

rpcgen. A protocol compiler provides the basic programming framework for the

RPC-based application. In RPC applications the client and server processes do not

need to know the details of underlying network protocols. Data passed between the

processes is converted to/from an external data representation (XDR) format by

predefined filters. Beneath the covers, RPC-based programs make use of the socket

interface to carry out their communications. While not discussed in this chapter, RPC

does support authentication techniques to facilitate secure client – server

communications.
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9.10 Key Terms and Concepts

<netdb.h> header

<netinet/in.h> header

<rpc/pmap_clnt.h> header

<rpc/rpc.h> header

client process

client stub

CLIENT typedef

clnt_broadcast library call

clnt_create library call

clnt_destroy library call

clnt_pcreateerror library call

clnt_perror library call

deserialization

gdb debugging of RPC programs

gethostbyaddr network function

gethostbyname network call

getrpcbyname network call

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/eBook.Prentice_Hall_PTR-Interprocess_Communications_in_Linux.ShareReactor.chm/23021533.htm


hostname command

htons network call

inet_ntoa network call

LDLIBS

make utility

mangled function names

memset function

pmap_getport library call

protocol definition file

public–private key authentication

readdir library function

rexec library function

rexecd remote execution server

RPC (remote procedure call)

RPC filters

RPC makefile

RPC program number

RPC template file

RPC version number

RPC_NOBROADCAST

RPC_UNKNOWNADDR



RPC_UNKNOWNHOST

RPC_UNKNOWNPROTO

rpcent structure

rpcgen command

rpcgen utility

RPCGENFLAGS

rpcinfo command

rsh (remote shell command)

serialization

server process

server stub

ssh (Secure Shell command)

ssh-keygen command

TCP (Transmission Control Protocol)

transport protocol

ttyname library call

UDP (Unreliable Datagram Protocol)

XDR (External Data Representation)

xdr_char function

xdr_line function

xdr_vector function
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10.1 Introduction

One of the nice things about UNIX and its variants is that they use a common 

interface for the access of files and devices that reside on a single host. By using a file 

descriptor generated by an open system call, the user can easily read data from and 

write data to the file descriptor. This can be done without being overly concerned with 

the underlying mechanics of the process and without knowing to which device the 

descriptor has been mapped (e.g., the screen, a file on disk, etc.). When we 

discussed the use of pipes, we saw a similar approach. With pipes, we could have 

two-way (duplex) communications using read and write system calls as long as the 

processes involved were related. Again, the processes communicated by using read

and write system calls as if they were dealing with files. When we discussed System 

V-based message queues, semaphores, and shared memory as interprocess 

communication techniques, we began to stray from the read/write paradigm. We also 

found that while we could use some of these techniques for interprocess 

communication, even with unrelated processes, each technique had its own special 

method for sending and receiving information. Unfortunately, while these techniques 

are powerful, and certainly have their place, their arcane syntax is somewhat 

restrictive. In the last chapter, we examined remote procedure calls. We noted that 

RPC mechanisms are used for interprocess communications. The RPC API 

(application program interface) was developed to ease the burden of writing 

applications that required communication between unrelated processes residing in a 

distributed environment. In attempting to make things easier, the developers of RPCs 

have, in some cases, made things more complex and restrictive. RPC applications, by

nature, have a large number of ancillary files whose contents and relationships may at 

times obscure their functionality. In an RPC-based application, it is easy to lose touch 

with and control of the mechanics of the communication process. It would seem that 

what is needed is an extension of the basic read/write paradigm with the inclusion of 

sufficient networking semantics to permit unrelated processes on different hosts to 

communicate as if they were reading and writing to a local file. This type of 

intermediate level of interprocess communications would lie somewhere in between 

pipes, message queues, shared memory techniques, and RPC applications. 



Fortunately, in UNIX there are several application interfaces that support this type of 

communication and are in fact the underlying basis for the RPC interface.

The most common APIs that provide remote interprocess communications are the 

Berkeley socket interface, introduced in the early 1980s, and Transport Level Interface 

(TLI) programming implemented by AT&T in the mid-1980s. There is much discussion

as to which of these offers the better solution for remote interprocess communication. 

As the Berkeley socket interface preceded TLI, a majority of existing remote 

interprocess communication coding is done with sockets. However, Berkeley sockets 

are not transport-independent and must be used with caution in a multithreaded 

processing environment. On the other hand, TLI is designed to be 

transport-independent (i.e., applications can access transport specifics in a 

protocol-independent manner). Unfortunately, to date, not all transport protocols 

support every TLI service. Unlike sockets, TLI is STREAMS-based and requires that 

the application push a special module on the stream before performing reads and 

writes. The concept of privileged ports (a Berkeley concept) is not supported with TLI. 

In addition, broadcasting (the ability to send the same message to a group of hosts) is 

not transport-independent. Recently, TLI has begun to be replaced by the X/Open 

Transport Interface (XTI).

In this chapter we explore the Berkeley socket interface. Conceptually, a socket is an 

abstract data structure that is used to create a channel (connection point) to send and 

receive information between unrelated processes. Once a channel is established, the 

connected processes can use generalized file-system type access routines for 

communication. For the most part, when using a socket-based connection, the server 

process creates a socket, maps the socket to a local address, and waits (listens) for 

requests from clients. The client process creates its own socket and determines the 

location specifics (such as the host name and port number) of the server. Depending 

upon the type of transport/connection specified, the client process will begin to send 

and receive data either with or without receiving a formal acknowledgment 

(acceptance) from the server process.
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10.2 Communication Basics

To understand how sockets work, a basic understanding of some of the details of 

process communications in a networked environment and its associated terminology 

is needed.

10.2.1 Network Addresses

Every host on a network has, at a minimum, two unique addresses. The first unique 

address is a 48-bit[1] media access control (MAC) address that is assigned to its 

network interface card (NIC). The manufacturer of the card assigns this address. The 

MAC address (sometimes called its Ethernet or hardware address) is written in 

hexadecimal notation. The address is broken into six 8-bit numbers with intervening 

colons (:). When using hexadecimal, each 8-bit number will be, at most, two digits,

each consisting of 0–9, A–F. The case of the alphabetic digits is not important, and

leading 0s are often not included. The first three groupings (bytes) of this number

identify the hardware manufacturer. A variety of sites exist on the Internet that map

manufacturer identifier values to their corresponding vendor. One such table can be

found at http://www.iana.org/assignments/ethernet-numbers.

[1] In IPv4 (Internet Protocol version 4, which has been around for about

20 years) these addresses are 48-bit. In IPv6 (originally called IPng:

Internet Protocol—the next generation) these addresses are 64-bit.

On some UNIX-based systems the file /etc/ethers contains the MAC addresses for local 

hosts. Additionally, the file /proc/net/arp contains recently resolved addresses (Internet 

addresses and their corresponding hardware address). On a Linux host the ifconfig

utility can be used to display the hardware address of its NICs. Figure 10.1 shows the 

output of the ifconfig command when passed the -a (all) option.

Figure 10.1 Displaying the MAC addresses on a Linux host.

http://www.iana.org/assignments/ethernet-numbers


linux$ /sbin/ifconfig -a

eth0  Link encap:Ethernet  HWaddr 00:B0:D0:AB:7C:96                                                     <-- 1

      BROADCAST MULTICAST  MTU:1500  Metric:1

      RX packets:0 errors:0 dropped:0 overruns:0 frame:0

      TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

      collisions:0 txqueuelen:100

      Interrupt:16 Base address:0xecc0 Memory:e08fc000-e08fcc40

eth1  Link encap:Ethernet  HWaddr 00:02:B3:35:9E:21                                                     <-- 1

      inet addr:137.49.6.1  Bcast:137.49.255.255  Mask:255.255.0.0

      UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1

      RX packets:471693034 errors:2 dropped:0 overruns:27398 frame:2

      TX packets:2147483647 errors:0 dropped:0 overruns:0 carrier:0

      collisions:0 txqueuelen:100

      Interrupt:26 Base address:0xd4c0 Memory:e08fe000-e08fec40

lo    ink encap:Local Loopback

      inet addr:127.0.0.1  Mask:255.0.0.0

      UP LOOPBACK RUNNING  MTU:16436  Metric:1

      RX packets:95939986 errors:0 dropped:0 overruns:0 frame:0

      TX packets:95939986 errors:0 dropped:0 overruns:0 carrier:0

      collisions:0 txqueuelen:0

(1) This host has two network cards. As shown, only eth1 is active

The second unique address for a host is a 32-bit[2] Internet (IP) address. Internet 

addresses used to be assigned by the Internet Network Information Center (InterNIC). 

At present, the process is a bit more complicated. At the uppermost level ICANN (the 

Internet Corporation for Assigned Names and Numbers) assigns blocks of addresses 

on a regional basis. At the regional level the American Registry for Internet Numbers 

(ARIN) allocates IP address space in North and South America, the Caribbean, and 

sub-Saharan Africa; APNIC (Asia Pacific Network Information Center) allocates 

addresses for Asia and the Pacific; RIPE (Réseaux IP Européens) handles European

addresses. At a local level Internet service providers (ISPs) obtain their addresses 

from their regional authority. At the next level users request their addresses from the 

ISP. A 32-bit IP address is broken into four 8-bit numbers, each separated by a dot (.). 

Written in dotted decimal notation (DDN), each of the four subnumbers can range 

from 0 to 255 (although the numbers 0 and 255 in the last grouping often have a 

special meaning, such as a local loopback or broadcast address).



[2] With IPv6, the 32-bit IP addresses will become 128-bit.

An IPv4 Internet address may be subdivided into a network and local portion. The 

network portion, or netid, occupies the leftmost portion of the IP address, and the local 

portion, or hostid, the rightmost portion. Using the leading bits of the netid value, 

networks can be divided into five classes, A through E. We will look at the first three 

classes.[3] In a Class A network bit 0 is 0; in a Class B the first two bits are 10, and in a 

Class C the first 3 bits are 110. The netid portion of the address is assigned by the ISP 

and indicates your network association. The content of the hostid portion is determined 

by the local network administrator and specifies the individual host (workstation) within 

your network. As can be seen in Figure 10.2, the range of hostids that a local network 

administrator can assign is directly related to the class of the network. In general, 

small sites have Class C network addresses, larger sites Class B, and so on. When 

this numbering scheme was initiated, it was not anticipated that the range of available 

network addresses would be restrictive, as it allowed for 27 Class A networks, 214

Class B networks, and 221 Class C networks (see Exercise 10.1 for more on this 

topic).

[3] Classes D and E are special network classes. Class D is used for 

multicasting, and Class E is reserved for experimental use. Neither of 

these classes has an inherent host-addressing scheme.

Figure 10.2. Network class numbering scheme.

It is the responsibility of the host to map a specific Internet address to its 

corresponding Ethernet (hardware) address. This process, called address resolution, 

uses its own protocol called address resolution protocol (ARP). The command /sbin/arp 

-a displays a listing of recently resolved Internet/Ethernet address pairs on the current 



host. In discussing sockets, when we refer to an address, unless otherwise noted, we 

are referring to its Internet (IP) address.

10-1 EXERCISE

The long-term solution to providing sufficient IP addressing space will be to 

move to 128-bit IPv6 addresses. In the interim Classless Interdomain 

Routing (CIDR) is being offered as a solution. What is CIDR, and why is it a 

more efficient method for assigning 32-bit IP addresses?

10.2.2 Domains—Network and Communication

While IP addresses are a handy way to reference a specific host, we often map a 

dotted IP address into a more easily understood symbolic notation using the Domain 

Name System (DNS). In this schema, all Internet addresses are divided into a set of 

high-level organizational and geographical domains. Each organizational domain 

(sometimes called a top-level domain) has an identifying code (usually three 

lowercase letters), such as com (commercial), edu (education), and gov (government). 

Each geographical domain consists of a two-letter country code, such as fi (Finland), 

ca (Canada), and us (United States).[4] Within each high-level domain are subdomains. 

For example, within the edu domain is the subdomain hartford (for the University of 

Hartford). Within the hartford domain there may be further subdomains (such as cs for 

Computer Science), or just an individual host's name. While there appears to be no 

established limit, usually the maximum number of levels for domain names is four to 

five. By using the domain naming system we can now reference a host as, for 

example, morpheus.cs.hartford.edu instead of 137.49.52.1. When reading names in this 

format, the domain with the broadest scope is listed on the far right. As you move to 

the left, each domain found is within the domain to its right. The last name in the 

sequence (the leftmost) is usually the name of the host. Most networks run software 

(such as BIND [Berkeley Internet Name Domain system]) that, using distributed DNS 

database information will dynamically map a domain-name reference to its 

corresponding Internet (IP) address.



[4] The Web site site http://www.iana.org/cctld/cctld-whois has a 

complete list of the two-letter country codes.

10-2 EXERCISE

Explore the dig (Domain Information Groper), nslookup, and host commands by 

reading their manual pages. Pass dig your domain name (e.g., dig ucla.edu). 

Check the returned AUTHORITY SECTION information. What is the 

symbolic name of the DNS server for your domain? Given this symbolic 

name what is the IP address of this server (try using the command host -a

with the symbolic name)? If nslookup is supported on your system (it is 

deprecated but still in wide use) invoke the command and set the server to 

be the appropriate DNS server. Then issue the command ls for the domain. 

What does the command display?

The term domain is utilized again in reference to the communication type for a socket 

interface. When we create the socket, we specify its communication domain. The two 

types of socket communication domains that we will discuss are

UNIX domain. In this domain, when sockets are created, they have actual file

(path) names. These sockets can be used only with processes that reside on 

the same host. UNIX domain sockets are sometimes used as the first step in 

the development of socket-based communications because, due to their 

locality, they are somewhat easier to debug.

1.

Internet domain. These sockets allow unrelated processes on different hosts to

communicate.

2.

While it should be clear by the context of the discussion, most often when we speak of 

domain, we will be talking about the communication domain of the socket, not the 

domain name of a host.

10.2.3 Protocol Families

http://www.iana.org/cctld/cctld-whois


Processes must also agree upon a set of rules and conventions for their 

communications. A set of such rules and conventions is called a protocol. Protocols, 

which can be quite complex in their entirety, are designed in layers. The layering of 

protocols facilitates a certain degree of isolation that permits changes to one layer to 

not affect the functionality of adjacent layers. The International Standards 

Organization (ISO) Open Systems Interconnect (OSI) reference model is often used 

as a generalized guide for how this layering should occur.[5] Figure 10.3 shows the 

standard seven-layer OSI model.

[5] Some protocols, such as TCP, preceded the OSI model and thus do 

not cleanly map to its layering. TCP/IP accomplishes the same 

functionality with four conceptual layers: application, transport, Internet, 

and network interface (data link). The transport and network layers of 

TCP/IP are roughly equivalent to the transport and network access 

layers of the OSI model except TCP/IP supports UDP, an unreliable 

protocol.

Figure 10.3. The ISO/OSI layer cake.

 Layer Functionality

Higher 

Level

Application Provides processes access to interprocess facilities.

 Presentation Responsible for data conversion—text compression and

reformatting, encryption.

 Session Addresses the synchronization of process

dialog—establishes, manages, and terminates

connections.

 Transport Responsible for maintaining an agreed-upon level of data 

exchange. Determines type of service, flow control, error 

recovery, and so on.

Protocol 

Family

Network Concerned with the routing of data from one network to

another—establishing, maintaining, and terminating

connections.



 Layer Functionality

 Data Link Insures error-free transmission of data.

Lower 

Level

Physical Addresses physical connections and transmission of raw 

data stream.

A grouping of layers, most commonly the transport and network layers of the OSI 

model, forms a protocol family or suite. As can be seen, a protocol family 

encompasses such things as data formats, addressing conventions, type of service 

information, flow control, and error handling. There are a number of protocol families, 

including the following:

SNA— IBM's Systems Network Architecture

UUCP— UNIX-to-UNIX copy

XNS— Xerox Network System

NETBIOS— IBM's Network Basic Input/Output System

TCP/IP— DARPA (Defense Advanced Research Projects Agency) Internet

Our discussion centers on the TCP/IP protocol family (PF_INET), Internet domain, 

which is composed of

TCP— Transmission Control Protocol. TCP is reliable, full duplex and

connection-oriented. Data is transmitted as a byte stream.

IP— Internet Protocol. Provides delivery of packets. TCP, UDP and ICMP

usually call IP.

ARP/RARP— Address/Reverse Address Resolution Protocol. These protocols

are used to resolve Internet/hardware addressing.

UDP— User Datagram Protocol. UDP is nonreliable, full duplex, and

connectionless. Data is transmitted as a series of packets.

ICMP— Internet Control Message Protocol. Used for error handling and flow

control.



Within the TCP/IP family, we focus on TCP and UDP. When we create a socket, we 

will specify its protocol family to be either PF_UNIX (UNIX)[6] or PF_INET (TCP/IP). 

For the curious, the protocol definition file /etc/ protocols contains the list of DARPA 

Internet protocols available with the TCP/IP subsystem.

[6] Technically, UNIX is not a true communications protocol, but will be 

treated as such for our socket discussions.

10.2.4 Socket Types

For processes to communicate in a networked setting, data must be transmitted and 

received. We can consider the communicated data to be in a stream (i.e., a sequence 

of bytes) or in datagram format. Datagrams are small, discrete packets that, at a gross 

level, contain header information (such as addresses), data, and trailer information 

(error correction, etc.). As datagrams are small in size, communications between 

processes may consist of a series of datagrams.

When we create a socket, its type will determine how communications will be carried 

on between the processes using the socket. Sockets must be of the same type to 

communicate. There are two[7] basic socket types the user can specify:

[7] Again, a slight fudge—there are other socket types, such as raw and

sequenced packet sockets. Raw sockets are for those with superuser

access that wish to design and implement their own network protocol.

We will not address using raw or sequenced packet sockets.

Stream sockets. These sockets are reliable. When these sockets are used, 

data is delivered in order, in the same sequence in which it was sent. There is 

no duplication of data, and some form of error checking and flow control is 

usually present. Stream sockets allow bidirectional (full duplex) communication. 

Stream sockets are connection-oriented. That is, the two processes using the 

socket create a logical connection (a virtual circuit). Information concerning the 

connection is established prior to the transmission of data and is maintained by 

each end of the connection during the communication. Data is transmitted as a 

stream of bytes. In a very limited fashion, these sockets also permit the user to 

1.



place a higher priority urgent message ahead of the data in the current stream.

Datagram sockets. Datagram sockets are potentially unreliable. Thus, with 

these sockets, received data may be out of order. Datagram sockets support 

bidirectional communications but are considered connectionless. There is no 

logical connection between the sending and receiving processes. Each 

datagram is sent and processed independently. Individual datagrams may take 

different routes to the same destination. With connectionless service, there is 

no flow control. Error control, when specified, is minimal. Datagram packets are 

normally small and fixed in size.

2.

There is an often-given analogy that compares stream socket communication to that 

of a phone conversation (address of sender and receiver determined when the 

connection is established) and datagram communication with communication 

(correspondence) via postcards (each card packet has its own address information). 

While the analogy is not entirely accurate, it does capture the spirit of the two types of 

communication.
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10.3 IPC Using Socketpair

As a warmup, we begin our exploration of sockets with the generation of a pair of 

UNIX domain sockets. The socketpair call, shown in Table 10.1, is used to create the 

pair of sockets.

The socketpair call takes four arguments. The first argument, d, is an integer value that 

specifies the domain. In general, the domains for socket-based calls should be 

specified as one of the protocol family-defined constants found in the header file 

<bits/socket.h>. As in previous examples, the programmer does not directly include this 

file, since the <sys/socket.h> file, which must be included, includes this more 

system-specific header file. When we look in the <bits/socket.h> file, we find two sets of 

similar defined constants. One set of constants begins with AF_ (denoting address 

family) and the second set begins with PF_ (indicating protocol family). At one time 

the PF_ constants were defined in terms of the AF_ constants. Now the AF_ set of 

constants is defined in terms of the PF_ constants. This mishmash occurs as the 

concept of address families preceded that of protocol families. As we are heading 

toward the use of protocol families, the PF_ designated constants are more 

appropriate to use when generating a socket. The current set of all defined protocol 

families, as found in the <bits/socket.h> file, is shown in Table 10.2.

Table 10.1. Summary of the socketpair System Call

Include File(s) <sys/socket.h> Manual Section 2

Summary int socketpair( int d,        int  type,

                int protocol, int  sv[2] );

Return
Success Failure Sets errno

0 and two open socket descriptors -1 Yes



Table 10.2. Protocol Family Constants.

Constant Value Reference

PF_UNSPEC 0 Unspecified.

PF_LOCAL 1 Local to host (pipes and file-domain).

PF_UNIX PF_LOCAL Old BSD name for PF_LOCAL.

PF_FILE PF_LOCAL Another nonstandard name for PF_LOCAL.

PF_INET 2 IP protocol family.

PF_AX25 3 Amateur Radio AX.25.

PF_IPX 4 Novell Internet Protocol.

PF_APPLETALK 5 Appletalk DDP.

PF_NETROM 6 Amateur radio NetROM.

PF_BRIDGE 7 Multiprotocol bridge.

PF_ATMPVC 8 ATM PVCs.

PF_X25 9 Reserved for X.25 project.

PF_INET6 10 IP version 6.

PF_ROSE 11 Amateur Radio X.25 PLP.

PF_DECnet 12 Reserved for DECnet project.

PF_NETBEUI 13 Reserved for 802.2LLC project.

PF_SECURITY 14 Security callback pseudo AF.

PF_KEY 15 PF_KEY key management API.

PF_NETLINK 16  

PF_ROUTE PF_NETLINK Alias to emulate 4.4BSD.

PF_PACKET 17 Packet family.

PF_ASH 18 Ash.

PF_ECONET 19 Acorn Econet.



Constant Value Reference

PF_ATMSVC 20 ATM SVCs.

PF_SNA 22 Linux SNA Project

PF_IRDA 23 IRDA sockets.

PF_PPPOX 24 PPPoX sockets.

PF_MAX 32 For now.

Note that most of the socket-based calls only work with a limited subset of 

address/protocol families. The socketpair call is only implemented for the PF_LOCAL 

(PF_UNIX) family, thus restricting it to same-host communications.

The second argument for the socketpair call, type, indicates the socket type. The defined 

constant SOCK_STREAM can be used to indicate a stream socket or the defined 

constant SOCK_DGRAM to indicate a datagram-based socket. The third argument, 

protocol, is used to indicate the protocol within the specified family. In most cases, this 

argument is set to 0, which indicates to the system that it should select the protocol. 

With Internet domain communications, the system will use, by default, UDP for 

connectionless sockets and TCP for connection-oriented sockets. If necessary, the 

IPPROTO_TCP or IPPROTO_UDP constants found in the header file <netinet/in.h> can 

be used to directly select the protocol within a specific family. The fourth argument, sv, 

is the base address of an integer array that references the two socket descriptors that 

are created if the call is successful. Each descriptor is bidirectional and is available for 

both reading and writing. If the socketpair call fails, it returns a -1 and sets errno. The 

value errno may take, and an interpretation of each value, is shown in Table 10.3.

Table 10.3. socketpair Error Messages.

# Constant perror Message Explanation

14 EFAULT Bad address sv references an illegal address.

24 EMFILE Too many open files This process has reached the 

limit for open file descriptors.

93 EPROTONOSUPPORT Protocol not Requested protocol not 



# Constant perror Message Explanation

supported supported on this system.

95 EOPNOTSUPPORT Operation not 

supported

Specified protocol does not 

support socket pairs.

97 EAFNOSUPPORT Address family not 

supported by 

protocol

Cannot use the indicated 

address family with specified 

protocol family.

Program 10.1 creates a socket pair, forks a child process, and uses the created 

sockets to communicate information between the parent and child processes.

Program 10.1 Creating and using a socket pair.

File : p10.1.cxx

  |     /*

  |         Creating a socket pair

  |      */

  |     #include <iostream>

  +     #include <cstdio>

  |     #include <unistd.h>

  |     #include <sys/socket.h>

  |     using namespace std;

  |     const int BUF_SZ = 10;

 10     int

  |     main( ) {

  |       int          sock[2],                // The socket pair

  |                    i;

  |       static char  buf[BUF_SZ];            // Temporary buffer for message

  +       if (socketpair(PF_LOCAL, SOCK_DGRAM, 0, sock) < 0) {

  |         perror("Generation error");

  |         return 1;

  |       }

  |       switch (fork( )) {

 20       case -1:

  |         perror("Bad fork");

  |         return 2;

  |       case 0:                              // The child process

  |         close(sock[1]);

  +         for (i = 0; i < 10; i += 2) {

  |           sleep(1);



  |           sprintf(buf, "c: %d", i);

  |           write(sock[0], buf, sizeof(buf));

  |           read( sock[0], buf, BUF_SZ);

 30           cout << "c-> " << buf << endl;   // Message from parent

  |         }

  |         close(sock[0]);

  |         break;

  |       default:                             // The parent process

  +         close(sock[0]);

  |         for (i = 1; i < 10; i += 2) {

  |           sleep(1);

  |           read( sock[1], buf, BUF_SZ);

  |           cout << "p-> " <<  buf << endl;  // Message from child

 40           sprintf(buf, "p: %d", i);

  |           write(sock[1], buf, sizeof(buf));

  |         }

  |         close(sock[1]);

  |       }

  +       return 0;

  |     }

The program starts by creating, with a single call in line 15, a pair of local UNIX 

datagram sockets. The program then forks, producing a child process. When in the 

child, the program closes the socket descriptor referenced as sock[1]. It then enters a 

loop, from 0 to 9, counting in steps of 2, where it does the following. The process 

sleeps for one second to slow down its output display sequence. It then creates, in a 

temporary buffer, a message to be sent to the parent process. The message contains 

the character sequence c:, to label it as from the child, followed by the current integer 

loop counter value. The contents of the temporary buffer are then written to socket 

descriptor 0 (sock[0]) using the write system call. Following the write to the socket, the 

child process reads from the same socket descriptor to obtain the message generated

by the parent process. The child process then displays the message from the parent 

on the screen.

The parent process follows a similar set of steps. However, it closes sock[0] and does 

its socket reading and writing from sock[1]. When this program is run, it will produce the 

output as shown in Figure 10.4.

Figure 10.4 The output of Program 10.1.

linux$ p10.1

p-> c: 0



c-> p: 1

p-> c: 2

c-> p: 3

p-> c: 4

c-> p: 5

p-> c: 6

c-> p: 7

p-> c: 8

c-> p: 9

Before the process forks, both sock[0] and sock[1] descriptors are available in the parent 

for reading and writing. After the fork, the child process closes sock[1] and reads and 

writes using sock[0]. The parent process closes sock[0] and reads and writes using 

sock[1]. At the kernel level the sockets are still one and the same. Thus, what the child 

process writes to sock[0] can be read by the parent process from sock[1] and vice versa. 

Figure 10.5 presents a diagrammatic representation of this relationship.

Figure 10.5. The socketpair before and after the process forks.



10-3 EXERCISE

What happens when you adjust the sleep times in the child/parent processes 

in Program 10.1? Will the parent/child processes wait for each other no 

matter what the time differential? Why? Why not? Now edit the p10.1.cxx file 

and change both sleep times to 3 seconds. Recompile the source as p10.1. 

Read the manual page on netstat. Issue the following command sequence:

linux$  p10.1 &  netstat -p -x | grep p10.1

What information is returned by the netstat command? Once the p10.1

program is finished reissue just the netstat command with the -p -x options. 

What does this tell you about what the system is doing?
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10.4 Sockets: The Connection-Oriented Paradigm

When using sockets for interprocess communications, we can specify the socket type 

as either connection-oriented (type SOCK_STREAM) or connectionless (type 

SOCK_DGRAM). The sequence of events that must occur for connection-oriented 

communications is shown in Figure 10.6. In this setting, the process initiating the 

connection is the client process and the process receiving the connection is the 

server.

Figure 10.6. A connection-oriented client–server communication sequence.



As shown, both the client and server processes use the socket call to create a new 

instance of a socket. The socket will act as a queuing point for data exchange. The 

summary for the socket system call is shown in Table 10.4

The socket system call takes three arguments. The arguments parallel those for the 

socketpair call without the fourth integer array/socket pair reference. In short, the socket

call takes an integer value (one of the defined constants in the <sys/sockets.h> file) that 

indicates the protocol family as its first argument. At present, the protocol families 

shown in Table 10.5 are supported.

The second argument, type, denotes the socket type (such as SOCK_STREAM or 

SOCK_DGRAM). The third argument, protocol, is the specific protocol to be used within 

the indicated address/protocol family. As with the socketpair call, we will most often set 

this value to 0 to let the system choose the protocol based on the protocol family. If 

the socket call is successful, it will return an integer value that can be used to reference 

the socket descriptor. If the call fails, it returns a -1 and sets errno. The value for errno, 

and an interpretation of the error message, is shown in Table 10.6.

Table 10.4. Summary of the socket System Call.

Include File(s) <sys/types.h>

<sys/socket.h>
Manual Section 2

Summary int socket( int domain, int type, int protocol );

Return
Success Failure Sets errno

0 and an open socket descriptor. -1 Yes

Table 10.5. Supported Protocol Families.

Constant Protocol Family

PF_APPLETALK Appletalk

PF_ATMPVC Access to raw ATM PVCs

PF_AX25 Amateur radio AX.25 protocol

PF_INET IPv4 Internet protocols



Constant Protocol Family

PF_INET6 IPv6 Internet protocols

PF_IPX IPX - Novell protocols

PF_NETLINK Kernel user interface device

PF_PACKET Low-level packet interface

PF_UNIX, PF_LOCAL Local communication

PF_X25 ITU-T X.25 / ISO-8208 protocol x25(7)

When a socket call is made in a program in some, but not all, development settings, 

the socket library must be specifically linked at compile time using the option -lsocket.

Table 10.6. socket Error Messages.

# Constant perror Message Explanation

12 ENOMEM Cannot allocate 

memory

When creating a socket, 

insufficient memory available.

13 EACCES Permission 

denied

Cannot create a socket of the 

specified type/protocol.

22 EINVAL Invalid argument Unknown protocol or protocol 

family is not available.

23 ENFILE Too many open 

files in system

Insufficient kernel (system) 

memory for socket allocation.

24 EMFILE Too many open 

files

This process has reached the 

limit for open file descriptors.

93 EPROTONOSUPPORT Protocol not 

supported

Requested protocol not supported 

on this system or within this 

domain.

105 ENOBUFS No buffer space 

available

Socket cannot be created until 

resources are freed.



10-4 EXERCISE

Read the manual page on netstat. Issue the following command to determine 

all listening sockets and their associated port numbers on your system:

[View full width]

linux$ netstat -l -n       # alt_cmd$  netstat -a -n | grep 

LISTEN

How many sockets are listening for connections? If the system is listening on 

port 80, issue the command sequence (note the back tics):

linux$ telnet 'hostname' 80

When the system responds, type GET /. What happens? What information is 

returned to the screen? What does the / stand for?

Initially, when the socket is created, it is unbound (i.e., there is no name or 

address/port number pair associated with the socket). If the process creating the 

socket is to act as a server, the socket must be bound. This is similar in concept to the 

assignment of a phone number to an installed phone or a street name and number to 

a mailing address. The bind system call is used to associate a name or address/port 

pair with a socket. If the socket is to be used in the UNIX domain, a file name must be 

provided, and we say the address resides in local namespace. In the Internet domain,

an address/port pair must be assigned—the address resides in Internet namespace. 

Table 10.7 provides a summary of the bind system call.



Table 10.7. Summary of the bind System Call

Include File(s) <sys/types.h>

<sys/socket.h>
Manual Section 2

Summary int  bind(int sockfd, struct sockaddr *my_addr,

          socklen_t addrlen);

Return

Success Failure Sets errno

0 -1 Yes

The first argument for bind is an integer value that has been returned from a previous 

successful socket call. The second argument, a reference to a sockaddr structure, is a 

real gem. The short explanation is the my_addr argument references a generic address 

structure of the type:

/* Structure describing a generic socket address.                      */

struct sockaddr  {

    __SOCKADDR_COMMON (sa_);    /* Common data: adr family and length. */

    char sa_data[14];           /* Address data.                       */

};

We will use this structure definition as a starting point for our address references. In a 

few paragraphs we will come back to the use of this structure. For those who enjoy a 

syntactical challenge, a more detailed explanation of the definition of the sockaddr

structure, as well as the definition of the SOCKADDR_COMMON macro, can be found in 

the first 100 or so lines of the include file <sys/socket.h>.

Again, bind can be used for both UNIX and Internet domain sockets. For UNIX domain 

sockets, a reference to a file must be bound to the socket. A UNIX socket domain 

address is defined in the header file <sys/un.h>
[8] as

[8] If we are working with UNIX domain sockets, this file must be in the 

include list of the program. If you do some spelunking, you will find the 

full definition of the UNIX sock structure is actually found in one of the 

files included by the <sys/un.h> file.

#define UNIX_PATH_MAX    108

struct sockaddr_un {

    sa_family_t  sun_family;              /* AF_UNIX  */

    char         sun_path[UNIX_PATH_MAX]; /* pathname */

};



When this structure is used, the sockaddr_un.sun_family member is usually assigned the 

defined constant AF_UNIX to indicate UNIX addressing is being used. The second 

member, sun_path, is the path (absolute or relative) to the file name to be bound to the 

socket. In the UNIX domain, bind creates a file entry for the socket. If the file is already 

present, an error occurs. When listing a directory in long format with the ls command, 

a file that is bound to the socket will have the letter p or s as its file type, indicating it is 

a pipe or socket. The number of bytes in the file will be listed as 0. The maximum 

length for the sun_path member, including the NULL terminator, is 108 characters.

If the socket is to be used in the Internet domain, the addressing structure found in the 

file <netinet/in.h> is used. As with UNIX domain sockets, if we are working with Internet 

domain sockets, this file must be in the include list of the program. This address 

structure is defined as

struct sockaddr_in {

  sa_family_t    sin_family;       /* address family: AF_INET              */

  u_int16_t      sin_port;         /* 16 bit port in network byte order    */

  struct in_addr  sin_addr;        /* internet address structure           */

};

struct in_addr {

  u_int32_t      s_addr;           /* 32 bit address in network byte order */

};

Keep in mind that in Internet namespace, we must map the socket to an Internet 

address/port number pair. To accomplish this, we use the sockaddr_in structure shown 

above. The first member of the structure, like the sockaddr_un structure, is an integer 

value that indicates the address family. In this scenario, this member is assigned the 

value AF_INET. The second member, sin_port, indicates the port number for the 

service. The port number is a 16-bit value that acts as an offset[9] to the indicated 

Internet address and references the actual endpoint for the communication. A list of 

assigned port numbers can be obtained by viewing the contents of the /etc/services file. 

A partial excerpt from a local /etc/services file is shown in Figure 10.7.

[9] Sticking with our phone system analogy for connection-oriented 

protocol, this would be similar to an extension for a given phone 

number.

Figure 10.7 Partial contents of a local /etc/services file.



linux$ cat /etc/services

# /etc/services:

# $Id: services,v 1.17 2001/02/28 20:11:31 notting Exp $

#

# Network services, Internet style

...

# Each line describes one service, and is of the form:

#

# service-name  port/protocol  [aliases ...]  [# comment]

tcpmux          1/tcp                          # TCP port service multiplexer

tcpmux          1/udp                          # TCP port service multiplexer

rje             5/tcp                          # Remote Job Entry

rje             5/udp                          # Remote Job Entry

echo            7/tcp

echo            7/udp

discard         9/tcp           sink null

discard         9/udp           sink null

systat          11/tcp          users

systat          11/udp          users

...

As can be seen, each service has a name, such as echo, is associated with a specific 

port (e.g., 7), and uses a specific protocol (e.g., tcp). Ports with values less than 1024 

are reserved (can only be used by processes whose effective ID is root). Many of 

these low-numbered ports are considered to be well-known; that is, they consistently 

have the same value and are always associated with the same type of service using 

the same protocol. A port can be associated with more than one protocol.

The third member of the sockaddr_in structure, sin_addr, is a reference to an in_addr

structure. This structure, with just one member, holds the actual 32-bit host Internet 

address value (with adjustments for byte-orderings; i.e., little endian versus big 

endian). We present the details of how to fill in the sockaddr_in structure in the example 

section.

We are now ready to return to the generic sockaddr structure, which is the second 

argument of the bind call. There are two members in the generic sockaddr structure. The 

first member, the macro __SOCKADDR_COMMON (sa_), is used to indicate the address 

family information. The second member, sa_data, is a reference to the actual address. 

To make bind work, we first populate the appropriate addressing structure (sockaddr_un

or sockaddr_in) with correct values. Then, when passing the structure as an argument 



to bind, cast the reference as (struct sockaddr *) to convince bind that we are passing a 

reference to the proper structure type. The third argument to bind, which provides the 

size of the address structure, helps to resolve things such as being able to pass a 

UNIX domain address with a 108-byte file/path reference. Again, the details of how to 

calculate the size of the address structure are presented in the example section.

If bind is successful, it returns a 0; otherwise, it returns a -1 and sets the value of errno. 

Table 10.8 summarizes the errors associated with a failure of bind for both local (UNIX) 

and Internet namespace.



Table 10.8. bind Error Messages.

# Constant perror Message Explanation

2 ENOENT No such file or 

directory

Component of the path for the file 

name entry does not exist.

9 EBADF Bad file descriptor sockfd reference is invalid.

12 ENOMEM Cannot allocate 

memory

Insufficient memory.

13 EACCES Permission denied
Cannot create a socket of the 

specified type/protocol.

Search access denied for part 

of the path specified by name.

14 EFAULT Bad address my_addr references address outside 

user's space.

20 ENOTDIR Not a directory Part of the path of my_addr is not a 

directory.

22 EINVAL Invalid argument
addrlen is invalid.

sockfd already bound to an 

address.

30 EROFS Read-only file 

system

File would reside on a read-only file 

system.

36 ENAMETOOLONG File name too long my_addr name is too long.

40 ELOOP Too many levels of 

symbolic links

Too many symbolic links in my_addr.

63 ENOSR Out of streams 

resources

Insufficient STREAMS resources for 

specified operation.

88 ENOTSOCK Socket operation sockfd is a file descriptor, not a socket 



on non-socket descriptor.

98 EADDRINUSE Address already in 

use

Specified address already in use.

99 EADDRNOTAVAIL Can't assign 

request address

The specified address is not available 

on the local system.

# Constant perror Message Explanation

While our primary concern is with Internet domain protocols, a UNIX domain socket 

may also be bound. In the UNIX domain, an actual file entry is generated that should 

be removed (unlinked) when the user is done with the socket.

Continuing with the server process in the connection-oriented setting, the next system 

call issued is to listen. This call, which only applies to sockets of type SOCK_STREAM 

or SOCK_SEQPACKET, creates a queue for incoming connection requests. If the 

queue is full and the protocol does not support retransmission, the client process 

generating the request will receive the error ECONNREFUSED from the server. If the 

protocol does support retrans mission, the request is ignored, so a subsequent retry 

can succeed. The summary for listen is given in Table 10.9.

The first argument of the listen system call is a valid integer socket descriptor. The 

second argument, backlog, denotes the maximum size of the queue. Originally, 

BSD-based documentation indicated that there was no limit to the value for backlog. 

However, in many versions of BSD-derived UNIX, the limit was set to five for any 

backlog value greater than five. As of Linux 2.2 the backlog value is for completely 

established sockets waiting for acceptance versus incomplete connection requests. If 

needed, the maximum queue size for incomplete socket requests can be set with the 

/sbin/sysctl command using tcp_max_syn_backlog variable.



Table 10.9. Summary of the listen System Call.

Include File(s) <sys/types.h>

<sys/socket.h>
Manual Section 2

Summary int listen(int s, int backlog);

Return

Success Failure Sets errno

0 -1 Yes

Should the listen call fail, it sets errno and returns one of the values shown in Table 

10.10.

Table 10.10. listen Error Messages.

# Constant perror Message Explanation

9 EBADF Bad file descriptor s reference is invalid.

88 ENOTSOCK Socket operation on 

non-socket

s is a file descriptor, not a socket 

descriptor.

95 EOPNOTSUPP Operation not 

supported

Socket type (such as SOCK_DGRAM) 

does not support listen operation.

At this point, the server process is ready to accept a connection from a client process 

(which has already established a connection-based socket). By default, the accept call 

will block, if there are no pending requests for connections. The summary for the 

accept system call is given in Table 10.11.

The first argument is a socket descriptor that has been previously bound to an 

address with the bind system call and is currently listening for a connection. If one or 

more client connections are pending, the first connection in the queue is returned by 

the accept call. The second argument for accept, *addr, is a pointer to a generic sockaddr

structure. This structure is returned to the server once the connection with the client 

has been established. Its actual format, as in the bind system call, is dependent upon 

the domain in which the communication will occur. The structure the addr pointer 

references contains the client's address information. The third argument, *addrlen, 

initially contains a reference to the length, in bytes, of the previous sockaddr structure. 

When the call returns, this argument references the size (in bytes) of the returned 



address. If accept is successful, it returns a new connected socket descriptor with 

properties similar to the socket specified by the first argument to the accept system call. 

This new socket can be used for reading and writing. The original socket remains as it 

was and can, in some settings, still continue to accept additional connections. If the 

accept call fails, it returns a value of -1 and sets the value of errno to one of the values 

shown in Table 10.12.

Table 10.11. Summary of the accept System Call.

Include 

File(s)

<sys/types.h>

<sys/socket.h>
Manual 

Section
2

Summary int accept( int s, struct sockaddr *addr,

            socklen_t *addrlen );

Return

Success Failure Sets errno

Positive integer new socket descriptor 

value

-1 Yes

Table 10.12. accept Error Messages.

# Constant perror Message Explanation

1 EPERM Operation not 

permitted

Firewall software prohibits 

connection.

4 EINTR Interrupted system 

call

A signal was received during 

the accept process.

9 EBADF Bad file descriptor The socket reference is 

invalid.

11 EWOULDBLOCK,EAGAIN Resource 

temporarily 

unavailable

The socket is set to 

non-blocking, and no 

connections are pending.

12 ENOMEM Cannot allocate 

memory

Insufficient memory to 

perform operation.



# Constant perror Message Explanation

14 EFAULT Bad address Reference for addr is not 

writeable.

19 ENODEV No such device Specified protocol family/type 

not found in the netconfig file.

22 EINVAL Invalid argument Invalid argument passed to 

accept call.

24 EMFILE Too many files 

open

Process has exceeded the 

maximum number of files 

open.

63 ENOSR Out of streams 

resources

Insufficient STREAMS 

resources for specified 

operation.

71 EPROTO Protocol error An error in protocol has 

occurred.

85 ERESTART Interrupted system 

call should be 

restarted

accept call must be restarted.

88 ENOTSOCK Socket operation 

on non-socket

The socket is a file 

descriptor, not a socket 

descriptor.

93 EPROTONOSUPPORT Protocol not 

supported

Invalid protocol specified.

94 ESOCKTNOSUPPORT Socket type not 

supported

Invalid socket type specified.

95 EOPNOTSUPP Operation not 

supported

s is not of type 

SOCK_STREAM.

103 ECONNABORTED Software caused 

connection abort

Connection aborted.



# Constant perror Message Explanation

105 ENOBUFS No buffer space 

available

Insufficient memory to 

perform operation.

110 ETIMEDOUT Connection timed 

out

Unable to establish 

connection within specified 

time limit.

It is interesting to note that the Linux manual pages indicate that when called, accept

will also pass on pending network errors as if they were from accept. This behavior is 

different from straight BSD socket implementations that do not have this quirk.

In the connection-oriented setting, the client process initiates the connection with the 

server process with the connect system call. The summary of the connect call is shown 

in Table 10.13.

The first argument is a valid integer socket descriptor. The second argument, 

*serv_addr, is handled differently depending upon whether the referenced socket is 

connection-oriented (type SOCK_STREAM) or con nectionless (type 

SOCK_DGRAM). In the connection-oriented setting, *serv_addr references the address 

of the socket with which the client wants to communicate (i.e., the serving process's 

address). For a connectionless socket, *serv_addr references the address to which the 

datagrams are to be sent. Normally, a stream socket is connected only once, while a 

datagram socket can be connected several times. Further, if the protocol domain is 

UNIX, *serv_addr will reference a path/file name, while in the Internet domain (i.e., 

AF_INET) *serv_addr will reference an Internet address/ port number pair. In either 

case, the reference should be cast to a generic sockaddr structure reference. Clear as

mud, right? Hopefully, the section with the client – server examples will help to clarify

the details of the connect system call. The third argument, addrlen, conveys the size of 

the *serv_addr reference.



Table 10.13. Summary of the connect System Call

Include File(s) <sys/types.h>

<sys/socket.h>
Manual Section 2

Summary int connect(int sockfd,

            const struct sockaddr *serv_addr,

            socklen_t addrlen);

Return

Success Failure Sets errno

0 -1 Yes

As there are a number of ways in which the connect call can fail, the list of errors that 

connect can generate is quite extensive. A list of connect errors is found in Table 10.14.

Table 10.14. connect Error Messages.

# Constant Perror Message Explanation

1 EPERM Operation not 

permitted Attempt to broadcast 

without having broadcast 

flag set.

Request failed due to 

firewall.

4 EINTR Interrupted system 

call

A signal was received during 

connect process.

9 EBADF Bad file descriptor sockfd reference is invalid.

11 EAGAIN Resource temporarily 

unavailable

No more free local ports.

13 EACCES Permission denied Search permission denied for part 

of path referenced by *serv_addr.

14 EFAULT Bad address Address referenced by *serv_addr

is outside the user's address 

space.



# Constant Perror Message Explanation

22 EINVAL Invalid argument namelength is not correct for 

address referenced by *serv_addr.

63 ENOSR Out of streams 

resources

Insufficient STREAMS resources 

for specified operation.

88 ENOTSOCK Socket operation on 

non-socket

sockfd is a file descriptor, not a 

socket descriptor.

91 EPROTOTYPE Protocol wrong type 

for socket

Conflicting protocols, socketfd

versus the *serv_addr reference.

97 EAFNOSUPPORT Address family not 

supported by protocol 

family

Address referenced by *serv_addr

cannot be used with this socket.

98 EADDRINUSE Address already in 

use

Local address referenced by 

*serv_addr already in use.

99 EADDRNOTAVAIL Cannot assign 

requested address

Address referenced by *serv_addr

not available on remote system.

101 ENETUNREACH Network is 

unreachable

Cannot reach specified system.

106 EISCONN Transport endpoint is 

already connected

sockfd already connected.

110 ETIMEDOUT Connection timed out Could not establish a connection 

within time limits.

111 ECONNREFUSED Connection refused Connect attempt rejected; socket 

already connected.

114 EALREADY Operation already in 

progress

Socket is non-blocking, and no 

previous connection completed.

115 EINPROGRESS Operation now in 

progress

Socket set as non-blocking, and 

connection cannot be established 

immediately.



Once the connection between the client and server has been established, they can 

communicate using standard I/O calls, such as read and write, or one of a number of 

specialized send/receive type calls covered in Section 10.5. When the processes are 

finished with the socket descriptor, they issue a standard close, which by default will 

attempt to send remaining queued data should the protocol for the connection (such 

as TCP) specify reliable delivery.

10.4.1 A UNIX Domain Stream Socket Example

In the following example, programs 10.2 and 10.3, we create a server process and a 

client process that each use a UNIX domain, connection-oriented (SOCK_STREAM) 

socket for communication. The server will create the socket, bind it to an address, 

generate a wait queue, accept a connection, and when data is available, read from the 

socket and display the results to the screen. The client process will create a socket, 

connect to the server, and obtain from the user 10 expressions, each of which it writes 

to the socket. The server reads the data passed (the expression) and processes the 

expression by passing it, via a pipe, to the bc utility for evaluation. The output of the bc

utility is read by the server and sent back, using the socket, to the client process 

where it is displayed.

Program 10.2 UNIX domain connection-oriented server.

File : p10.2.cxx

  |     /*

  |          Server - UNIX domain, connection-oriented

  |     */

  |     #define _GNU_SOURCE

  +     #include <iostream>

  |     #include <cstdio>

  |     #include <unistd.h>

  |     #include <sys/types.h>

  |     #include <sys/socket.h>

 10     #include <sys/un.h>             // UNIX protocol

  |     using namespace std;

  |

  |     const char *NAME = "./my_sock";

  |     const int  MAX = 1024;

  +     void clean_up( int, const char *); // Close socket and remove



  |     int

  |     main(  ) {

  |       socklen_t       clnt_len;     // Length of client address

  |       int             orig_sock,    // Original socket descriptor

 20                       new_sock;     // New socket descriptor from connect

  |     static struct sockaddr_un       // UNIX addresses to be used

  |                     clnt_adr,            // Client address

  |                     serv_adr;            // Server address

  |     static char     clnt_buf[MAX],       // Message from client

  +                     pipe_buf[MAX];       // output from bc command

  |     FILE *fin;                           // File for pipe I/O

  |                                          // Generate socket

  |     if ((orig_sock = socket(PF_UNIX, SOCK_STREAM, 0)) < 0) {

  |       perror("generate error");

 30       return 1;

  |     }                                    // Assign address information

  |     serv_adr.sun_family = AF_UNIX;

  |     strcpy(serv_adr.sun_path, NAME);

  |     unlink(NAME);                        // Remove old copy if present

  +                                          // BIND the address

  |     if (bind( orig_sock, (struct sockaddr *) &serv_adr,

  |               sizeof(serv_adr.sun_family)+strlen(serv_adr.sun_path)) < 0) {

  |       perror("bind error");

  |       clean_up(orig_sock, NAME);

 40       return 2;

  |     }

  |     listen(orig_sock, 1);                // LISTEN for connections

  |     clnt_len = sizeof(clnt_adr);         // ACCEPT connection

  |     if ((new_sock = accept( orig_sock, (struct sockaddr *) &clnt_adr,

  +                             &clnt_len)) < 0) {   <-- 1

  |       perror("accept error");

  |       clean_up(orig_sock, NAME);

  |       return 3;

  |     }

 50                                          // Process 10 requests

  |     for (int i = 0; i < 10; i++) {

  |       memset(clnt_buf, 0x0, MAX);        // Clear client buffer

  |       read(new_sock, clnt_buf, sizeof(clnt_buf));

  |                                          // build command for bc

  +       memset(pipe_buf, 0x0, MAX);

  |       sprintf(pipe_buf, "echo \'%s\' | bc\n", clnt_buf);

  |       fin = popen( pipe_buf, "r" );

  |       memset(pipe_buf, 0x0, MAX);

  |       read(fileno(fin), pipe_buf, MAX);

 60       cout << clnt_buf << " = " << pipe_buf << endl;

  |     }



  |     close(new_sock);

  |     clean_up(orig_sock, NAME);

  |     return 0;

  +   }

  |   void

  |   clean_up( int sd, const char *the_file ){

  |     close( sd );                         // Close socket

  |     unlink( the_file );                  // Remove it

 70   }

(1) When a connection is accepted, a new socket is generated—similar

in form to the original socket.

Notice the call to bind in the server program (program p10.2.cxx, lines 36 and 37). As 

written, the third argument, which is the length of the address structure, is an 

expression. The expression calculates the total size by adding the size of the 

sun_family member of the address structure to the string length of the sun_path member. 

If we just applied the sizeof operator to the whole address structure, on most platforms 

the value returned would be 110 (say, 2 bytes for the sun_family member plus the 108 

bytes for the sun_path member).

The client program is shown in Program 10.3.

Program 10.3 UNIX domain connection-oriented client.

File : p10.3.cxx

  |     /*

  |           Client - UNIX domain, connection-oriented

  |      */

  |

  +     #define _GNU_SOURCE

  |     #include <iostream>

  |     #include <cstdio>

  |     #include <unistd.h>

  |     #include <sys/types.h>

 10     #include <sys/socket.h>

  |     #include <sys/un.h>              // UNIX protocol

  |     using namespace std;

  |

  |     const char *NAME = "./my_sock";

  +     const int  MAX = 1024;



  |     int

  |     main(  ) {

  |       int             orig_sock;     // Original socket descriptor

  |       static struct sockaddr_un

 20                       serv_adr;      // UNIX address of the server process

  |       static char     buf[MAX];      // Buffer for messages

  |                                      // Generate the SOCKET

  |       if ((orig_sock = socket(PF_UNIX, SOCK_STREAM, 0)) < 0) {

  |         perror("generate error");

  +         return 1;

  |       }

  |       serv_adr.sun_family = AF_UNIX;

  |       strcpy(serv_adr.sun_path, NAME);

  |                                      // CONNECT

 30       if (connect( orig_sock, (struct sockaddr *) &serv_adr,

  |              sizeof(serv_adr.sun_family)+strlen(serv_adr.sun_path)) < 0) {

  |         perror("connect error");

  |         return 2;

  |       }

  +                                      // Prompt for expressions

  |       cout << "Enter an expression and press enter to process." << endl;

  |       for (int i = 0; i < 10; i++) {

  |         memset(buf, 0x0, MAX);

  |         cin.getline(buf, MAX-1, '\n');

 40         write(orig_sock, buf, sizeof(buf));

  |       }

  |       close(orig_sock);

  |       return 0;

  |     }

We run the client–server pair by placing the server process in the background. We

then run the client process in the foreground. The compilation sequence and some

sample output generated by the client–server programs are shown in Figure 10.8.

Figure 10.8 UNIX domain client–server program compilation and run.

linux$ g++ p10.2.cxx -o server                       <-- 1

linux$ g++ p10.3.cxx -o client

linux$ ./server &                                    <-- 2

[1] 4739

                                                     <-- 3

linux$ ls -l my_sock 

srwxr-xr-x    1 gray     faculty         0 May  9 15:35 my_sock

                                                     <-- 4



linux$ ./client 

Enter an expression and press enter to process.

78 * 92

78 * 92 = 7176

89 % 6 + 34 - 2 * -9

89 % 6 + 34 - 2 * -9 = 57

1 && 0 || 1

1 && 0 || 1 = 1

!( 1 && 1 || 0 )

!( 1 && 1 || 0 ) = 0

. . .

(1) Compile each program into an executable.

(2) Place server in background.

(3) Check for presence of the socket.

(4) Run client in the foreground.

On the command line, the presence of the socket can also be confirmed by using the 

netstat command. This command, which has numerous options, can be used to display

information about socket-based communications. Figure 10.9 shows part of the output 

of netstat on a local system after the UNIX domain server program has been placed in 

the background.

Figure 10.9 Sample output from the netstat command.

linux$ netstat -x -a

Active UNIX domain sockets (servers and established)



Proto RefCnt Flags   Type   State       I-Node Path

unix  13     [ ]     DGRAM              1384  /dev/log

unix  2      [ ACC ] STREAM LISTENING   1681  /var/lib/mysql/mysql.sock

unix  2      [ ACC ] STREAM LISTENING   2202  /tmp/.font-unix/fs7100

unix  2      [ ACC ] STREAM LISTENING   5914  /opt/ARCserve/data/ds_callback

unix  2      [ ACC ]   STREAM   LISTENING   65439  ./my_sock

. . .

10-5 EXERCISE

If we place the server process in the background and open, say, three 

windows on the same host and attempt to run multiple client processes, we 

find that one client will work correctly but the other clients will not. Rewrite 

the server program (p10.2.cxx) so that it will accept and process multiple 

client connections (each in their own window) correctly. Hint: Should the 

server fork a child process to handle each connection?

10.4.2 An Internet Domain Stream Socket Example

In the Internet domain, processes must have address and port information to 

communicate. An application may know the name of a host (such as linux, kahuna, or 

morpheus) with which it wants to communicate but lack specifics about the host's fully 

qualified name, Internet address, services offered (on which ports), and other 

information. There are a number of network information calls that can be used to 

return this information.

The gethostbyname call will return information about a specific host when passed its 

name. Table 10.15 presents a summary of the gethostbyname call.

The gethostbyname call takes a single character string reference that contains the name 

of the host. The call queries the local network database[10] to obtain information about 

the indicated host. If the host name is found, the call returns a reference to a hostent

structure. The hostent structure is defined in the include file <netdb.h> as

[10] Information may come from any of the sources for services specified 



in the /etc/nsswitch.conf file (see nsswitch.conf in Section 5 of the manual 

pages for details).

Table 10.15. Summary of the gethostbyname Library Function.

Include File(s) #include <netdb.h>

#include <sys/socket.h>

extern int h_errno;

Manual Section
3

Summary struct hostent *gethostbyname(const char *name);

Return
Success Failure Sets errno

Reference to a hostent structure NULL NO, sets h_errno

struct hostent {

  char *h_name;                   /* Official name of host.                */

  char **h_aliases;               /* Alias list.                           */

  int h_addrtype;                 /* Host address type.                    */

  int h_length;                   /* Length of address.                    */

  char **h_addr_list;             /* List of addresses from name server.   */

  #define h_addr  h_addr_list[0]  /* Address, for backward compatibility.  */

};

If the host name is not found, the gethostbyname call returns a NULL. Should the call 

encounter an error situation, it sets a global variable called h_error (not errno) to 

indicate the error. The values h_error can take and the associated defined constants 

(found in the include file <netdb.h>) are shown in Table 10.16. An obsolete error 

messaging function called h_error (similar in spirit to perror) can be called to generate an 

error message.



Table 10.16. gethostbyname Error Messages.

# Constant Explanation

0 NETDB_SUCCESS No problem.

1 HOST_NOT_FOUND Authoritative answer not found/no such host.

2 TRY_AGAIN Nonauthoritative host not found or SERVERFAIL.

3 NO_RECOVERY Nonrecoverable error.

4 NO_DATA Valid name but no data record of requested type.

In some development environments the object code for the gethostbyname network call 

resides in the libnsl.a archive. In these settings, when using this call, the switch -lnsl

must be added to the compilation line. Program 10.4 uses the gethostbyname call to 

obtain information about a host.

Program 10.4 Obtaining host information with gethostbyname.

File : p10.4.cxx

  |     /*

  |          Checking host entries

  |     */

  |     #include <iostream>

  +     #include <cstdio>

  |     #include <netdb.h>

  |     #include <sys/socket.h>

  |     #include <netinet/in.h>                // for inet_ntoa

  |     #include <arpa/inet.h>

 10     #include <string.h>                    // for memcpy

  |     extern int h_errno;

  |     using namespace std;

  |     int

  |     main(  ) {

  +       struct hostent *host;

  |       static char who[60];

  |       cout << "Enter host name to look up: ";

  |       cin  >> who;

  |       host = gethostbyname( who );

 20       if ( host != (struct hostent *) NULL ) {

  |         cout << "Here is what I found about " << who << endl;

  |         cout << "Official name : " <<  host->h_name  << endl;

  |         cout << "Aliases       : ";



  |         while ( *host->h_aliases ) {

  +           cout << *host->h_aliases << " ";

  |           ++host->h_aliases;

  |         }

  |         cout << endl;

  |         cout << "Address type  : " << host->h_addrtype << endl;

 30         cout << "Address length: " << host->h_length   << endl;

  |         cout << "Address list  : ";

  |         struct in_addr in;

  |         while ( *host->h_addr_list ) {

  |           memcpy( &in.s_addr, *host->h_addr_list, sizeof (in.s_addr));

  +           cout << "[" << *host->h_addr_list << "] = "

  |                << inet_ntoa(in) << " ";

  |           ++host->h_addr_list;

  |         }

  |         cout << endl;

 40       } else

  |         herror(who);

  |       return 0;

  |     }

In Program 10.4, the gethostbyname call is used to obtain network database information 

about a host. When the program is run, the user is prompted for the name of a host 

(as written, the name can be at most 59 characters). If the gethostbyname call is 

successful, the official database entry name of the host is displayed. This is followed 

by a list of aliases (alternate names). The address type and length is displayed next. 

In an Internet domain setting, we can expect these values to be 2 (the value of 

AF_INET) and 4 (the number of bytes needed to store an integer value). The last part 

of the program displays the Internet address of the host. It uses an additional Internet 

address manipulation call, inet_ntoa, to translate the character-encoded network 

address referenced by the h_addr_list member into the more standard dotted notation. 

The manual page on inet_ntoa provides a good explanation of how the character string 

argument to the call is translated. A run of Program 10.4 is shown in Figure 10.10.

Figure 10.10 A run of Program 10.4.

linux$ p10.4

Enter host name to look up: www-cs

Here is what I found about www-cs

Official name : zeus.hartford.edu

Aliases       : www-cs.hartford.edu

Address type  : 2



Address length: 4

Address list  : [14] = 137.49.52.2                   <-- 1

(1) The address list with and without inet_ntoa translation.

10-6 EXERCISE

There is a call similar to gethostbyname that returns host entry information 

when passed the dotted Internet address of the host. Write a program based 

on Program 10.4 that requests the Internet address of a host. Then use the 

gethostbyaddr call to display the host's information.

In addition to knowing the server's 32-bit Internet address, the client must also be able 

to make reference to a particular service at a given port on the server. As noted 

previously, there are some TCP- and UDP-based well-known ports that have standard

services, such as echo, associated with them. The ports with numbers less than 1024 

are reserved for processes with an effective ID of root. Ports 1024 and above are 

considered ephemeral, and may be used by any system user. Some further subdivide 

this upper range of ports into registered (1024–49151) and dynamic (49152 and 

greater) ports. An application can issue the getservbyname call (see Table 10.17) to 

obtain information about a particular service or port.

Table 10.17. Summary of the getservbyname Library Function

Include File(s) <netdb.h> Manual Section 3

Summary struct servent *getservbyname(const char *name,

                              const char *proto);

Return
Success Failure Sets errno

Reference to a servent structure NULL  

The getservbyname call is passed the name of the host and protocol (e.g., tcp). If 

successful, it returns a reference to a servent structure. The servent structure is defined 

in <netdb.h> as:



struct servent {

        char    *s_name;        /* official service name */

        char    **s_aliases;    /* alias list            */

        int     s_port;         /* port number           */

        char    *s_proto;       /* protocol to use       */

}

If the call fails, it returns a NULL value. Program 10.5 uses the getservbyname library 

function to return information about a selected service type for a given protocol.

Program 10.5 Obtaining service information on a host using getservbyname.

File : p10.5.cxx

  |     /*

  |          Checking service -- port entries for a host

  |     */

  |     #include <iostream>

  +     #include <cstdio>

  |     #include <netdb.h>

  |     using namespace std;

  |     int

  |     main( ) {

 10       struct servent *serv;

  |       static char protocol[10], service[10];     <-- 1

  |       cout << "Enter service to look up : ";

  |       cin  >> service;

  |       cout << "Enter protocol to look up: ";

  +       cin  >> protocol;

  |       serv = getservbyname( service, protocol );

  |       if ( serv != (struct servent *)NULL ) {

  |         cout << "Here is what I found " << endl;

  |         cout << "Official name  : " << serv->s_name << endl;

 20         cout << "Aliases        : ";

  |         while ( *serv->s_aliases ) {

  |           cout << *serv->s_aliases << " ";

  |           ++serv->s_aliases;

  |           }

  +         cout << endl;

  |         cout << "Port number    : " << ntohs(serv->s_port) << endl;

  |         cout << "Protocol Family: " << serv->s_proto << endl;

  |       } else

  |         cout << "Service " << service << " for protocol "

 30              <<  protocol  << " not found." << endl;

  |       return 0;

  |     }



(1) Arbitrary buffer sizes.

Before the port number is displayed, it is passed to the ntohs function. This is one of a 

group of functions used to insure byte ordering is maintained when converting 16- and 

32-bit integer values that represent host and network addresses. The summary for 

ntohs is shown in Table 10.18.

Table 10.18. Summary of the ntohs Library Function.

Include 

File(s)

<netinet/in.h> Manual 

Section
3

Summary unsigned short int ntohs(unsigned short

                         int netshort);

Return

Success Failure Sets errno

The argument in proper byte order for the 

network.

  

The inverse of the ntohs call is ntohs (notice the switch of the letters h and n). The letter 

s indicates the argument is a short (16-bit) integer, as is the returned value. There are 

two similar routines, ntohl and htonl, that accept and return long (32-bit) integers. If byte 

ordering is not necessary for a given platform, these calls act as a no-op.

A sample run of Program 10.5 and a copy of the corresponding /etc/ services entry are 

shown in Figure 10.11.

Figure 10.11 A run of Program 10.5.

linux$ p10.5

Enter service to look up : discard

Enter protocol to look up: tcp

Here is what I found

Official name  : discard

Aliases        : sink null

Port number    : 9

Protocol Family: tcp



linux$ grep discard /etc/services                    <-- 1

discard         9/tcp           sink null

discard         9/udp           sink null

(1) Verify the information.

10-7 EXERCISE

The manual page for getservbyname includes a description of a network 

function called getservent. The getservent call can be used to enumerate all the 

services on a host. Write a program that requests the protocol type and uses 

the getservent network call to display all the services on the host that use the 

indicated protocol. Be sure to call setservent prior to issuing the getservent call.

We now have most of the basic tools to write a client–server application that uses

Internet protocol with a connection-oriented socket. In this next example, the server

process receives messages from the client process. As each message is received,

the server changes the case of the message and returns it to the client.

Communication terminates when the client sends a string that has a dot (.) in column

one. For each connection initiated by a client, the server process will fork a child 

process that runs concurrently and carries on communications.

All of the remaining client–server type socket examples share a common header file

called local_sock.h. The content of local_sock.h file is shown in Figure 10.12.

Figure 10.12 The local_sock.h include file for all socket example programs.

File : local_sock.h

  |     /*

  |        Local include file for socket programs

  |     */

  |     #ifndef LOCAL_SOCK_H

  +     #define LOCAL_SOCK_H

  |     #define _GNU_SOURCE

  |     #include <iostream>

  |     #include <sys/ioctl.h>

  |     #include <cstdio>



 10     #include <string.h>

  |     #include <ctype.h>

  |     #include <unistd.h>

  |     #include <stdlib.h>

  |     #include <signal.h>

  +     #include <wait.h>

  |     #include <sys/types.h>

  |     #include <sys/socket.h>

  |     #include <sys/un.h>

  |     #include <netdb.h>

 20     const  int  PORT=2002;             // Arbitrary port programmer chooses

  |     static char buf[BUFSIZ];           // Buffer for messages

  |     const  char *SERVER_FILE="server_socket";

  |     #endif

  |     using namespace std;

The local_sock.h file contains references to the include files needed by both the server 

and client programs. The defined constant PORT is an arbitrary integer port number 

that we will use with this application. The value for the port should be one that is 

currently not in use and is greater than or equal to 1024. An alternate approach is to 

add an entry for the port in the /etc/services file. If the port is in the /etc/services file, the 

port information could then be obtained dynamically with the getservbyname network 

call. However, most users do not have the required root access to add an entry. The 

character array buf is used as a temporary storage location for characters.

The server program, Program 10.6, is presented first.

Program 10.6 The Internet domain, connection-oriented server.

File : p10.6.cxx

  |     /*

  |           Internet domain, connection-oriented SERVER

  |      */

  |     #include "local_sock.h"

  +     void signal_catcher(int);

  |     int

  |     main(  ) {

  |       int             orig_sock,          // Original socket in server

  |                       new_sock;           // New socket from connect

 10       socklen_t       clnt_len;           // Length of client address

  |       struct sockaddr_in                  // Internet addr client & server

  |                       clnt_adr, serv_adr;

  |       int             len, i;             // Misc counters, etc.



  |                                           // Catch when child terminates

  +       if (signal(SIGCHLD , signal_catcher) == SIG_ERR) {

  |         perror("SIGCHLD");

  |         return 1;

  |       }

  |       if ((orig_sock = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

 20         perror("generate error");

  |         return 2;

  |       }

  |       memset( &serv_adr, 0, sizeof(serv_adr) );      // Clear structure

  |       serv_adr.sin_family      = AF_INET;            // Set address type

  +       serv_adr.sin_addr.s_addr = htonl(INADDR_ANY);  // Any interface

  |       serv_adr.sin_port        = htons(PORT);        // Use our fake port

  |                                                      // BIND

  |       if (bind( orig_sock, (struct sockaddr *) &serv_adr,

  |                 sizeof(serv_adr)) < 0){

 30         perror("bind error");

  |         close(orig_sock);

  |         return 3;

  |       }

  |       if (listen(orig_sock, 5) < 0 ) {               // LISTEN

  +         perror("listen error");

  |         close (orig_sock);

  |         return 4;

  |       }

  |       do {

 40         clnt_len = sizeof(clnt_adr);                 // ACCEPT a connect

  |         if ((new_sock = accept( orig_sock, (struct sockaddr *) &clnt_adr,

  |                                 &clnt_len)) < 0) {

  |           perror("accept error");

  |           close(orig_sock);

  +           return 5;

  |         }

  |         if ( fork( ) == 0 ) {                      // Generate a CHILD

  |           while ( (len=read(new_sock, buf, BUFSIZ)) > 0 ){

  |             for (i=0; i < len; ++i)                // Change the case

 50               buf[i] = toupper(buf[i]);

  |             write(new_sock, buf, len);             // Write back to socket

  |             if ( buf[0] == '.' ) break;            // Are we done yet?

  |           }

  |           close(new_sock);                         // In CHILD process

  +           return 0;

  |         } else

  |           close(new_sock);                     // In PARENT process

  |       } while( true );                         // FOREVER

  |       return 0;



 60     }

  |     void

  |     signal_catcher(int the_sig){

  |       signal(the_sig, signal_catcher);         // reset

  |       wait(0);                                 // keep the zombies at bay

  +     }

The server program contains a few new bells and whistles that were not in our 

previous examples. The server process forks a child process to handle each 

connection. When the child process ends, the operating system will want to return the 

exiting status of the child to its parent. Normally, the parent process waits for the child. 

As multiple connections (producing multiple child processes) are possible, we do not 

want the parent (the server process) to block, which is the default for wait, for a given 

child process. To resolve this, we associate the receipt of a SIGCHLD signal (child 

process has terminated) with a signal-catching routine (see lines 15 to 18). When 

invoked, the signal-catching routine performs the wait. This arrangement prevents a 

child process from becoming a zombie while it waits for the parent process to retrieve 

its returned status information. Also, notice the use of the memset library function in line 

23 to clear the address structure before its contents are assigned.[11] When assigning 

the address member of the server structure, the address is first passed to htonl. In this 

example, the server passes the defined constant INADDR_ANY, found in the header 

file <netinet/in.h>, to htonl. This constant, which is mapped to the value 0, indicates to 

the server that any address of socket type (SOCK_STREAM) will be acceptable. The 

client program is shown in Program 10.7.

[11] An alternate approach is to use bzero, a strictly BSD string function, 

to fill the location with NULL bytes. However, bzero is a deprecated 

function and should not be used if portability is a concern. If bzero is 

used, the <string.h> file should be included.

Program 10.7 The Internet domain, connection-oriented client.

File : p10.7.cxx

  |     /*

  |         Internet domain, connection-oriented CLIENT

  |     */

  |     #include "local_sock.h"

  +     int

  |     main( int argc, char *argv[] ) {

  |       int             orig_sock,           // Original socket in client



  |                       len;                 // Misc. counter

  |       struct sockaddr_in

 10                       serv_adr;            // Internet addr of server

  |       struct hostent  *host;               // The host (server) info

  |       if ( argc != 2 ) {                   // Check cmd line for host name

  |         cerr << "usage: " << argv[0] << " server" << endl;

  |         return 1;

  +       }

  |       host = gethostbyname(argv[1]);       // Obtain host (server) info

  |       if (host == (struct hostent *) NULL ) {

  |         perror("gethostbyname ");

  |         return 2;

 20       }

  |       memset(&serv_adr, 0, sizeof( serv_adr));       // Clear structure

  |       serv_adr.sin_family = AF_INET;                 // Set address type

  |       memcpy(&serv_adr.sin_addr, host->h_addr, host->h_length);

  |       serv_adr.sin_port   = htons( PORT );           // Use our fake port

  +                                            // SOCKET

  |       if ((orig_sock = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

  |         perror("generate error");

  |         return 3;

  |       }                                    // CONNECT

 30       if (connect( orig_sock,(struct sockaddr *)&serv_adr,

  |                    sizeof(serv_adr)) < 0) {

  |         perror("connect error");

  |         return 4;

  |       }

  +       do {                                 // Process

  |         write(fileno(stdout),"> ", 3);

  |         if ((len=read(fileno(stdin), buf, BUFSIZ)) > 0) {

  |           write(orig_sock, buf, len);

  |           if ((len=read(orig_sock, buf, len)) > 0 )

 40             write(fileno(stdout), buf, len);

  |         }

  |       } while( buf[0] != '.' );            // until end of input

  |       close(orig_sock);

  |       return 0;

  +     }

The client program expects the name of a server (host) to be passed on the command

line. The gethostbyname network call is used to obtain specific host-addressing 

information. The returned information, stored in the hostent structure, is referenced by 

*host. This information is used in part to fill the server Internet address information 

stored in the serv_adr structure. Before its members are assigned, the serv_adr structure 

is cleared using the memset library function. The address family is set to AF_INET. The 



memcpy library function is used to copy the obtained host address to the server 

address member. The memcpy function is used, as it will copy a specified number of 

bytes even if the referenced locations contain nonstandard strings (i.e., contain 

NULLs or do not end in a NULL). The assignment of the port number is similar to what 

was done in the server.

Next, a socket is created and a connection to the server process established. The 

client process then enters an endless loop. In the loop it requests user input with a >

prompt. The user's input is read from the device mapped to standard input (most likely 

the keyboard). This input is then written to the socket where the server will read and 

process it (i.e., capitalize the string). The client process obtains the processed string 

by reading from the socket descriptor. The contents of this string (stored in the buf

array) are written to the device mapped to standard output (usually the screen). The 

client continues to loop until a string that begins with a "." is entered.

A sample run of the Internet domain, connection-oriented client–server application is

shown in Figure 10.13.

Figure 10.13 A run of the Internet domain, connection-oriented client–server application.

linux$ ps

  PID TTY          TIME CMD                          <-- 1

21604 pts/0    00:00:00 csh

23026 pts/0    00:00:00 3

linux ./server &                                     <-- 2

[1] 23028

linux$ ./server &                                    <-- 3

bind error: Address already in use

[2] 23029

[2]  - Exit 2                        ./server

linux$ telnet medusa                                 <-- 4

. . .

medusa$ ./client linux                               <-- 5

> this is a test of the system

THIS IS A TEST OF THE SYSTEM

> .

.



medusa$ ps

  PID TTY          TIME CMD

23095 pts/0    00:00:00 csh

23387 pts/0    00:00:00 ps

(1) We check the system for the server process—none is present.

(2) The server is placed in the background.

(3) The server has already bound the address.

(4) Run a terminal session on another local host.

(5) Run the client; pass the name of the host (linux) that is running the 

server process.

In this sequence, the user has logged onto the host linux and issued the ps command. 

The output of the command verifies that no server process is present. The server 

process is then invoked and explicitly placed in the background with the &. When the 

server is invoked a second time, the error message bind error: Address already in use is 

displayed. This message is generated by the call to bind because the previous 

invocation of the server program has already bound the port. The user then runs telnet

to log onto another host on the network (medusa) and changes to the directory where

the client–server application resides. The client program is invoked and passed the

name of the host running the server program (in this example, linux). When the prompt 

appears, a line of text is entered. The client process passes the text to the server. The

server, running on the host linux, processes the line of text and returns it to the client 

on host medusa. The client process displays the line (the initial line, which now is in all 

capitals). The application terminates with the entry of a line starting with a single 

period. A follow-up call to ps indicates the client process is gone.



10-8 EXERCISE

Modify Programs 10.6 and 10.7 to play a remote game of tic-tac-toe. The 

client (the user) will play against the server (the computer). The client (who 

goes first) requests the user enter a valid location. The location is stored in 

the representation of board. The board is then passed to the server. The 

server then generates a valid move [tries first to win; if it cannot win, then 

block; if no block is required, it moves randomly]. The server's move is 

stored in the board, the board is returned to the client, and so on. The client 

is responsible for validating a user's requested move, displaying the board, 

and determining a win, loss, or tie. The server should have separate routines 

to generate a winning, blocking, or random move. The server should always 

generate a valid move. The server should create a separate process for 

each connected client. Note: As a starting point, a PC platform executable 

version (authored by a former student: Mark Cormier) of this exercise can be 

found with the files for this chapter. The files are called toe_server and 

toe_client.

10-9 EXERCISE

Further modify the tic-tac-toe game to allow two users to play against one 

another by connecting to a separate tic-tac-toe arbitrator process (server). 

Offload some of the common functions, such as checking for a win, loss, or 

tie, who goes first, and whose turn is next, to the arbitrator process.

     

Top
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10.5 Sockets: The Connectionless Paradigm

The sequence of events for connectionless client–server communication has some

common elements with connection-oriented communication. Both the client and server

still generate sockets using the socket call. The server and, most often, the client, bind

their sockets to an address. However, in the connection-oriented sequence, only the 

server performs this step. The client process does not use connect to establish a 

connection with the server. Instead, both the server and client send and receive 

datagram packets to and from a specified address. The server process sends its 

packets to the client address, and the client sends its packets to the server address. 

These events are shown in Figure 10.14.

Figure 10.14. A connectionless client–server communication sequence.

In this example, we have used the sendto and recvfrom system calls for data exchange. 

The sendto call in the client is somewhat similar in function to the connect–write
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sequence we saw in the initial Internet domain connection-oriented example. Similarly, 

the recvfrom call is analogous to the accept–read sequence we used for the server in the 

same example.

The sendto call is one of several alternate ways to write data to a socket. Table 10.19

provides a summary of three calls that can write data to a socket descriptor.

Table 10.19. Summary of the send, sendto, and sendmsg System Calls.

Include File(s) <sys/types.h>

<sys/socket.h>
Manual Section 2

Summary int send   (int s, const void *msg,size_t len,

            int flags);

int sendto (int s,const void *msg,

            size_t len, int flags,

            const struct sockaddr *to, socklen_t

            tolen);

int sendmsg(int s, const struct msghdr *msg,

            int flags);

Return

Success Failure Sets errno

Number of bytes sent. -1 Yes

The send call, since it contains no destination addressing information, can only be 

used with connected (SOCK_STREAM) sockets. The sendto and sendmsg calls can be 

used with either socket type but are most commonly used with datagram sockets 

(SOCK_DGRAM). The send and sendto calls dispatch a sequence of bytes. The 

sendmsg call is used to transmit data that resides in noncontiguous (scattered) memory 

locations (such as in a structure).

In all three calls, the integer argument s is a valid socket descriptor. The *msg

argument references the message to be sent. In the sendmsg call, the msg reference is 

to a structure of type msghdr that contains additional addressing/messaging 

information.[12] This structure is defined as

[12] As its use is rather complex, we will only mention sendmsg (and its 

reciprocal recvmsg) in passing (no pun intended!).

struct msghdr {



   void         *msg_name;      /* optional address          */

   socklen_t    msg_namelen;    /* size of address           */

   struct iovec *msg_iov;       /* scatter/gather array      */

   size_t       msg_iovlen;     /* # elements in msg_iov     */

   void         *msg_control;   /* ancillary data, see below */

   socklen_t    msg_controllen; /* ancillary data buffer len */

   int          msg_flags;      /* flags on received message */

};

where the type iovec is

struct iovec  {

    void *iov_base;     /* Pointer to data.  */

    size_t iov_len;     /* Length of data.   */

  };

The len argument is the length of the message to send. Message size is limited by the 

underlying protocol. The sendto call contains an additional argument that references 

the address structure with the information of where to send the message. With sendto

this argument is followed by an argument containing the size of the addressing 

structure. If sendto is used with a connection-oriented socket, these two arguments are 

ignored. All three calls have an integer-based flag argument. Bitwise ORing the value 0 

with one or more of the defined constants in Table 10.20 generates the flag value.

Table 10.20. Flags for the send, sendto, and sendmsg Calls.

Flag Meaning

MSG_OOB Message out of band. At present this flag is valid only for 

Internet stream-based sockets. Specifying MSG_OOB allows 

the process to send urgent data. The receiving process can 

choose to ignore the message.

MSG_DONTROUTE Bypass routing tables and attempt to send message in one 

hop. This is often used for diagnostics purposes.

MSG_DONTWAIT Adopt non-blocking operation for operations that block return 

EAGAIN.

MSG_NOSIGNAL On stream-based socket do not send a SIGPIPE error when 

one end of connection is broken.



Flag Meaning

MSG_CONFIRM With SOCK_DGRAM and SOCK_RAW sockets, in Linux 

2.3+, notify the link layer of successful reply from the other 

side.

In some settings when the above calls are used, the network and socket library must 

be specified. In such settings use the -lnsl and/or -lsocket compiler option to notify the 

linker. These calls return the number of bytes sent or, in case of error, a -1, setting 

errno to one of the values found in Table 10.21. Data sent to an unbound socket is 

discarded.



Table 10.21. send, sendto, and sendmsg Error Messages.

# Constant perror Message Explanation

4 EINTR Interrupted 

system call

A signal was received by the process 

before data was sent.

9 EBADF Bad file 

descriptor

The socket reference is invalid.

11 EWOULDBLOCK, 

EAGAIN

Resource 

temporarily 

unavailable

The socket is set to non-blocking, and 

no connections are pending.

12 ENOMEM Cannot allocate 

memory

Insufficient memory to perform 

operation.

14 EFAULT Bad address Argument references location outside 

user address space.

22 EINVAL Invalid 

argument

tolen argument contains an incorrect 

value.

32 EPIPE Broken pipe Local end of a connection-oriented 

socket is closed.

88 ENOTSOCK Socket 

operation on 

non-socket

The socket argument is a file 

descriptor, not a socket descriptor.

90 EMSGSIZE Message too 

long

Socket type requires message to be 

sent to be atomic (all sent at once) 

and the message to send is too long.

105 ENOBUFS No buffer space 

available

Output queue is full.

Other than read, there are three system calls comparable to send for receiving data 

from a socket descriptor. These calls are recv, recvfrom, and recvmsg. Unless otherwise 

specified (such as with fcntl), these calls will block if no message has arrived at the 

socket. Table 10.22 provides a summary of these calls.

Since it contains no sender address information, the recv network call should only be 



used with connection-oriented (SOCK_STREAM) sockets. The recvfrom and recvmsg

calls can be used with connection-oriented or connectionless sockets. Usually, when 

data is written to a socket with send, sendto, or sendmsg, it is read with the 

corresponding recv, recvfrom, or recvmsg call.

Table 10.22. Summary of the recv, recvfrom, and recvmsg System Calls.

Include File(s) <sys/types.h>

<sys/socket.h>
Manual Section 2

Summary int recv(int s, void *buf, size_t len, int flags);

int recvfrom(int  s,  void  *buf,  size_t len,

    int flags, struct sockaddr *from, socklen_t

      *fromlen);

int recvmsg(int s, struct msghdr *msg, int flags);

Return

Success Failure Sets errno

Number of bytes received -1 Yes

In each call, the integer argument s is a valid socket descriptor. The *buffer argument 

references the location where the received message will be stored. The user is 

responsible for allocating the storage space for the received message. As with the 

sendmsg network call, the *msg argument for recvmsg references a msghdr structure. The 

len argument is the length of the receive message buffer. Remember that the 

message size is limited by the underlying protocol and exceedingly long messages 

may be truncated. The receive calls return the actual number of bytes received. If the 

*from argument for the recvfrom call is not NULL, it should reference a sockaddr structure 

containing the address information of the host that sent the message. The *fromlen

argument should reference the length of this addressing structure. ORing the value 0 

with one or more of the defined flags shown in Table 10.23 forms the flag argument.



Table 10.23. Flags for the recv, recvfrom, and recvmsg Calls.

Flag Meaning

MSG_ERRQUEUE Receive error messages from the error message queue. The 

details of how to implement error message retrieval is beyond 

the scope of this text (see the manual page on recv for 

specifics).

MSG_NOSIGNAL With a stream socket, do not raise a SIGPIPE error when the 

other end of the socket disappears.

MSG_OOB Message out of band. At present, this flag is valid only for 

Internet stream-based sockets. Specifying MSG_OOB allows 

the process to read urgent out-of-band data.

MSG_PEEK Look at the current data but do not consume it. Subsequent 

read-receive type calls will retrieve the same peeked-at data.

MSG_TRUNC With datagram socket, return the real length of the message 

even if it exceeds specified amount.

MSG_WAITALL Wait until the full request for data has been satisfied.

In cases of error, these calls will return a -1 and set errno to one of the values found in 

Table 10.24.

Table 10.24. recv, recvfrom, and recvmsg Error Messages

# Constant perror Message Explanation

4 EINTR Interrupted system 

call

A signal was received by process 

before data was received.

9 EBADF Bad file descriptor The socket reference is invalid.

11 EAGAIN Resource 

temporarily 

unavailable

The socket is set to 

non-blocking, and no 

connections are pending.

Timer expired before data was 



# Constant perror Message Explanation

received.

14 EFAULT Bad address Argument references a location 

outside user address space.

22 EINVAL Invalid argument An argument contains incorrect value.

88 ENOTSOCK Socket operation 

on non-socket

The socket argument is a file 

descriptor, not a socket descriptor.

107 ENOTCONN Transport endpoint 

is not connected

A connection-oriented socket has not 

been connected.

111 ECONNREFUSED Connection 

refused

Remote host has refused the 

connection request.

10.5.1 A UNIX Domain Datagram Socket Example

Our UNIX domain datagram socket example is somewhat similar in function to the 

stream socket example presented in Section 10.4. In this example, the server creates 

a datagram socket (SOCK_DGRAM) in the UNIX domain and binds it to an address 

(file name). The client also creates a datagram socket and binds it to an address 

(using a different file name, unique to each client process). The client and server use 

the sendto and recvfrom network calls for communication. The client generates 10 

messages (the output of the /usr/games/ fortune utility), which are sent to the server. The 

server displays the messages that it has received. The code for the server process is 

shown in Program 10.8.

Program 10.8 The UNIX domain connectionless server.

File : p10.8.cxx

  |     /*

  |            SERVER - UNIX domain - connectionless

  |     */

  |     #include "local_sock.h"

  +



  |     void clean_up(int, const char *);      // Close socket and remove

  |     int

  |     main(  ) {

  |       socklen_t       clnt_len;            // Length of client address

 10       int             orig_sock;           // Original socket descriptor

  |       static struct sockaddr_un

  |                          clnt_adr,         // Client address

  |                          serv_adr;         // Server address

  |       static char        buf[BUFSIZ];      // Buffer for messages

  +                                            // Generate socket

  |       if ((orig_sock = socket(PF_UNIX, SOCK_DGRAM, 0)) < 0) {

  |         perror("generate error");

  |         return 1;

  |       }                                    // Assign address information

 20       serv_adr.sun_family = AF_UNIX;

  |       strcpy(serv_adr.sun_path,SERVER_FILE);

  |       unlink( SERVER_FILE);                // Remove old copy if present

  |                                            // BIND the address

  |       if (bind(orig_sock, (struct sockaddr *) &serv_adr,

  +               sizeof(serv_adr.sun_family)+strlen(serv_adr.sun_path)) < 0) {

  |        perror("bind error");

  |         clean_up(orig_sock, SERVER_FILE);

  |         return 2;

  |       }                                    // Process

 30       for (int i = 1; i <= 10; i++) {

  |         recvfrom(orig_sock, buf, sizeof(buf), 0,

  |                (struct sockaddr *) &clnt_adr, &clnt_len);

  |         cout << "S receives " << buf;

  |       }

  +       clean_up(orig_sock, SERVER_FILE);

  |       return 0;

  |     }

  |     void

  |     clean_up( int sd, const char *the_file ){

 40       close( sd );                         // Close socket

  |       unlink( the_file );                  // Remove it

  |     }

The code for the client process is shown in Program 10.9.

Program 10.9 The UNIX domain connectionless client.

File : p10.9.cxx

  |     /*

  |            CLIENT - UNIX domain - connectionless



  |     */

  |     #include "local_sock.h"

  +

  |     void clean_up(int, const char *);     // Close socket and remove

  |     int

  |     main( ) {

  |       int             orig_sock;           // Original socket descriptor

 10       static struct sockaddr_un            // UNIX addresses to be used

  |                       clnt_adr,            // Client address

  |                       serv_adr;            // Server address

  |       static char     clnt_buf[BUFSIZ],    // Message from client

  |                       pipe_buf[BUFSIZ],    // Output from fortune command

  +                       clnt_file[]="XXXXXX";// Temporary file name

  |       FILE             *fin;               // File for pipe I/O

  |                                            // Assign SERVER address information

  |       serv_adr.sun_family = AF_UNIX;

  |       strcpy(serv_adr.sun_path, SERVER_FILE);

 20       if ((orig_sock = socket(PF_UNIX, SOCK_DGRAM, 0)) < 0) {

  |         perror("generate error");

  |         return 1;

  |       }

  |       mkstemp(clnt_file);

  +       clnt_adr.sun_family = AF_UNIX;       // Assign CLIENT address information

  |       strcpy( clnt_adr.sun_path, clnt_file );

  |       unlink( clnt_file );                 // Remove

  |                                            // BIND the address

  |       if (bind(orig_sock, (struct sockaddr *) &clnt_adr,

 30               sizeof(clnt_adr.sun_family)+strlen(clnt_adr.sun_path)) < 0) {

  |         perror("bind error");

  |         return 2;

  |       }                                    // Process

  |       for (int i=0; i < 10; i++) {

  +         sleep(1);                          // slow things down a bit

  |         fin = popen("/usr/games/fortune -s", "r");

  |         memset( pipe_buf, 0x0, BUFSIZ );   // clear buffer before reading cmd output

  |         read( fileno(fin), pipe_buf, BUFSIZ );

  |         sprintf( clnt_buf, "%d : %s", getpid(), pipe_buf );

 40         sendto( orig_sock, clnt_buf, sizeof(clnt_buf), 0,

  |                 (struct sockaddr *) &serv_adr, sizeof(struct sockaddr) );

  |       }

  |       clean_up( orig_sock, clnt_file );

  |       return 0;

  +     }

  |     void

  |     clean_up( int sd, const char *the_file ){

  |       close( sd );



  |       unlink( the_file );

 50     }

In the client, the mkstemp library function is used to generate a unique file name to be 

bound to the client's socket. This function is passed a template of XXXXXX that is 

replaced by a unique file name. The function also opens the file. As only the file name 

is needed, the file itself can be removed (unlinked). If there are multiple clients 

communicating with the server, it is imperative that each has its own unique file name 

for binding.

A standard compilation/output sequence using this client–server pair is shown in

Figure 10.15.

Figure 10.15 Compiling and running the UNIX domain connectionless client–server application.

linux$ g++ p10.8.cxx -o server

linux$ g++ p10.9.cxx -o client

linux$ ./server &

[3] 31801

linux$ ./client

S receives 31802 : Go to a movie tonight.  Darkness becomes you.

S receives 31802 : Out of sight is out of mind.

S receives 31802 : Q: What's tan and black and looks great on a lawyer?

                   A: A doberman.

. . .

[3]    Done                          server

Figure 10.16 shows what happens if we run two clients and use the ls command to 

check for the file names to which the client and server sockets are bound. Notice that 

the server still processes 10 messages. However, it receives half of the messages 

from one client and half from the other. No error message is generated when the 

clients continue to send their data to the unbound (closed) server socket.

Figure 10.16 Running the same application with multiple clients.

linux$ ./server &

[1] 32244

linux$ ./client & ./client & ls -l | grep ^s

[2] 32248

[3] 32249



srwxr-xr-x    1 gray     faculty     0 May 17 09:37 eUc0Xq   <-- 1

srwxr-xr-x    1 gray     faculty     0 May 17 09:37 qOC0Tq

srwxr-xr-x    1 gray     faculty     0 May 17 09:37 server_socket

S receives 31754 : Anything worth doing is worth overdoing.

S receives 31755 : Marriage causes dating problems.

S receives 31754 : A handful of patience is worth more than a bushel of brains.

S receives 31755 : OK, so you're a Ph.D.  Just don't touch anything.

. . .

[3]  - Done                          ./client

[2]  - Done                          ./client

[1]  + Done                          ./server

(1) Unique file names generated for client sockets.

10-10 EXERCISE

It was a slow night, and Frick and Frack were discussing UNIX domain 

connectionless sockets. Frick noted that he thought that the code for the 

client, given as Program 10.9, was excessive. Frick's client code (about 20 

lines less) is shown below.

File : frick.cxx

  |     /*

  |            Frick's CLIENT - UNIX domain - connectionless

  |     */

  |     #include "local_sock.h"

  +

  |     int

  |     main( ) {

  |       int             orig_sock;

  |       static struct sockaddr_un

 10                       serv_adr;

  |       static char     clnt_buf[BUFSIZ],

  |                       pipe_buf[BUFSIZ];

  |       FILE             *fin;

  |

  +       if ((orig_sock = socket(PF_UNIX, SOCK_DGRAM, 0)) < 0) {

  |         perror("generate error");



  |         return 1;

  |       }

  |       serv_adr.sun_family = AF_UNIX;

 20       strcpy( serv_adr.sun_path, SERVER_FILE );

  |       for (int i=0; i < 10; i++) {

  |         sleep(1);

  |         fin = popen("/usr/games/fortune -s", "r");

  |         memset( pipe_buf, 0x0, BUFSIZ );

  +         read( fileno(fin), pipe_buf, BUFSIZ );

  |         sprintf( clnt_buf, "%d : %s", getpid(), pipe_buf );

  |         sendto( orig_sock, clnt_buf, sizeof(clnt_buf), 0,

  |                (struct sockaddr *) &serv_adr, sizeof(struct

                    sockaddr) );

  |       }

 30       return 0;

  |     }

Does Frick's client code work with Program10.8 as the server? If Frick's 

code works, what are its limitations? If it does not work, what must be done 

to make it work?

10.5.2 An Internet Domain Datagram Socket Example

In the next example, we create a client–server application that uses connectionless

sockets. This application will act like a rudimentary chat program. A user running the 

server process can interactively read messages from and write messages to the user 

running the client program, and vice versa. When this application is run, the server 

program is invoked first and remains in the foreground. At startup, the server displays 

the port to which the client should bind. The client program, also run in the foreground, 

can be on a different host or in a separate window on the same host, and is passed on 

the command line the name of the host where the server process is executing and the

port number. Once both processes are up and running, the user on the client enters a 

line of text and presses enter. The client's input is displayed on the screen of the 

server. The user running the server process then enters a response that in turn is 

displayed on the screen of the client, and so on. In a regimented lock-step, send and 

receive manner, the two users can carry on a very basic form of interactive 

communication.[13] The client process terminates when the user enters a ^D. The 

server, which is iterative, continues until removed with a kill command. The program 



for the server process is shown in Program 10.10.

[13] Granted, this will never replace the talk utility, IRC, or some of the 

current instant messaging applications, but it could serve as a base for a 

more sophisticated application.

Program 10.10 Internet domain connectionless server.

File : p10.10.cxx

  |     /*

  |          Program 10.10 - SERVER - Internet Domain - connectionless

  |     */

  |     #include "local_sock.h"

  +     int

  |     main(  ) {

  |       int                sock, n;

  |       socklen_t          server_len, client_len;

  |       struct sockaddr_in server,           // Internet Addresses

 10                          client;

  |                                            // SOCKET

  |       if ((sock = socket(PF_INET, SOCK_DGRAM, 0)) < 0) {

  |         perror("SERVER socket "); return 1;

  |       }

  +       memset(&server, 0, sizeof(server));  // Clear structure

  |       server.sin_family      = AF_INET;    // Set address type

  |       server.sin_addr.s_addr = htonl(INADDR_ANY);

  |       server.sin_port        = htons(0);

  |                                            // BIND

 20       if (bind(sock, (struct sockaddr *) &server,

  |           sizeof(server) ) < 0) {

  |         perror("SERVER bind "); return 2;

  |       }

  |       server_len = sizeof(server);         // Obtain  address length

  +                                            // Find picked port #

  |       if (getsockname(sock, (struct sockaddr *) &server,

  |           &server_len) < 0) {

  |         perror("SERVER getsocketname "); return 3;

  |       }

 30       cout << "Server using port " << ntohs(server.sin_port) << endl;

  |       while ( 1 ) {                                // Loop forever

  |         client_len = sizeof(client);               // set the length

  |         memset(buf, 0, BUFSIZ);                    // clear the buffer

  |         if ((n=recvfrom(sock, buf, BUFSIZ, 0,       // get the client's msg

  +             (struct sockaddr *) &client, &client_len)) < 0){



  |          perror("SERVER recvfrom ");

  |          close(sock); return 4;

  |         }

  |         write(fileno(stdout), buf, n);               // display msg on server

 40         memset(buf, 0, BUFSIZ);                      // clear the buffer

  |         if ( read(fileno(stdin), buf, BUFSIZ) != 0 ){// get server's msg

  |           if ((sendto(sock, buf, strlen(buf) ,0,     // send to client

  |             (struct sockaddr *) &client, client_len)) <0){

  |             perror("SERVER sendto ");

  +             close(sock); return 5;

  |           }

  |         }

  |       }

  |       return 0;

 50     }

Keep in mind that for communications to occur between cooperating processes, a 

unique association must be established. In the Internet domain, the association is 

characterized by a quintuple consisting of

protocol, local address, local port, remote address, remote port

In the server program, a datagram (connectionless) socket is created with the socket

call. The address family is set to AF_INET, and by default the protocol (which was set 

to 0) will be UDP. The addressing information for the server is assigned next. The 

defined constant INADDR_ANY, a wildcard address, indicates the server can use 

(receive messages at) any valid address for this protocol. Setting the port number to 0 

(line 18) directs the system to select a port. When passed a 0 value, the system picks 

a port that is not in use and is greater than IPPORT_USERRESERVED. On our 

system this constant is set to 5000. Additional information about port numbers is 

stored in the file ip_local_port_range found in the /proc/sys/net/ipv4 subdirectory. The first 

value stored in this file is the number of the first local port for TCP and UDP traffic on 

the system. The second value is the last local port number. On our system this files 

contains the values 32768 and 61000.

The getsockname call (line 26) is issued to determine which port the system selected. 

Note it is important to initialize the third argument of this call to the length of the 

address argument before the call to getsockname is made (see line 24). The server 

process displays the port number so a user running a client process will know which 

port to specify (a more elegant solution would be to store the port number in an 

environment varible). The server program then enters an endless loop. It clears a 



receiving buffer and issues a recvfrom call. The recvfrom call will, by default, cause the 

server process to block until information is received. Once information is received, the 

remaining parts of the association, the remote address and port, are realized, as this 

information is contained in the received data. The received message is written to 

standard output (the screen). The server then clears the buffer and collects the user's 

response with a call to read. Again, read will cause the serving process to block while 

awaiting input. If the user enters a non-null response, the sendto call is used to send 

the response to the address/port of the client from which the message was received. 

The server process remains active until removed with a kill command or an interrupt 

(^C) is entered from the keyboard.

As noted, when the client program is invoked, the name of the host running the server 

process and the port on the server is passed on the command line. The client then 

uses the gethostbyname call to obtain additional information about the server. This 

information, along with the passed port number, is stored in the server socket address 

structure of the client. In an Internet domain setting, a datagram socket is created 

next, the client addressing information is set, and a call to bind is issued. At this 

juncture, the client process has sufficient information to initiate communications with 

the server process. The client enters a loop. The read call is used to obtain user input. 

If user input does not indicate an end-of-file condition (i.e., the user has not entered 

^D), the input is sent to the serving process with the sendto call. The receiving buffer is 

then cleared, and a call to recvfrom retrieves the response from the user running the 

server program. The response is displayed to the screen, the buffer cleared, and the 

loop repeated. If the user running the client process enters ^D, the processing loop is 

exited, the socket is closed, and the client process terminates.

In this example, the conventions for client–server communications are extremely

regimented. The server process is always started first. The client process must be

passed the name of the host running the server process and the proper port number.

The client process obtains its user input first, which it then sends to the server. The

user running the server process then responds. The user running the client responds

to this response, and so on. As can be seen, there is a lot of room for improvement in

this application! The code for the client is shown in Program 10.11.

Program 10.11 Internet domain connectionless client.

File : p10.11.cxx

  |     /*



  |          Program 10.11 - CLIENT - Internet Domain - connectionless

  |      */

  |     #include "local_sock.h"

  +     int

  |     main(int argc, char *argv[]){

  |       int             sock, n;

  |       socklen_t       server_len;

  |       struct sockaddr_in                   // Internet addresses

 10                       server, client;

  |       struct hostent *host;                // For host information

  |       if ( argc < 3 ) {                     // We need server name & port #

  |         cerr << "usage: " << argv[0] << "server_name   port_#" << endl;

  |         return 1;

  +       }                                    // Server information

  |       if (!(host=gethostbyname(argv[1]))){

  |         perror("CLIENT gethostname ");  return 2;

  |       }                                    // Set server address info

  |       memset(&server, 0, sizeof(server));  // Clear structure

 20       server.sin_family = AF_INET;         // Address type

  |       memcpy(&server.sin_addr, host->h_addr, host->h_length);

  |       server.sin_port   = htons(atoi(argv[2]));

  |                                            // SOCKET

  |       if ((sock=socket(PF_INET, SOCK_DGRAM, 0)) < 0 ) {

  +         perror("CLIENT socket "); return 3;

  |       }                                    // Set client address info

  |       memset(&client, 0, sizeof(client));  // Clear structure

  |       client.sin_family      = AF_INET;    // Address type

  |       client.sin_addr.s_addr = htonl(INADDR_ANY);

 30       client.sin_port        = htons( 0 );

  |                                            // BIND

  |       if (bind(sock, (struct sockaddr *) &client,

  |           sizeof(client)) < 0) {

  |         perror("CLIENT bind "); return 4;

  +       }

  |       cout << "Client must send first message." << endl;

  |       while( read(fileno(stdin), buf, BUFSIZ) != 0 ){// get client's msg

  |         server_len=sizeof(server);                   // length of address

  |         if (sendto( sock, buf, strlen(buf), 0,       // send msg to server

 40          (struct sockaddr *) &server, server_len) < 0 ){

  |            perror("CLIENT sendto ");

  |            close(sock); return 5;

  |         }

  |         memset(buf,0,BUFSIZ);                    // clear the buffer

  +         if ((n=recvfrom(sock, buf, BUFSIZ, 0,    // get server's msg

  |             (struct sockaddr *) &server, &server_len)) < 0){

  |           perror("CLIENT recvfrom ");



  |           close(sock); return 6;

  |         }

 50         write( fileno(stdout), buf, n );         // display msg on client

  |         memset(buf,0,BUFSIZ);                    // clear the buffer

  |       }

  |       close(sock);

  |       return 0;

  +     }

A sample compilation and run of this application is shown in Figure 10.17.

Figure 10.17. A run of Programs 10.10 and 10.11 using two different hosts.

10-11 EXERCISE

Run the chat application presented in Program 10.10 and 10.11 with multiple 

clients. To accomplish this, you will need either access to multiple hosts or 

the ability to create multiple windows on the same host. Modify code for the 

client so that it initially requests a three-letter ID (handle) from the user. To 

identify the source of each message, add the handle to the beginning of all 

messages sent from the client to the server.

      

Top

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/eBook.Prentice_Hall_PTR-Interprocess_Communications_in_Linux.ShareReactor.chm/23021533.htm


     

 

10.6 Multiplexing I/O with select

It is clear from the last example that when processes communicate, they need a way 

to coordinate their activities other than blocking (waiting) for the recipient process to 

respond. One approach is to change the socket from its default of blocking to 

non-blocking. The process could then perform its own polling/checking at some 

designated interval to determine if I/O is pending. This technique is shown in the 

modified server Program 10.12. The sections of code that have been added or

significantly modified are in bold in the gray areas (lines 5, 6, 10, 18–20, and 42–49).

Program 10.12 Internet domain connectionless server, non-blocking.

File : p10.12.cxx

  |     /*

  |        Program 10.12 - SERVER Internet Domain - connectionless - NON-BLOCKING

  |      */

  |     #include "local_sock.h"

  +     #include <sys/ioctl.h>

  |     #include <errno.h>

  |     int

  |     main(  ) {

  |       int                sock, n,

  10                          errcount=0, flag=1;

  |       socklen_t          server_len, client_len;

  |       struct sockaddr_in server,           // Internet Addresses

  |                          client;

  |                                            // SOCKET

  +       if ((sock = socket(PF_INET, SOCK_DGRAM, 0)) < 0) {

  |         perror("SERVER socket "); return 1;

  |       }

  |       if (ioctl(sock, FIONBIO, &flag) < 0 ) {

  |         perror("SERVER ioctl "); return 2;

 20       }

  |       memset(&server, 0, sizeof(server));  // Clear structure

  |       server.sin_family      = AF_INET;    // Set address type

  |       server.sin_addr.s_addr = htonl(INADDR_ANY);

  |       server.sin_port        = htons(0);



  +                                            // BIND

  |       if (bind(sock, (struct sockaddr *) &server,

  |           sizeof(server) ) < 0) {

  |         perror("SERVER bind "); return 3;

  |       }

 30       server_len = sizeof(server);         // Obtain address length

  |                                            // Find picked port #

  |       if (getsockname(sock, (struct sockaddr *) &server,

  |           &server_len) < 0) {

  |         perror("SERVER getsocketname "); return 4;

  +       }

  |       cout << "Server using port " << ntohs(server.sin_port) << endl;

  |       while ( 1 ) {                              // Loop forever

  |         client_len = sizeof(client);             // estimate length

  |         memset(buf, 0, BUFSIZ);                  // clear the buffer

 40         if ((n=recvfrom(sock, buf, BUFSIZ, 0,    // get the client's msg

  |             (struct sockaddr *) &client, &client_len)) < 0){

  |           if ( errcount++ > 60 || errno != EWOULDBLOCK ) {

  |             perror("SERVER recvfrom ");

  |             close(sock); return 5;

  +           }

  |           sleep(1);

  |           continue;

  |         }

  |         errcount = 0;

 50         write( fileno(stdout), buf, n );             // display msg on server

  |         memset(buf, 0, BUFSIZ);                      // clear the buffer

  |         if ( read(fileno(stdin), buf, BUFSIZ) != 0 ){// get server's msg

  |           if ((sendto(sock, buf, strlen(buf) ,0,     // send to client

  |             (struct sockaddr *) &client, client_len)) <0){

  +             perror("SERVER sendto ");

  |             close(sock); return 6;

  |           }

  |         }

  |       }

 60       return 0;

  |     }

In this example, the ioctl system call is used to change the socket to non-blocking. The 

ioctl call performs a wide variety of file control operations.[14] Its actions are described 

fully in two parts of the manual: ioctl and ioctl_list, both found in Section 2 of the manual 

pages. The ioctl call is not the only way to set the socket to non-blocking. An alternate 

approach is to use the fcntl (file control) system call. If fcntl is used, the syntax would be



[14] I realize that this is a departure from the normal approach (i.e., a full 

explanation of the system call once it is encountered/used). The ioctl

system call is complex, and as we will be using it only in passing, the 

details of its syntax and use have been omitted.

#include <unistd.h>                       // include for fcntl call

#include <fcntl.h>

. . .

if (fcntl(sock, F_SETFL, FNDELAY) < 0 ) { // new lines 18-20

    perror("SERVER fcntl "); return 2;

  }

. . .

In Program 10.12, the file <sys/ioctl.h> is added to the include section. This file contains 

defined constants used by the ioctl system call. In the program we also reference errno

and use one of the defined constants found in the include file <errno.h>. Once the 

socket is created, the ioctl call is employed to change the socket status to 

non-blocking. The ioctl call is passed the socket descriptor, the defined constant 

FIONBIO (signifying file I/O non-blocking I/O), and the address of an integer flag. If the 

ioctl call is successful, it returns a nonnegative value.

The processing loop of the server is modified to introduce a limited form of polling. If a 

message is not available, and fewer than 60 receive attempts have been made, the 

process will sleep and try again. When the socket is set to non-blocking, the recvfrom

call returns immediately if no message is available. When this occurs, the external 

variable errno is set to EWOULDBLOCK, indicating the call would have blocked. As 

written, when the error code returned by recvfrom is EWOULDBLOCK, and the number 

of attempts to receive a message is less than 60, the process issues a call to sleep for 

one second. Once a message is received, the error count is reset to 0 and the 

message is processed as before. If recvfrom returns an error code other than 

EWOULDBLOCK, or the number of attempts to receive a message exceeds 60, an 

error message is generated and the process is exited. The number of times to retry 

and the amount of sleep time are arbitrary and can be adjusted by trial and error to 

meet specific needs.

While the above approach is both interesting and functional, it has all the drawbacks of 

any code that implements its own polling. It would seem that communication 

coordination would be greatly improved if a process could somehow notify a recipient 

process that a message was available. For example, we could signal a process when 



a socket has data to be read. To do this, the process receiving the signal must 

establish a signal handler for the SIGIO signal. Second, it must associate its process 

ID with the socket. Third, the socket must be set to allow asynchronous I/O. While all 

this is possible (using the signal and fcntl system calls), it too is less than desirable. 

Signals can get lost, and should multiple processes be involved in the communication 

process, coding can become quite complex. When possible, it is best to allow the 

system to handle the details of notifying processes that I/O is pending. The select

library call can be used for this purpose. The select call, as shown in Table 10.25, is 

fairly complex.

Table 10.25. Summary of the select System Call.

Include File(s) <sys/time.h>

<sys/types.h>

<unistd.h>

Manual Section

2

Summary int select( int n, fd_set *readfds, fd_set

            *writefds, fd_set *exceptfds, struct

            timeval *timeout );

Return

Success Failure Sets errno

Number of ready file descriptors -1 Yes

The select system call uses a series of file descriptor masks to determine which files it 

should check for pending I/O. These references indicate file descriptors for reading 

(*readfds), for writing (*writefds), and those to be checked for exceptions (e.g., message 

out of band: *exceptfds). The initial argument, n, is the number of bits in the masks that 

should be processed. As these masks are 0-based, passing the value 4 indicates the 

first four bits, representing descriptors 0 to 3, are to be used. The final select argument,

*timeout, references a timeval structure that contains information about the length of 

time the system should wait before completing the select call.

The read, write, and exception file descriptor[15] masks are actually arrays of long

integers. On most Linux systems the number of file descriptors, FD_SETSIZE, that

can be represented by a mask is 1024 (descriptors 0–1023). The first bit in the first

element of the array is for file descriptor 0, the second bit for file descriptor 1, and so



on. If the process does not need to check any descriptors for pending reads, the read

descriptor mask may be set to NULL. This also applies for the write and exception

masks.

[15] These are file descriptors, not file pointers. When using select, a 

socket descriptor is treated the same as a file descriptor.

To simplify referencing a specific file descriptor represented by a single bit, several bit 

manipulation macros are offered. These macros, whose descriptions are usually 

found on the manual page for select, are

void FD_ZERO(fd_set *fdset);

void FD_SET(int fd, fd_set *fdset);

void FD_CLR(int fd, fd_set *fdset);

int  FD_ISSET(int fd, fd_set *fdset);

Each macro must be passed a reference to the address of the file descriptor mask to 

manipulate. The FD_ZERO macro will zero (set to all zeros) the referenced mask. The

FD_SET macro will set the appropriate bit for the passed file descriptor value. The 

FD_CLEAR macro will clear the bit for the passed file descriptor. The FD_ISSET 

macro will return, without changing its state, the status of the bit for the passed file 

descriptor (0 for not set and 1 for set). In practice, the FD_ISSET macro is used when 

the select call returns to determine which descriptors are actually ready for the 

indicated I/O event.

The last argument for select specifies the amount of time the call should wait before 

completing its action and returning. This argument references a timeval structure, which 

is shown below:

struct timeval {

        long    tv_sec;         /* seconds */

        long    tv_usec;        /* and microseconds */

};

If this argument is set to NULL, the select call will wait (block) indefinitely until one of 

the specified descriptors is ready for I/O. If the tv_sec member and the tv_usec member 

are both set to 0, the select call will poll the specified descriptors and return 

immediately with their status. If the timeval members are nonzero, the system will wait 

the indicated number of seconds/microseconds for an I/O event to occur or return 

immediately if one of the indicated events occurs prior to the expiration of the 



specified time.[16] While the Linux version of the select call is fairly standard, it does 

differ in one very important way. Upon return, the timeout argument for select is modified 

to reflect the amount of time not slept. Thus, if the call to select is invoked multiple 

times (or in a loop), the timeout argument must be reinitialized before each call. This 

difference in behavior should be accounted for when porting code.

[16] If all the file descriptor masks are empty, the time specification for 

select can be used to fine-tune the amount of time a process should 

sleep.

If select is successful, it returns the number of ready file descriptors. If the call has 

timed out, it returns a 0. If the call fails, it returns a -1 and sets errno to one of the 

values shown in Table 10.26. The file descriptor masks are modified to reflect the 

current status of the descriptors when the select call is successful or has timed out. 

The masks are not modified in the event of an error.

Table 10.26. select Error Messages

# Constant perror Message Explanation

4 EINTR Interrupted 

system call

A signal was received by process before any of 

the indicated events occurred or time limit 

expired.

9 EBADF Bad file 

descriptor

One of the file descriptor masks references an 

invalid file descriptor.

12 ENOMEM Cannot allocate 

memory

System unable to allocate internal tables used by 

select.

22 EINVAL Invalid argument One of the time limit values is out of range or file 

descriptor is negative.

A closing note about select: The first argument, which indicates the number of bits that 

select will process in the file descriptor mask(s), must be assigned the value of the 

largest file (socket) descriptor value plus 1 (remember references are 0-based). 

Finally, select, while still widely used is on the deprecated call hit list in Linux. The 

system call poll, a variation of select, provides similar functionality.



Program 10.13, which shows how the select call can be used, is a modification of the 

original Internet domain connectionless server program (10.10). Modified statements

and new lines of code are in bold and are placed in gray (lines 5, 9–11, 37–44, 54–65,

72, and 73).

Program 10.13 Using select to multiplex I/O in the server program.

File : p10.13.cxx

  |     /*

  |          Program 10.13 - SERVER - Internet Domain - connectionless

  |     */

  |     #include "local_sock.h"

  +     #include <sys/time.h>

  |     int

  |     main(  ) {

  |       int                sock, n,

  |                          n_ready, need_rsp;

 10       fd_set             read_fd;

  |       struct timeval     w_time;

  |

  |       socklen_t          server_len, client_len;

  |       struct sockaddr_in server,           // Internet Addresses

  +                          client;

  |                                            // SOCKET

  |       if ((sock = socket(PF_INET, SOCK_DGRAM, 0)) < 0) {

  |         perror("SERVER socket "); return 1;

  |       }

 20       memset(&server, 0, sizeof(server));  // Clear structure

  |       server.sin_family      = AF_INET;    // Set address type

  |       server.sin_addr.s_addr = htonl(INADDR_ANY);

  |       server.sin_port        = htons(0);

  |                                            // BIND

  +       if (bind(sock, (struct sockaddr *) &server,

  |           sizeof(server) ) < 0) {

  |         perror("SERVER bind "); return 2;

  |       }

  |       server_len = sizeof(server);         // Obtain  address length

 30                                            // Find picked port #

  |       if (getsockname(sock, (struct sockaddr *) &server,

  |           &server_len) < 0) {

  |         perror("SERVER getsocketname "); return 3;

  |       }

  +       cout << "Server using port " << ntohs(server.sin_port) << endl;

  |       while ( 1 ) {                               // Loop forever



  |         w_time.tv_sec = 5; w_time.tv_usec = 0;    // set the wait time

  |         FD_ZERO( &read_fd );                      // zero all bits

  |         FD_SET( sock, &read_fd );                 // indicate one to read

 40         if ( (n_ready=select( sock + 1, &read_fd, (fd_set *) NULL,

  |                             (fd_set *) NULL, &w_time)) < 0 ) {

  |           perror("SERVER read socket select "); continue;

  |         }

  |         if ( FD_ISSET( sock, &read_fd ) ) {        // activity on socket

  +           client_len = sizeof(client);            // estimate length

  |           memset(buf, 0, BUFSIZ);                 // clear the buffer

  |           if ((n=recvfrom(sock, buf, BUFSIZ, 0,   // get the client's msg

  |               (struct sockaddr *) &client, &client_len)) < 0){

  |             perror("SERVER recvfrom ");

 50             close(sock); return 4;

  |           }

  |           write( fileno(stdout), buf, n );       // display msg on server

  |           memset(buf, 0, BUFSIZ);                // clear the buffer

  |           need_rsp = 1;

  +         }

  |         if ( need_rsp ) {

  |           w_time.tv_sec = 5; w_time.tv_usec = 0;     // set the wait time

  |           FD_ZERO( &read_fd );                       // zero all bits

  |           FD_SET( fileno(stdin), &read_fd );         // the one to read

 60           if ( (n_ready=select( fileno(stdin) + 1, &read_fd,

  |                (fd_set *) NULL,(fd_set *) NULL, &w_time)) < 0 ) {

  |             perror("SERVER read stdin select "); continue;

  |           }                                          // get server's msg

  |                                                      // if activity stdin

  +           if ( FD_ISSET( fileno(stdin), &read_fd ) ) {

  |             if ( read( fileno(stdin),buf,BUFSIZ) != 0 ) {

  |               if ((sendto(sock, buf, strlen(buf) ,0, // send to client

  |                   (struct sockaddr *) &client, client_len)) <0){

  |                 perror("SERVER sendto ");

 70                 close(sock); return 5;

  |               }

  |               need_rsp = 0;

  |             }

  |           }

  +         }

  |       }

  |       return 0;

  |     }

The modified server program adds the include file <sys/time.h>, since it makes 

reference to the timeval structure. Two integer variables have also been added. The 



n_read variable will be assigned the number of ready I/O descriptors found by the select

call. In this setting, this variable should only contain the value 0 or 1. The second 

variable, need_rsp, is used as a flag to keep track of whether or not the server has 

responded to a received message. As the address of the process sending the 

message is included with the message, a sendto call to respond to the message cannot 

be issued until a message address pair has been received. The mask that represents 

the descriptors for reading, read_fd, is allocated next. Following this, a structure to hold 

the time to wait for the select call is allocated.

In the processing loop, the wait time is set arbitrarily to 5 seconds, the read descriptor 

mask is zeroed, and the bit to indicate the socket to process is set. The select call is 

used to determine the status of the socket. Since we are only interested in reading, 

the remaining descriptor masks are set to NULL (note that each is cast appropriately). 

When the select call returns, the FD_ISSET macro determines if the socket is actually 

available for reading. If the socket is ready, the message is received, via recvfrom, and 

displayed. Once the message is displayed, the need_rsp variable is set to 1 to flag the 

reception.

After checking for received messages and having either received a message or timed 

out waiting, the server looks to send a response. The need_rsp variable is evaluated to 

determine if a response to a message should be generated. If a response is needed, 

the wait time is reset, the read_fd mask is reset to reference stdin, and a call to select is 

made to determine if any input (in this setting, from the keyboard) is available for 

reading. If the user running the server process has entered information, it is read and 

sent to the client. After a message has been sent, the need_rsp variable is set to 0 to 

indicate a response was generated and sent.

While these changes help the server process to better handle asynchronous 

communications with the client process, it does not resolve all of the communication 

problems. The client process must also be changed in a similar manner to allow for 

non-blocking asynchronous communications. There are additional coordination 

problems to address. For example, say there are multiple clients and the user running 

the server is slow in responding. Once the user on the server does respond, how does 

the server process know (keep track of) to whom it should send the response if, in the 

interim, it has received additional messages from other clients?
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10.7 Peeking at Data

The recv, recvfrom, and rcvmsg calls allow the user to look at received data without 

consuming it (the data will still be available for the next receive-type call). This is 

handy should the receiving process need to examine a message to, say, perhaps act 

upon it rather than pass it on to another process. To implement a nonconsumptive 

receive, the user must set the integer flags argument for the receive call to the defined 

constant MSG_PEEK. A modified Internet domain server program (Program 10.6) 

shows how this can be done. The processing loop of the program (where a child 

process is generated to handle the connection from the client) is modified to include a 

peek at the incoming message. These modifications are shown in Program 10.14.

Program 10.14 Internet domain connection-oriented server using MSG_PEEK.

File : p10.14.cxx

  |     /*

  |           Internet domain, connection-oriented SERVER - MSG_PEEK

  |     */

  .

  .     // Same as Program p10.6.cxx

  .

  |        if ( fork ( ) ==0 ) {                         // Generate a CHILD

  |           while ( (len==recv(new_sock, buf, BUFSIZ, MSG_PEEK)) > 0){

  |              write( fileno(stdout), "Peeked and found: ",19);

 50              write( fileno(stdout), buf, len);       // show peeked msg

  |              if ( !strncmp(buf, ".done", len-1) ) break;

  |              len=recv(new_sock, buf, BUFSIZ, 0 );    // retrieve same msg

  |              write( fileno(stdout), "Re-read buffer  : ",19);

  |              write( fileno(stdout), buf, len);

  +            }

  |            write( fileno(stdout),"Leaving child process\n",22);

  |            close(new_sock);                          // In CHILD process

  |            return 0;

  |         } else close(new_sock);                      // In PARENT process

 60       } while( true );                               // FOREVER

  .

  .     // Same as Program p10.6.cxx



  .

The modifications to the client program (Program 10.7) are shown in the partial listing 

in Program 10.15.

Program 10.15 Internet domain connection-oriented client using MSG_PEEK.

File : p10.15.cxx

  |     /*

  |         Internet domain, connection-oriented CLIENT

  |     */

  .

  .     // Same as Program p10.7.cxx

  .

  +       do {                                          // Process

  |         write(fileno(stdout),"> ", 3);

  |         if ((len=read(fileno(stdin), buf, BUFSIZ)) > 0) {

  |           write(fileno(stdout), "Sending ", 9);

  |           write(fileno(stdout), buf, len);

 40           send(orig_sock, buf, len, 0);

  |         }

  |       } while( strncmp(buf, ".done", len-1) );      // until end of input

  .

  .     // Same as Program p10.7.cxx

  .

When these modified programs are compiled and run (as shown in Figure 10.18), it is 

easy to see that the server process can peek at the received data by specifying 

MSG_PEEK. When the second receive call is made, the peeked-at data is received 

again.

Figure 10.18 Peeking at messages—server and client running on separate hosts.

linux$ g++ p10.14.cxx -o server

linux$ g++ p10.15.cxx -o client        perseus$ client linux

linux$ server                          > George Orwell was an optimist.

Peeked and found: George Orwell was    Sending George Orwell was an

an optimist.                           optimist.

Re-read buffer  : George Orwell was    > Life is like a simile.

an optimist.                           Sending Life is like a simile.

Peeked and found: Life is like a       > .done

simile.                                Sending .done

Re-read buffer  : Life is like a       perseus$



simile.

Peeked and found: .done

Leaving child process
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10.8 Out of Band Messages

There are occasions when a sending process needs to notify the recipient process of 

an urgent message. The MSG_OOB flag is used with the send and receive calls to 

indicate and process urgent messages. At present, only stream-based sockets 

support out of band messaging.

As with MSG_PEEK, we can modify Program 10.6 to show how the server process 

might process an urgent message that has been sent by a client. Since the 

modifications are somewhat more extensive, the entire server program is shown in 

Program 10.16. Modified sections of code are highlighted in bold (lines 5, 15, 16, and

42–68) and are in gray.

Program 10.16 Internet domain connection-oriented server using MSG_OOB.

File : p10.16.cxx

  |     /*

  |           Internet domain, connection-oriented SERVER - MSG_PEEK

  |     */

  |     #include "local_sock.h"

  +     #include <time.h>                    // For nanosleep

  |     void signal_catcher(int);

  |     int

  |     main(  ) {

  |       int             orig_sock,         // Original socket in server

 10                       new_sock;          // New socket from connect

  |       socklen_t       clnt_len;          // Length of client address

  |       struct sockaddr_in              // Internet addr client & server

  |                       clnt_adr, serv_adr;

  |       int             len, i,         // Misc counters, etc.

  +                       urg, mark;      // Flag reception of OOB msg and to

  |                                       // note its location in the stream.

  |                                        // Catch when child terminates

  |       if (signal(SIGCHLD , signal_catcher) == SIG_ERR) {

  |         perror("SIGCHLD");

 20         return 1;

  |       }
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  |       if ((orig_sock = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

  |         perror("generate error");

  |         return 2;

  +       }

  |       memset( &serv_adr, 0, sizeof(serv_adr) );      // Clear structure

  |       serv_adr.sin_family      = AF_INET;            // Set address type

  |       serv_adr.sin_addr.s_addr = htonl(INADDR_ANY);  // Any interface

  |       serv_adr.sin_port        = htons(PORT);        // Use our fake port

 30                                                      // BIND

  |       if (bind( orig_sock, (struct sockaddr *) &serv_adr,

  |                 sizeof(serv_adr)) < 0){

  |         perror("bind error");

  |         close(orig_sock);

  +         return 3;

  |       }

  |       if (listen(orig_sock, 5) < 0 ) {               // LISTEN

  |         perror("listen error");

  |         close (orig_sock);

 40         return 4;

  |       }

  |       struct timespec req, rem;                      // For nanosleep

  |       do {

  |         clnt_len = sizeof(clnt_adr);                 // ACCEPT a connect

  +         if ((new_sock = accept( orig_sock, (struct sockaddr *) &clnt_adr,

  |                                 &clnt_len)) < 0) {

  |           perror("accept error");

  |           close(orig_sock);

  |           return 5;

 50         }

  |         if ( fork( ) == 0 ) {                        // Generate a CHILD

  |           urg = mark = 0;

  |           do {

  |             req.tv_sec = 5; req.tv_nsec = 0;         // set time to sleep

  +             nanosleep( &req, &rem);                  // slow down the server

  |             if ( (len=recv(new_sock, buf, BUFSIZ, MSG_OOB)) > 0) {

  |               write( fileno(stdout), "URGENT msg pending\n", 19);

  |               urg = 1;

  |             }

 60             if ( urg ) ioctl(new_sock, SIOCATMARK, &mark);

  |             if ( mark ) {

  |               write( fileno(stdout), " <-- the URGENT msg\n",20);

  |               mark = urg = 0;

  |             }

  +             if ((len=recv(new_sock, buf, BUFSIZ, 0)) > 0) {

  |               if ( !strncmp(buf, ".done", len-1) ) break;

  |               write( fileno(stdout), buf, len);



  |             }

  |           } while( 1 );

 70           write( fileno(stdout),"Leaving child process\n",22);

  |           close(new_sock);                     // In CHILD process

  |           return 0;

  |         } else

  |           close(new_sock);                     // In PARENT process

  +       } while( true );                         // FOREVER

  |       return 0;

  |     }

  |     void

  |     signal_catcher(int the_sig){

 80       signal(the_sig, signal_catcher);         // reset

  |       wait(0);                                 // keep the zombies at bay

  |     }

In the server program (10.16), the integer variables urg and mark have been added to 

facilitate the processing of urgent messages. These variables act as flags to indicate 

when an urgent message has been received (urg) and actually processed (mark). In 

the processing loop of the server, these variables are initially set to 0. An inner do-while

loop starts with a call to nanosleep. The nanosleep call is added to slow down server 

processing to clearly demonstrate the receipt sequence of client messages. The 

nanosleep call was chosen (rather than sleep), as it is standardized by POSIX, does not 

impact other signals, and provides a finer granularity for pausing.

Table 10.27. Summary of the nanosleep System Call.

Include File(s) <time.h> Manual Section 2

Summary int  nanosleep(const struct timespec *req,

                     struct timespec *rem);

Return

Success Failure Sets errno

0 -1 Yes

The nanosleep call uses a reference to a timespec structure for each of its two 

arguments. The first argument, req, is the required sleep time (in seconds and 

nanoseconds). The second argument, rem, is the remaining time should the call be

interrupted by a signal. When successful, the call returns a 0; if it fails, it returns a –1

and sets errno as shown in Table 10.28.



Table 10.28. nanosleep Error Messages.

# Constant perror

Message
Explanation

4 EINTR Interrupted 

system call

A non-blocked signal was received by process 

before the full time expired. The value in rem is the 

remaining time to sleep.

22 EINVAL Invalid 

argument

One of the time limit values is out of range (0 to 

999,999,999) or tv_sec value is negative.

When we run this program, we will see that the notification of the receipt of an urgent 

message is received prior to messages that have already been sent but not yet 

received. A recv call with the flags argument set to MSG_OOB is made next. If 

notification of an urgent message has been received, this call returns a value greater 

than 0 (i.e., 1). When the server receives notification, it displays, to standard output, 

the message URGENT msg pending and sets the urg variable to 1. Following this, the urg

variable is checked. If it is set (i.e., is nonzero), a call to ioctl is made. With the addition 

of the ioctl call, we must include the header file <sys/ ioctl.h> in the local_sock.h file. The 

ioctl call is passed the socket descriptor, the flag SIOCATMARK,[17] and the address of 

the mark variable. With this argument set, the ioctl call assigns the variable mark a 

positive value if the next I/O call will process data that is beyond the urgent data; 

otherwise, it assigns mark a 0 value. The contents of the mark variable are tested next. 

If the server is beyond the processing of the urgent message data, the string <-- the 

URGENT msg is appended to the data currently displayed and the mark and urg variables 

cleared by resetting them to 0. In either event, a second call to recv is made to receive 

and process pending messages from the client. If a message is not the string .done, 

the message is displayed; otherwise, a message indicating the child process is exiting 

is generated, the socket descriptor is closed, and the child process exits.

[17] This constant is defined in the <asm/sockios.h> file (yet another one of 

the include files that is automatically drawn upon when including the 

standard include files for sockets).

The code for the client must be changed minimally. If the first character of the data 

entered by the user is an exclamation mark (!), the remaining data is considered 



urgent and sent with the flag argument set to MSG_OOB; otherwise, the data is sent 

with the flag argument set to 0. Program 10.17 shows the modified client program 

(10.7).

Program 10.17 Internet domain connection-oriented client using MSG_OOB.

File : p10.17.cxx

  |     /*

  |         Internet domain, connection-oriented CLIENT - MSG_OOB

  |     */

  .

  .      // Same a Program 10.7

  .

  +       do {                                          // Process

  |         write(fileno(stdout),"> ", 3);              // Prompt the user

  |         if ((len=read(fileno(stdin), buf, BUFSIZ)) > 0) {

  |           if ( buf[0] == '!' ){

  |             write(fileno(stdout), "URGENT msg sent\n", 16);

 40             send(orig_sock, buf, len, MSG_OOB );

  |           } else

  |             send(orig_sock, buf, len, 0 );

  |         }

  |       } while( strncmp(buf, ".done", len-1) );      // until end of input

  .

  .       // Same as Program 10.7

  .

Figure 10.19 shows what occurs when this MSG_OOB client–server application is run.

Figure 10.19 Using MSG_OOB in two separate windows on separate hosts.

linux$ g++ p10.16.cxx -o server

linux$ g++ p10.17.cxx -o client

linux$ server                        perseus$ client linux

a                                    > a

b                                    > b

URGENT msg pending                   > c

c                                    > !help

!help <-- the URGENT msg             URGENT msg sent

d                                    > d

e                                    > e

Leaving child process                > .done

^C                                   perseus$



The server process is established first, then the client is established. The user running 

the client program enters the letters a, b, c, the string !help followed by the letters d, e, 

and then the string .done. The server process begins to process the messages from 

the client (remember, we added a call to nanosleep in the server to slow it down). After 

it has processed the initial message, it receives notice that an urgent message is 

pending. However, it does not actually receive the urgent message at this time. The 

urgent message, which is eventually received and flagged by the server process with 

the words <-- URGENT msg, is received in its proper order. If we want to obtain the 

urgent message at the time of notification, we must either buffer the intervening 

messages or discard them.

10-12 EXERCISE

Further refine the chat program to allow multiple users on different clients to 

communicate with one another in a manner similar in function to a party line 

or conference conversation. In this implementation, each user chooses a 

chat name, which identifies all messages subsequently typed by that user. 

The chat name is prefaced by the host name. A chat conversation might look 

like this:

[View full width]

[beta:fred]  What did you think of the test yesterday?

[xi:zippo]   Ok, but I didn't like the question about efficiency!

[rho:joe]    Yeah, more or less efficient-we should have got the 

points on that one.

The options for invoking this version of chat are

chat Invoke chat for eavesdropping (i.e., no talking allowed—just

view messages)

chat 

fred
Invoke chat with the chat name fred

When in chat, the user should be able to issue commands that are acted 

upon rather than sent as a message to others. For example, some chat



commands (lines beginning with either a . or !) might be

.re jokes Read file jokes—contents appear in the conversation

.wr cstuff Write a copy of the conversation in a file called cstuff

.ap cstuff Append a copy of the conversation to a file called cstuff

.en End recording of conversation to output file

!cmd Escape chat temporarily and execute the command cmd

.wn rho:joe Whisper (talk only) to chat name joe at host rho

.wf Turn whisper off

.lo Leave chat

.wo Display the names of all chat participants

The chat program should make use of sockets. Implement some form of 

non-blocking I/O to prevent possible deadlock situations. To complete the 

assignment, you will need to write two programs: a server program, which 

facilitates communications between clients and runs continuously in the 

background, and a client program that runs in the foreground. You will need 

to decide whether or not the server should fork child processes to manage 

communications with individual clients or keep information in some sort of 

table arrangement. When the user invokes the client program, it connects to 

the chat server. As broadcasting is frowned upon, the client program should 

read the environment variable CHAT to find the name of the chat server. If 

the entry cannot be made in the /etc/services file for the chat port, an 

environment variable, such as PORT, should be used to hold the number of 

the port. You may want to use the MSG_PEEK option to peek at data to 

determine if it is a command or a message. Some commands should be 

processed locally by the client, while others might best be done by the 

server, with the information returned to the appropriate client.
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10.9 Summary

Sockets provide the user with a means of interprocess communication whereby the 

processes involved can reside on different hosts across a network. The most common

socket types are stream sockets, which provide a logical connection between 

processes and support the reliable exchange of data, and datagram sockets, which 

are connectionless and may be unreliable. The actual encoding of data and its 

transport are further dependent upon the selection of a specific transport protocol.

A series of socket system calls are used to establish socket-based communications. 

The socket system call is used to create a socket of a specific type using a particular 

protocol. The bind system call establishes a relationship between the socket and a 

system address. In a stream-based setting (connection-oriented), the serving process 

then creates a queue for incoming connections using the listen system call. When a 

connection from a client process is made, the server then uses the accept system call 

to generate a new socket, which will be used for actual communications. The 

connection-oriented client process creates its own socket and uses the connect system

call to initiate a connection with the server process. Once a connection is established, 

the processes involved can use read-write system calls or specialized network 

send/receive calls to exchange data.

If the communication is datagram-based (connectionless), both the client and server 

processes generate a socket and bind it. Communication is carried out using a 

connect-write / accept-read sequence or with specialized send/receive network calls. In a 

connectionless setting, addressing specifics are incorporated within the message.

The select system call can be used to multiplex socket-based communications. In a 

stream-based setting a process can peek at arriving data without consuming it and 

can be notified of a pending urgent message.
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10.10 Key Terms and Concepts

"local_sock.h" include file

__SOCKADDR_COMMON(sa_) macro

<arpa/inet.h> include file

<netdb.h> include file

<netinet/in.h> include file

<sys/ioctl.h> include file

<sys/socket.h> include file

<sys/time.h> include file

<sys/un.h> include file

<time.h> include file

accept system call

address resolution protocol (ARP)

AF_INET

AF_UNIX

American Registry for Internet Numbers (ARIN)

arp utility

ARP/RARP



Asia Pacific Network Information Center (APNIC)

BIND

bind system call

bzero library function

Class A network

Class B network

Class C network

communication domain

connect system call

connectionless communication

connection-oriented communication

datagram socket

dig utility

domain name system (DNS)

dotted decimal notation (DDN)

dynamic ports

ephemeral ports

Ethernet address

EWOULDBLOCK

fcntl system call

FD_CLR macro



FD_ISSET macro

FD_SET macro

FD_ZERO macro

file descriptor masks

fortune utility

gethostbyaddr library function

gethostbyname library function

getservbyname library function

getservent library function

host utility

hostent structure

hostid

ICANN (the Internet Corporation for Assigned Names and Numbers)

ICMP

ifconfig utility

in_addr structure

INADDR_ANY

inet_ntoa library function

International Standards Organization (ISO)

Internet (IP) address

Internet domain



Internet Network Information Center (InterNIC)

IPPORT_USERRESERVED

IPPROTO_TCP

IPPROTO_UDP

IPv4

ipv4 subdirectory

IPv6

listen system call

media access control (MAC) address

memcpy library function

memset library function

mkstemp library function

MSG_CONFIRM

MSG_DONTROUTE

MSG_DONTWAIT

MSG_ERRQUEUE

MSG_NOSIGNAL

MSG_NOSIGNAL

MSG_OOB

MSG_PEEK

MSG_TRUNC



MSG_WAITALL

msghdr structure

nanosleep system call

NETBIOS

netid

netstat utility

nslookup utility

ntohs library function

Open Systems Interconnect (OSI)

PF_INET

PF_LOCAL

PF_UNIX

protocol

protocol family

recv system call

recvfrom system call

recvmsg system call

registered ports

reliable connection

select system call

send system call



sendmsg system call

sendto system call

servent structure

services file

setservent library function

SNA

SOCK_DGRAM

SOCK_RAW

SOCK_SEQPACKET

SOCK_STREAM

sockaddr structure

sockaddr_in structure

sockaddr_un structure

socket interface

socket system call

socketpair system call

stream socket

sysctl utility

TCP/IP

timeval structure

Transport Level Interface (TLI)



UDP

UNIX domain

unreliable connection

UUCP

well-known ports

X/Open Transport Interface (XTI)

XNS
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11.1 Introduction

A variety of techniques can be used to solve a problem. One common programming 

methodology is to divide the problem into smaller specific subtasks. Then, given the 

nature of the subtasks and the sequence in which they must be done, parcel them out

to separate processes (generated via a fork system call). Then, if needed, have the 

processes communicate with one another using interprocess communication 

constructs. When each of the subtasks (processes) is finished, its solved portion of 

the problem is integrated into the whole to provide an overall solution. Indeed, this 

approach is the basis for distributed computation.

However, generating and managing individual processes consume system resources. 

As we have seen in previous chapters, there is a considerable amount of system 

overhead associated with the creation of a process. During its execution lifetime, the 

system must keep track of the current state, program counter, memory usage, file 

descriptors, signal tables, and other details of the process. Further, when the process 

exits, the operating system must remove the process-associated data structures and 

return the process's status information to its parent process, if still present, or to init. If 

we add to this the cost of the process communicating with other processes using 

standard interprocess communication facilities, we may find this approach too 

resource expensive.

Aware of such limitations, the designers of modern versions of UNIX anticipated the 

need for constructs that would facilitate concurrent solutions but not be as 

system-intensive as separate processes. As in a multitasking operating system where 

multiple processes are running concurrently (or pseudo-concurrently), why not allow 

individual processes the ability to simultaneously take different execution paths 

through their process space? This idea led to a new abstraction called a thread. 

Conceptually, a thread is a distinct sequence of execution steps performed within a 

process. In a traditional setting, with a UNIX process executing, say, a simple C/C++ 

program, there is a single thread of control. At any given time there is only one 

execution point (as referenced by the program counter). The thread starts at the first 

statement in main and continues through the program logic in a serial manner until the 



process finishes. In a multithreading (MT) setting, there can be more than one thread 

ofcontrol active within a process, each progressing concurrently. Be aware thatsome 

authors use the term multithreaded program to mean any program that uses two or 

more processes running concurrently that share memory and communicate with one 

another (such as what we did in Chapter 8). If the processes (with their threads) are 

executing and making progress simultaneously on separate processors, parallelism

occurs.

There are certain problem types that lend themselves to a multithreaded solution.

Problems that inherently consist of multiple, independent tasks are prime candidates.

For example, monitor and daemon programs that manage a large number of

simultaneous connections, concurrent window displays, and similar processes can be

written using threads. Similarly, producer—consumer and client—server type

problems can have elegant multithreaded solutions. Additionally, some numerical

computations (such as matrix multiplication) that can be divided into separate

subtasks also benefit from multithreading. On the other side of the coin, there are

many problems that must be done in a strict serial manner for which multithreading

may produce a less efficient solution.

Each thread has its own stack, register set, program counter, thread-specific data,

thread-local variables, thread-specific signal mask, and state information. However, all

such threads share the same address space, general signal handling, virtual memory,

data, and I/O with the other threads within the same process. In a multithreaded

process each thread executes independently and asynchronously. In this setting

communication between threads within the same process is less complex, as each

can easily reference common data. However, as expected, many tasks handled by

threads have sequences that must be done serially. When these sequences are

encountered, synchronization problems concerning data access—updating—can

arise. Most commonly the operating system uses a priority-based, preemptive,

non-time-slicing algorithm to schedule thread activities. With preemptive scheduling

the thread executes until it blocks or has used its allotted time. The term sibling is

sometimes used to denote other peer threads, as there is no inherent parent/child

relationship with threads.

Figure 11.1 compares communications for multiple processes, each with a single 

thread, with that of a single process with multiple threads.

Figure 11.1. Conceptual communications—multiple single-threaded processes versus a single



process with multiple threads.

At system implementation level there are two traditional approaches ormodels used to 

generate and manage threads. The first, the user-level model, runs on top of the 

existing operating system and is transparent to it. Theoperating system maintains a 

runtime system to manage thread activities. Library functions and system calls made 

within the thread are wrapped in special code to allow for thread run-time 

management.[1] Threads implemented in this manner have low system overhead and 

are easily extensible should additional functionality be needed. On occasion, the 

operating system may have difficulty efficiently managing a user-level-implemented 

thread that is not time sliced and contains CPU-intensive code. More importantly, 

user-level threads are designed to share resources with other threads within their 

process space when running on a single processor.

[1] For example, calls that would normally block (such as read) are 

wrapped in code that allows them to be non-blocking.

The second approach is the kernel-level model. In this implementation, the operating 

system is aware of each thread. While the management of kernel-level threads is less 

intensive than that of individual processes, it is still more expensive than 

user-level-based threads. A kernel that offers direct thread support must contain 



system-level code for each specified thread function. However, kernel-level threads 

can support parallelism with multiple threads running on multiple processors.

In an attempt to incorporate the best of both approaches, many thread 

implementations are composites (hybrids). In one implementation the system binds 

each user-level thread to a kernel-level thread on a one-to-one basis. Windows NT 

and OS/2 use this approach. Another approach is to have the system multiplex 

user-level threads with a single kernel-level thread (many-to-one). A more common 

composite model relies on the support of multiple user-level threads with a pool of 

kernel-level threads. The kernel-level threads are run as lightweight processes (LWP) 

and are scheduled and maintained by the operating system. In a multiprocessor 

setting some operating systems allow LWPs to be bound to a specific CPU.

Older versions of Linux supported user-level threads. In newer versions of Linux there 

are kernel threads. However, these threads are used by the operating system to 

execute kernel-related functions and are not directly associated with the execution of a 

user's program. Multithreaded support is offered through LWPs. Linux uses a system 

specific (non-portable) clone system call to generate an LWP for the thread. Threaded 

applications should use one of the standardized thread APIs described in the next 

paragraph. By comparison, Sun's Solaris uses a variation of the kernel-level scheme 

whereby the user can specify a one-to-one binding or use the default many-to-many 

mapping. While Sun's approach is more flexible, it is more complex to implement and 

requires the interaction of two scheduling routines (user and kernel).

From a programming standpoint, there is a variety of thread APIs. Two of the more 

common are POSIX (Portable Operating System Interface) Pthreads and Sun's thread

library (UNIX International, or UI). By far, POSIX threads (based on POSIX 1003.1 

standards generated by the IEEE Technical Committee on Operating Systems) are 

the most widely implemented thread APIs. The POSIX standard 1003.1c is an 

extension of the 1003.1 and includes additional interface support for multi-threading.

In current versions of Linux (such as Red Hat 5.0 and later) the POSIX 1003.1c thread 

API is implemented using the LinuxThreads library, which isincluded in the glibc2 GNU 

library. In the Sun Solaris environment, both the POSIX and Sun thread libraries are 

supported, since Sun's effort at producing thread libraries predates the POSIX 

standards and many of the POSIX constructs have a strong Sun flavor. We will 

concentrate on POSIX threads, asthey are guaranteed to be fully portable to other 

environments that are POSIX-compliant. The POSIX thread functions, except for 



semaphore manipulation, begin with the prefix pthread, while POSIX thread constants 

begin with the prefix PTHREAD_. The thread-related functions (over 100) are found in 

section 3thr of the manual pages.

Note that all programs using POSIX thread functions need the preprocessor directive 

#include <pthread.h> for the inclusion of thread prototypes. If the code will contain 

reentrant functions,[2] the defined constant #define _REENTRANT should be placed prior 

to all includes and program code. A list of supported reentrant functions can be found 

by interrogating the /usr/lib/libc.a library. For example,

[2] A reentrant function supports access by multiple threads and 

maintains the integrity of its data across consecutive calls. Functions 

that reentrant should not in turn call a function that is non-reentrant.

linux$  ar t /usr/lib/libc.a  |  grep '_r\.o'  |  pr -n -2 -t

      1   random_r.o                     32   getspnam_r.o

      2   rand_r.o                       33   sgetspent_r.o

      3   drand48_r.o                    34   fgetspent_r.o

      4   erand48_r.o                    35   getnssent_r.o

      5   lrand48_r.o                    36   gethstbyad_r.o

      6   nrand48_r.o                    37   gethstbynm2_r.o

      7   mrand48_r.o                    38   gethstbynm_r.o

      8   jrand48_r.o                    39   gethstent_r.o

      9   srand48_r.o                    40   getnetbyad_r.o

     10   seed48_r.o                     41   getnetent_r.o

     11   lcong48_r.o                    42   getnetbynm_r.o

     12   tmpnam_r.o                     43   getproto_r.o

     13   strtok_r.o                     44   getprtent_r.o

     14   ctime_r.o                      45   getprtname_r.o

     15   readdir_r.o                    46   getsrvbynm_r.o

     16   readdir64_r.o                  47   getsrvbypt_r.o

     17   getgrent_r.o                   48   getservent_r.o

     18   getgrgid_r.o                   49   getrpcent_r.o

     19   getgrnam_r.o                   50   getrpcbyname_r.o

     20   fgetgrent_r.o                  51   getrpcbynumber_r.o

     21   getpwent_r.o                   52   ether_aton_r.o

     22   getpwnam_r.o                   53   ether_ntoa_r.o

     23   getpwuid_r.o                   54   getnetgrent_r.o

     24   fgetpwent_r.o                  55   getaliasent_r.o

     25   getlogin_r.o                   56   getaliasname_r.o

     26   ttyname_r.o                    57   nscd_getpw_r.o

     27   mntent_r.o                     58   nscd_getgr_r.o



     28   efgcvt_r.o                     59   nscd_gethst_r.o

     29   qefgcvt_r.o                    60   getutent_r.o

     30   hsearch_r.o                    61   getutid_r.o

     31   getspent_r.o                   62   getutline_r.o

As shown, reentrant functions have _r appended to their non-reentrant name.

The object code library for POSIX thread functions must be linked in at compile time 

using the compiler switch -lpthread. Additionally, _POSIX_C_SOURCE
[3] should be defined 

if strict compliance to POSIX standards is required. For example,

[3] On occasion, using the -D_POSIX_C_SOURCE flag will get us into 

trouble, as certain defined data types (such as timeval) do not seem to 

be officially defined when specifying ANSI C.

linux$ cat demo.c

#define _REENTRANT

#include <pthread.h>

.

.

.

linux$ g++ demo.cxx -D_POSIX_C_SOURCE -lpthread

Threads and their use are a complex topic. This chapter presents the basics of POSIX

threads—their generation, scheduling, synchronization, and use. Readers wishing to

gain additional insight on the topic are encouraged to read current texts that address

thread programming, such as Comer et al., 2001; Nichols et al., 1996; Kleiman et al.,

1996; Mitchell et al., 2000; Norton et al., 1997; Lewis et al., 1996; Northrup, 1996; and

Wall, 2000, as well as the online documentation (manual pages) and vendor-supplied

system support documentation.
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11.2 Creating a Thread

Every process contains at least one main or initial thread of control created by the 

operating system when the process begins to execute. The library function 

pthread_create is used to add a new thread of control to the current process. The new 

thread executes in concert with the other threads within the process and, if directed, 

with other threads of control in other processes. The syntax for pthread_create is shown 

in Table 11.1.

There are four pointer-based arguments for pthread_create.[4] The first, *thread, is a 

reference to a pthread_t type object (an unsigned integer that is typedefed as the data 

type pthread_t). Upon successful completion of the pthread_create call, *thread will 

reference aunique (to this process only) integer thread ID (TID) value. If this argument 

is set to NULL, the generated thread ID will not be returned. The second argument, 

indicated as *attr, references a dynamically allocated attribute structure. This structure 

contains a single void pointer (as shown in the code sequence below lifted from the 

/usr/include/bits/pthreadtypes.h file).

[4] This time the e is back in create!

Table 11.1. The pthread_create Library Function.

Include File(s) <pthread.h> Manual Section 3

Summary

[View full width]

int  pthread_create(pthread_t  *thread,

                    pthread_attr_t *attr,

                    void *(*start_routine)(void 

*),

                    void *arg);

Return Success Failure Sets errno
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0 Nonzero  

/*    Attributes for threads.   */

typedef struct __pthread_attr_s {

  int __detachstate;

  int __schedpolicy;

  struct __sched_param __schedparam;

  int __inheritsched;

  int __scope;

  size_t __guardsize;

  int __stackaddr_set;

  void *__stackaddr;

  size_t __stacksize;

} pthread_attr_t;

Attributes govern how the thread behaves. Attributes include stack size—address;

scheduling policy—priority and detached state. If the *attr value is set to NULL, the new 

thread uses the system defaults for its attributes. If the user wants to modify the 

default attributes prior to thread creation, he or sheshould call the library function 

pthread_attr_init. The pthread_attr_init library function and related attribute setting functions 

are covered in a following section.

The third argument for pthread_create is a reference to a user-defined function that will 

be executed by the new thread. The user-defined function should be written to return 

a pointer to a void and have a single void pointer argument. If the return type of the 

user-defined function is a pointer, but it is not of type void, use a typecast (e.g., (void * 

(*)()) ) to pass the function reference and keep the compiler from complaining. A 

reference to the actual argument to be passed to the user-defined function is the 

fourth argument for pthread_create. As with the user-defined function reference, this 

argument is also a void pointer. If multiple arguments are to be passed to the 

user-defined function, a structure containing the arguments should be statically

allocated and initialized.[5] The reference to the structure should be cast to a void 

pointer when pthread_create is called.

[5] As would be anticipated, locally allocated objects reside on the stack, 

and their value is undefined when we leave their scope.

Once a thread is created, it has its own set of attributes and an execution stack. It 

inherits its signal mask (which it then can alter) and scheduling priority from the calling 



program (the initiating thread). It does not inherit any pending signals. If needed, a 

thread can allocate its own storage for thread-specific data.

If the pthread_create call is successful, it returns a value of 0 and sets the *thread

reference to a unique ID for this process. If the call fails, it returns a nonzero value. 

POSIX thread functions do not routinely set errno when they fail, but instead return a 

nonzero value, which indicates the source of the error encountered. However, errno is 

set when a library function or system call fails in a code segment being executed by 

the thread. In these cases the errno value is thread-specific. If the pthread_create call

fails and returns the value EAGAIN (11), it indicates a system-imposed limit—for

example, the total number of threads has been exceeded. A newly created thread

(which in Linux is directly tied to an LWP) begins with the execution of the referenced

user-defined function. The thread continues to execute until

the function completes (implicitly or explicitly).

a call is made to pthread_exit.

the thread is canceled with a call to pthread_cancel.

the process that created the thread exits (implicitly or explicitly).

one of the threads performs an exec.
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11.3 Exiting a Thread

The pthread_exit library call terminates a thread in much the same manner as a call to 

exit terminates a process. The pthread_exit library call is shown in Table 11.2.

The pthread_exit library call takes a single argument, a reference to a retval value. This 

reference is returned when a nondetached thread is exited. Upon termination, the 

thread releases its thread-specific (but not process-specific) resources. If the thread 

was nondetached, its status information and thread ID are kept by the system until a 

join is issued or the creating process terminates. When the function being executed by 

the thread performs a return (implicitly or explicitly), the system implicitly calls 

pthread_exit.

Table 11.2. The pthread_exit Library Function

Include File(s) <pthread.h> Manual Section 3

Summary void pthread_exit (void * retval);

Return

Success Failure Sets errno

This call does not return   

In Chapter 3, Section 5, "Ending a Process," the atexit library function was presented. 

This function allows the user to specify one or more user-defined functions to be 

called in a LIFO (last-in, first-out) manner when the process exits. In asimilar vein 

there is a small suite of pthread cleanup calls that can be usedto specify and 

manipulate user-defined functions that are called when athread exits. In this grouping 

are the calls pthread_cleanup_pop, whichremoves a function from the cancellation 

cleanup stack, and thread_cleanup_push, which pushes a function on the cancellation 

stack of the current thread. Additionally, nonportable versions of these functions 

(called pthread_cleanup_pop_restore_np and pthread_cleanup_push_defer_np) are provided. A 

full discussion of these functions is beyond the scope of this text.
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11.4 Basic Thread Management

Once a thread is created, we can direct the calling process to wait until the thread is 

finished (it calls pthread_exit or is cancelled). This is accomplished with a call to the 

pthread_join library function shown in Table 11.3.

The first argument is a valid thread ID (as returned from the pthread_create call). The 

specified thread must be associated with the calling process and should not be 

specified as detached. The second argument, **status, references a static location 

where the completion status of the waited upon thread will be stored. The status value 

is the value passed to pthread_exit, or the value returned when the function code 

reaches a return statement.[6] If the second argument to pthread_create is set to NULL, 

the status information will be discarded.

[6] If the thread involuntarily terminates, its status information is not 

relevant.

Table 11.3. The pthread_join Library Function.

Include File(s) <pthread.h> Manual Section 3

Summary int pthread_join( pthread_t target_thread,

                  void **status );

Return

Success Failure Sets errno

0 Nonzero  

There are some caveats associated with joining threads. A thread should bewaited 

upon (joined) by only one other thread. The thread issuing the joindoes not need to be 

the initiating thread. If multiple threads wait for the same thread to complete, only one 

will receive the correct status information. The joins in competing threads will return an 

error. Should the thread initiating the join be canceled, the waited upon thread can be 

joined by another thread.[7] If the targeted thread has terminated prior to the issuing of 



the call to pthread_join, the call will return immediately and will not block. Last, but 

certainly not least, a nondetached thread (which is the default) that is not joined will 

not release its resources when the thread finishes and will only release its resources 

when its creating process terminates. Such threads can be the source of memory 

leaks. If pthread_join is successful, it returns a 0; otherwise, it returns a nonzero value. 

The return of ESRCH (3) means an undetached thread for the corresponding thread 

ID could not be found or the thread ID was set to 0. The return of EINVAL (22) means 

the thread specified by the thread ID is detached or the calling thread has already 

issued a join for the same thread ID. If EDEADLK (35) is returned, it indicates a 

deadlock situation has been encountered.

[7] With POSIX threads the user can issue a cancellation of a specific 

thread. The thread may have had several cleanup routines associated 

with it. If one of the associated cleanup routines contains a call to 

pthread_detach, a subsequent call to pthread_join will fail.

The process of joining a thread is somewhat analogous to a process waiting on a 

forked child process. However, unlike a forked child process, a thread can become 

detached with a single library call. When a detached thread finishes, its resources are 

automatically returned to the system. The pthread_detach library call (Table 11.4) is 

used to dynamically detach a joinable thread. In a later section the generation of a 

detached thread using a thread attribute object will be addressed.

Table 11.4. The pthread_detach Library Function.

Include File(s) <pthread.h> Manual Section 3

Summary int pthread_detach (pthread_t threadID);

Return

Success Failure Sets errno

0 Nonzero  

The pthread_detach library function accepts a thread ID as its only argument. If 

successful, the call to pthread_detach detaches the indicated thread and returns a 0 

value. If the call fails, the indicated thread is not detached, and a nonzero value is 

returned. The value EINVAL (22) is returned if an attempt to detach an already 

detached thread is made, or ESRCH (3) is returned if no such thread ID is found. 



Remember, once a thread is detached, other threads can no longer synchronize their 

activities based on its termination.

Program 11.1 uses the pthread_create and pthread_join library calls to create and join 

several threads.

Program 11.1 Creating and joining threads.

File : p11.1.cxx

  |     /*

  |              Creating and joining threads

  |     */

  |     #define _GNU_SOURCE

  +     #define _REENTRANT

  |     #include <iostream>

  |     #include <cstdio>

  |     #include <cstdlib>

  |     #include <pthread.h>

 10     #include <sys/types.h>

  |     #include <sys/time.h>

  |     #include <unistd.h>

  |     using namespace std;

  |     int MAX=5;

  +     inline int my_rand( int, int );

  |     void       *say_it( void * );

  |     int

  |     main(int argc, char *argv[]) {

  |       pthread_t       thread_id[MAX];

 20       int     status, *p_status = &status;

  |       setvbuf(stdout, (char *) NULL, _IONBF, 0);

  |       if ( argc > MAX+1 ){                  // check arg list

  |         cerr << *argv << " arg1, arg2, ... arg" << MAX << endl;

  |         return 1;

  +       }

  |       cout << "Displaying" << endl;

  |       for (int i = 0; i < argc-1; ++i) {    // generate threads

  |        if( pthread_create(&thread_id[i],NULL,say_it,(void *)argv[i+1]) > 0){

  |          cerr << "pthread_create failure" << endl;

 30          return 2;

  |        }

  |       }

  |       for (int i=0; i < argc-1; ++i){      // wait for each thread

  |         if ( pthread_join(thread_id[i], (void **) p_status) > 0){

  +           cerr << "pthread_join failure" << endl;



  |           return 3;

  |         }

  |         cout << endl << "Thread " << thread_id[i] << " returns "

  |              << status;

 40       }

  |       cout << endl << "Done" << endl;

  |       return 0;

  |     }

  |     //   Display the word passed a random # of times

  +     void *

  |     say_it(void *word) {

  |       int numb = my_rand(2,6);

  |       cout << (char *)word << "\t to be printed " << numb

  |            << " times." << endl;

 50       for (int i=0; i < numb; ++i){

  |         sleep(1);

  |         cout << (char *) word << " ";

  |       }

  |       return (void *) NULL;

  +     }

  |     //   Generate a random # within given range

  |     int

  |     my_rand(int start, int range){

  |       struct timeval t;

 60       gettimeofday(&t, (struct timezone *)NULL);

  |       return (int)(start+((float)range * rand_r((unsigned *)&t.tv_usec))

  |                    / (RAND_MAX+1.0));

  |     }

When Program 11.1 executes, it examines the number of arguments passed in on the

command line. For each argument (up to a limit of 5), the program creates a separate 

thread. As each thread is created, its thread ID is saved in the thread_id array. As 

written, the program passes pthread_create a NULL value as its second argument; 

therefore, each thread created has the default set of attributes. The user-defined 

function say_it is passed as the starting point for each thread. The appropriate 

command-line argument is passed to the say_it function as the fourth argument of 

pthread_create.[8] Following the creation of the threads, the program waits for the 

threads to finish using the pthread_join library function call. The value returned from 

each thread and its thread ID is displayed.

[8] Note the type casting. If necessary, we can also use type casting 

when passing the function reference, using the less than intuitive 



typecast (void * (*)()).

The user-defined say_it function is used to display the passed-in sequence of 

characters a random number of times. At the start of the say_it function, a random 

value is calculated. The library functions srand and rand that we have used previously 

are not used, as they are not safe to use in a multiple thread setting. However, there is 

a library function, rand_r, that is multithread-safe. The rand_r library function is 

incorporated into a user-defined inline function called my_rand. In the my_rand function 

the number of elapsed microseconds since 00:00 Universal Coordinated Time, 

January 1, returned by the gettimeofday
[9] library function, is used as a seed value for 

rand_r. The value returned by rand_r is then adjusted to fall within the specified limits. 

The calculated random value and the sequence of characters to be displayed are 

shown on the screen. Finally, a loop is entered, and for the calculated number of 

times, the function sleeps one second and then prints the passed-in sequence of 

characters. A compilation sequence and run of the program is shown in Figure 11.2.

[9] For gettimeofday the file <sys/time.h> must be included.

Figure 11.2 A Compilation and run of Program 11.1.

linux$ g++  p11.1.c -o p11.1 -lpthread

linux$ p11.1 s p a c e

Displaying

s        to be printed 5 times.

p        to be printed 5 times.

a        to be printed 5 times.

c        to be printed 3 times.

e        to be printed 3 times.

s p a c e s p a c e s e p a c s p a a s p

Thread 1026 returns 0

Thread 2051 returns 0

Thread 3076 returns 0                                <-- 1

Thread 4101 returns 0

Thread 5126 returns 0

Done

(1) Each of these threads is supported by an LWP. Each LWP has its

own process ID as well as its thread ID.



In this run, Program 11.1 was passed five command-line arguments: s, p, a, c, e. The 

program creates five new threads, one for each argument. The number of times each 

argument will be printed is then displayed. The request to print this information was 

one of the first lines of code in the user-defined function say_it (see line 48). As shown, 

all five threads process this statement prior to any one of the threads displaying its 

individual words. This is somewhat misleading. If we move the sleep statement in the 

for loop of the say_it function to be after the print statement within the loop, we should 

see the initial output statements being interspersed with the display ofeach word. If we

count the number of words displayed, we will find they correspond to the number 

promised (e.g., letter s is displayed five times, etc). A casual look at the remainder of 

the output might lead one to believe the threads exit in an orderly manner. The 

pthread_join's are done in a second loop in the calling function (main). Since the thread 

IDs are passed to pthread_join in order, the information concerning their demise is also 

displayed in order. Viewing the output, we have no way to tell which thread ended first 

(even though it would seem reasonable that one of the threads that had to display the 

fewest number of words would be first). When each thread finishes with the say_it

function, it returns a NULL. This value, which is picked up by the pthread_join, is 

displayed as a 0. The return statement in the say_it function can be replaced with a call 

to pthread_exit. However, if we replace the return with pthread_exit, most compilers will 

complain that no value is returned by the say_it function, forcing us to include the return

statement even if it is unreachable! If we run this program several times, the output 

sequences will vary.

As written, the display of each word (command-line argument) is preceded by a call to 

sleep for one second. In the run shown in Figure 11.3, sleep is called 19 times (7 for f, 5 

for a, etc.). Yet, the length of time it takes for the program to complete is far less than 

19 seconds. This is to be expected, as each thread is sleeping concurrently. We can 

verify the amount of time used by the program using the /usr/bin/time
[10] utility. Several 

reruns of Program 11.1 using the /usr/bin/time utility confirms our conjecture.

[10] In most versions of UNIX there are several utilities that provide 

statistics about the amount of time it takes to execute a particular 

command (or program). The most common of these utilities are time, 

/usr/bin/time, and timex. Most versions of Linux do not come with timex.

Figure 11.3 Timing a run of Program 11.1.



linux$ /usr/bin/time -p p11.1 f a c e

Displaying

f        to be printed 7 times.

a        to be printed 5 times.

c        to be printed 3 times.

e        to be printed 4 times.

f a c e f a c e f e c a f e a af  f f

Thread 1026 returns 0

Thread 2051 returns 0

Thread 3076 returns 0

Thread 4101 returns 0

Done

real 7.07                                            <-- 1

user 0.00                                            <-- 2

sys  0.02                                            <-- 3

(1) Elapsed real time (in seconds).

(2) CPU seconds in user mode

(3) CPU seconds in kernel mode

11-1 EXERCISE

The output of Program 11.1 shows the system assigns the thread ID 1026 to

the first thread it creates, 2051 to the next, and so on (incrementing each 

time by 1025). To explore the generation of threads by the program, compile 

p11.1.cxx with the -g option and load it into the gdb debugger (linux$ gdb p11.1). 

Set a breakpoint at line 55 of the program at the return statement in the say_it

function (to accomplish this, at the gdb prompt enter the command break 55). 

Now run the program with two arguments (i.e., at the gdb prompt enter run A 

B). When the program stops execution, at the gdb prompt enter the command 

info thread. How many threads are generated? Run the program with three 

arguments. Now how many threads are generated? How do you account for 



the extra thread(s)?

If your system supports the user command strace, try the command-line 

sequence

linux$ strace -c -f p11.1 A B C  > /dev/null

Is the number of calls to the clone system call the same as the number of 

threads generated? Why? Note that when threaded programs fail (or are 

interrupted), they may generate a core file for each thread. If space is at a 

premium, you may want to remove these files.
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11.5 Thread Attributes

In a POSIX implementation, if we want to generate a thread that does not have the 

default attributes (obtained by setting the second parameter of the pthread_create call to 

NULL), an attribute object is used. To use an attribute object, it must first be initialized. 

This is accomplished using the library call pthread_attr_init (see Table 11.5).

Table 11.5. The pthread_attr_init Library Function.

Include File(s) <pthread.h> Manual Section 3

Summary int pthread_attr_init ( pthread_attr_t *attr );

Return

Success Failure Sets errno

0 Nonzero  

The pthread_attr_init library function has a single argument, a reference to a previously 

allocated pthread_attr_t type object. If the call is successful, it returns a 0 and initializes 

the referenced attribute object with the default value for each attribute (see Table 

11.6). A return of ENOMEM (12) indicates the system does not have sufficient 

memory to initialize the thread attribute object.

Once initialized, individual attribute values can be modified (see the following 

discussion). The attribute object is passed as the second argument to the 

pthread_create call. The newly created thread will have the specified attributes. The 

attribute object is independent of the thread, and changes to the attribute object after 

a thread has been created are not reflected in existing threads. Once established, a 

thread attribute object can be used in the generation of multiple threads. Thread 

attributes and their default values are shown in Table 11.6.



Table 11.6. Thread Attributes and Default Settings.

Attribute Default Comments

detachstate PTHREAD_CREATE_JOINABLE A nondetached thread that can be 

joined by other threads. The thread's 

resources are not freed until a call is 

made to pthread_join or the calling 

process exits.

inheritsched PTHREAD_EXPLICIT_SCHED Indicates whether or not scheduling 

attributes are inherited from parent 

thread or set explicitly by the attribute 

object.

schedparam 0 Scheduling parameters (priority).

schedpolicy SCHED_OTHER Scheduling is determined by the 

system (most often some sort of 

timesharing). Note the missing 

PTHREAD_prefix.

scope PTHREAD_SCOPE_SYSTEM Scope of scheduling contention—with

all threads in same process or all

processes in the system.

As presented, if the user wants a thread to have different characteristics, he or she 

should first initialize the attribute object using the pthread_attr_init library call and then 

change the attributes he or she wants to be different. Each attribute listed in Table 

11.7 has an associated pthread_attr_setxxx and pthread_attr_getxxx function call that will 

act upon the attribute object.



Table 11.7. Thread Attribute Set and Get functions

Attribute Set and get Calls

Defined Constants[11] for the 2nd 

setxxx parameter

 int pthread_attr_setdetachstate (

    pthread_attr_t *attr,

    int detachstate);

PTHREAD_CREATE_JOINABLE

detachstate   

 int pthread_attr_getdetachstate (

    const pthread_attr_t *attr,

    int *detachstate);

PTHREAD_CREATE_DETACHED

 int pthread_attr_setinheritsched (

    pthread_attr_t *attr,

    int inheritsched

PTHREAD_EXPLICIT_SCHED

inheritsched   

 int pthread_attr_getinheritsched (

    const pthread_attr_t *attr,

    int *inheritsched) ;

PTHREAD_INHERIT_SCHED

 int pthread_attr_setschedparam (

    pthread_attr_t *attr,

    const struct sched_param *param);

0

Schedparam  Reference to valid sched_param
[12]

structure with its sched_priority member 

assigned a valid priority.
 int pthread_attr_getschedparam (

    pthread_attr_t *attr,

    const struct sched_param *param);

 int pthread_attr_setschedpolicy (

    pthread_attr_t *attr,

    int policy);

SCHED_OTHER[13]

SCHED_FIFO

SCHED_RR

Schedpolicy   

 int pthread_attr_getschedpolicy (

    const pthread_attr_t *attr,

    int *policy);

 

 int pthread_attr_setscope (

    pthread_attr_t *attr,

    int contentionscope);

PTHREAD_SCOPE_SYSTEM



Scope   

 int pthread_attr_getscope (

    const pthread_attr_t *attr,

    int *contentionscope);

PTHREAD_SCOPE_PROCESS

Attribute Set and get Calls

Defined Constants[11] for the 2nd 

setxxx parameter

[11] The highlighted values are the default.

[12] The sched_param structure is found in the include file <sched.h>, 

which is included by the <pthread.h> file.

[13] Only processes with superuser privileges can specify SCHED_FIFO

or SCHED_RR.

If in Program 11.1 we wanted to use the thread attribute object to indicate our threads 

be detached (that is, the thread would exit as soon as it has completed its task rather 

than for a join to be done in the calling function), we would add and modify the 

following program statements:[14]

[14] While not shown, we would also remove the lines of code that 

implement the join. Of course, if the initial thread (process) terminates 

before all threads have finished, complete output will not be generated.

  .

  .

  .

  |     int

  |     main(int argc, char *argv[]) {

  |       pthread_t       thread_id[MAX];

 20       int     status, *p_status = &status;

  |       pthread_attr_t  attr_obj;               // allocate attribute object

  |       setvbuf(stdout, (char *) NULL, _IONBF, 0);

  .

  .

  .

  |       cout << "Displaying" << endl;

  |                                               // Allocate & set atrib. obj

  |       pthread_attr_init( &attr_obj);



  |       pthread_attr_setdetachstate( &attr_obj, PTHREAD_CREATE_DETACHED );

  |       for (int i = 0; i < argc-1; ++i) {      // generate threads

  .

  .

  .

The set and get attribute calls return a 0 if they are successful. If they fail, they return 

EINVAL (22) if passed an invalid parameter or ENOTSUP (95)[15] if the parameter 

specifies an unsupported feature.

[15] Linux does not support the constant ENOTSUP directly (which is 

usually assigned the value 48), but as a patch, defines ENOTSUP in 

terms of EOPNOTSUPP.

11-2 EXERCISE

Add a call to pthread_attr_getschedparam in Program 11.1 to determine the 

default priority (numeric value) for a thread on your system. Is it possible to 

modify the program to change the priority of each thread as it is created (use 

pthread_attr_setschedparam) so the display of the command-line arguments is 

always in an ordered inverse sequence? Notice the display starts with the 

last argument and proceeds to the first (see partial output below).

linux$  your_solution one two three four five

.                                                    <-- 1

.

.

five five four three two one five four three one four three   <-- 2

one three

(1) Five words are passed to the program.

(2) As the thread displaying the last word has the highest

priority, it displays first, etc.



If yes, run your program several times to confirm that it works correctly; if no, 

why not? Note: You may want to use the pthread_getschedparam library function 

within the code actually executed by a thread to verify the thread's priority 

has been set correctly.

     

Top

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/eBook.Prentice_Hall_PTR-Interprocess_Communications_in_Linux.ShareReactor.chm/23021533.htm


     

 

11.6 Scheduling Threads

We have alluded to scheduling in the previous sections. As a subject, scheduling is 

complex and is often the topic of an entire chapter or more in an operating systems 

text. Understanding the Linux Kernel provides an excellent in-depth presentation of 

Linux scheduling. Essentially, scheduling is used to determine which ready-to-run task 

the CPU will execute next. A check of any good operating systems text will reveal a 

variety of scheduling policies, some of the more common of which are

First come, first served— first to request service is processed first (also called a

FIFO arrangement).

Shortest job first— the task requiring least amount of processing is done first.

Priority-based— tasks with higher priority are done first.

Round-robin— each task gets a small time slice; tasks reside in a circular

queue until they are finished.

Furthermore, many of these strategies can be implemented as nonpreemptive (once 

the task begins, it goes to completion) or as preemptive (the task can be removed by 

a task of a higher priority). In current operating systems preemption is the norm. Keep 

in mind, as noted in Chapter 1, processes can be in user mode or kernel mode. 

Traditionally, a process running on a single processor system is nonpreemptive when 

it is in kernel mode.

Similar to processes, threads can be in one of several states. A very simplified thread 

state diagram is shown in Figure 11.4. As shown, a thread can be ready to run (able 

to run if selected); running (active); or blocked (waiting on some other event, say I/O 

or a wake-up, to occur).

Figure 11.4. High-level thread state diagram.



In Linux the scheduling of a POSIX thread is determined by two factors: priority and 

scheduling policy.

The system uses the static priority value of a thread to assign it to a ready-to-run list. 

The static priority values for a Linux system range from 0 to 99, with 0 being the 

lowest priority. When dealing with a POSIX thread, higher priority threads are 

scheduled before those with a lower priority. Usually, the priority of a thread is 

inherited from its creating thread. However, the priority of a thread can be set at 

creation time by modifying the thread attribute object before the thread is created. 

Conceptually, the system maintains a separate list for each static priority value. The 

library calls sched_get_priority_max and sched_get_priority_min can be used to determine 

the actual priority limits for a specific scheduling policy.

POSIX specifies three scheduling policies for threads. The first policy, 

SCHED_OTHER, is used for normal (conventional) processes. The remaining two 

policies, SCHED_FIFO and SCHED_RR, are for real-time (time-dependent) 

applications. Implementation-wise, as all scheduling is basically preemptive, these 

policies are used by the system to determine where threads are inserted in a list and 

how they move within the list.

SCHED_OTHER— the system default. This is a time-sharing policy where

competing threads with the same static priority (0) are multiplexed (each

receiving a time slice) according to their dynamic priority. A thread's dynamic

priority is based on its nice level, which is established at runtime. The nice level

can be changed using the setpriority system call. The thread's dynamic priority is 

increased each time it is ready to run but is denied access to the CPU.

SCHED_FIFO— a first in, first out scheduling policy. SCHED_FIFO threads

have a static priority greater than 0. The highest priority, longest waiting thread

becomes the next thread to execute. The thread will execute until it finishes, is



blocked (such as by an I/O request), is preempted, or yields (calls sched_yield). 

Initially, ready-to-run SCHED_FIFO scheduled threads are placed at the end of 

their list. If a SCHED_FIFO thread is preempted, it remains at the head of its 

list and resumes its execution when all higher priority threads have finished or 

blocked. A SCHED_FIFO thread that yields the processor is placed at the end 

of its list.

SCHED_RR— Round-robin scheduling. This is similar to SCHED_FIFO with a

time slicing factor (quantum) added in. When a thread has run for a period of

time equal to it quantum (and has not finished) it is placed at the end of its list.

If a SCHED_RR scheduled process is preempted, as with SCHED_FIFO, it

stays at the head of its list, but when recalled, only gets to complete the

remaining portion of its quantum.

A scheduling policy and priority of a thread that already exists can be set with the 

pthread_setschedparam library function, detailed in Table 11.8.

Table 11.8. The pthread_setschedparam Library Function.

Include File(s) <pthread.h> Manual Section 3

Summary int pthread_setschedparam(

    pthread_t target_thread, int policy,

    const struct sched_param *param );

Return

Success Failure Sets errno

0 Nonzero  

The first argument of pthread_setschedparam is a valid thread ID. The second argument 

should be one of the following defined constants: SCHED_OTHER, SCHED_FIFO, or 

SCHED_RR (see previous discussion). The third argument for this call is a reference 

to a sched_param structure (examine the include file <sched.h> for definition details).

If successful, the pthread_setschedparam library returns a 0; otherwise, it returns one of 

the following values: EPERM (1), the calling process does not have superuser 

privileges; ESRCH (3), the specified thread does not exist; EFAULT (14), param

references an illegal address; or EINVAL (22), invalid policy or param value or priority 

value is inconsistent with scheduling policy. Again, it is important to note that only the 



superuser can specify SCHED_FIFO or SCHED_RR scheduling (and thus change a 

thread's static priority to something other than 0); others are left with the system 

default SCHED_FIFO with a static priority of 0.

Program 11.2 demonstrates the use of the pthread_setschedparam, pthread_getschedparam, 

sched_get_priority_max, and sched_ get_priority_min functions. In main a scheduling policy is 

specified and the system's maximum and minimum priority values for the policy are 

displayed. The policy and an arbitrarily calculated priority are assigned to a parameter

structure, which is passed to the threadfunc function. When a new thread is created, the 

threadfunc function calls pthread_setschedparam to set the scheduling policy and priority. 

To confirm the changes have actually been made, the pthread_getschedparam library 

function is used to retrieve the current scheduling and thread priority settings. The 

returned results are displayed.

Program 11.2 Manipulating scheduling parameters.

File : p11.2.cxx

  |     /*

  |        Changing scheduling parameters.

  |     */

  |     #define _GNU_SOURCE

  +     #define _REENTRANT

  |     #include <iostream>

  |     #include <cstdio>

  |     #include <cstring>

  |     #include <pthread.h>

 10     #include <sched.h>

  |     #include <unistd.h>

  |     using namespace std;

  |     char *p[] = {"OTHER ","FIFO ","RR "};

  |     struct parameter {                           // data to pass

  +       int   policy;                              // new policy

  |       int   priority;                            // new priority

  |     };

  |     void *threadfunc( void *);

  |     int

 20     main( ) {

  |       pthread_t        t_id;

  |       struct parameter parm;

  |       int              status;

  |       setvbuf(stdout, (char *)NULL, _IONBF, 0);  // non-buffered output

  +       for( int i=0; i < 3; ++i ){                // display limits



  |         cout << "Policy SCHED_" << p[i] << "\t MAX = "

  |              << sched_get_priority_max(i);

  |         cout << " MIN = " << sched_get_priority_min(i) << endl;

  |         parm.policy  = i;                        // assign data to pass

 30         parm.priority= (i+1) * 2;                // make up a priority

  |         status=pthread_create( &t_id, NULL, threadfunc, (void *)&parm );

  |         sleep(1);

  |       }

  |       return 0;

  +     }

  |     void *

  |     threadfunc( void *d ) {

  |       struct    sched_param  param;              // local to this function

  |       int       policy;

 40       parameter *p_ptr=(parameter *)d;           // cast to access

  |       param.sched_priority = p_ptr->priority;    // passed data value

  |                                                  // set new scheduling

  |       pthread_setschedparam(pthread_self(), p_ptr->policy, &param );

  |       memset(&param, 0, sizeof(param));              // clear

  +                                                      // retrieve

  |       pthread_getschedparam(pthread_self(), &policy, &param );

  |       cout << "In thread with policy = SCHED_" << p[policy]

  |            << " \tpriority = " << (param.sched_priority)

  |            << " effective ID = " << geteuid() << endl;

 50       return NULL;

  |     }

Figure 11.5 shows two runs of Program 11.2. In the first the effective ID of the user is 

0 (that of the superuser). As a result, the requested scheduling changes are 

implemented. In the second run the effective ID of the user is 500. The requested 

changes are not made in the thread and default remains in effect.

Figure 11.5 Running Program 11.2 as root and as a regular user.

linux#  p11.2

Policy SCHED_OTHER       MAX = 0 MIN = 0

In thread with policy = SCHED_OTHER     priority = 0 effective ID = 0    <-- 1

Policy SCHED_FIFO        MAX = 99 MIN = 1

In thread with policy = SCHED_FIFO      priority = 4 effective ID = 0

Policy SCHED_RR          MAX = 99 MIN = 1

In thread with policy = SCHED_RR        priority = 6 effective ID = 0

.

.

.



linux$ p11.2

Policy SCHED_OTHER       MAX = 0 MIN = 0

In thread with policy = SCHED_OTHER     priority = 0 effective ID = 500    <-- 2

Policy SCHED_FIFO        MAX = 99 MIN = 1

In thread with policy = SCHED_OTHER     priority = 0 effective ID = 500

Policy SCHED_RR          MAX = 99 MIN = 1

In thread with policy = SCHED_OTHER     priority = 0 effective ID = 500

(1) Run program as root (eid = 0)—requested changes are implemented.

(2) Run program as regular user—requested changes are not

implemented.

By now I am sure you have noticed the similarities between the pthread_setschedparam

library call and the pthread_attr_ setschedpolicy and pthread_attr_setschedparam library calls. 

The pthread_setschedparam call combines the functionality of the attribute-based calls 

and allows the user to modify scheduling policy and priority on the fly for an existing 

thread.

11-3 EXERCISE

Find the file sched.h that is part of the source code for your version of Linux. 

Its location is somewhat system-specific. The command

linux$  find  /usr/src  -name  sched.h  -print

should reveal its location. On our system this file resides in the 

/usr/src/linux-2.4.18-3/include/linux directory. Examine the sched.h file and find the 

INIT_TASK(tsk)macro that is used to establish a variety of scheduling 

parameters. What starting value is assigned to each of the following: 

dynamic priority, static priority, scheduling policy, and time slice?
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11.7 Using Signals in Threads

In a POSIX multithreaded setting, signals are delivered to the process. If a signal is 

synchronous (the result of the action of a particular thread), the operating system 

passes the signal on to the thread that generated the exception. Thus, synchronous 

signals such as SIGFPE (divide by zero), SIGSEGV (addressing violation), and 

SIGPIPE (broken pipe) would be passed on to the offending thread (which only 

makes sense). If a synchronous pthread_kill call (see Table 11.9) is used to send a 

signal, the specified thread also receives the signal. According to POSIX standards, if 

a signal is asynchronous (not related to a particular thread's activity), such as SIGHUP 

(hang-up) or SIGINT (interrupt), generated by, say, the kill system call, the decision as

to which thread should handle the signal is based upon the signal mask configuration

of the threads within the process. If more than one thread has not blocked the

received signal, there is no guarantee as to which thread will actually receive the

signal. To maintain mutex lock integrity, signals handled by threads that cause the

thread to terminate, stop—continue will cause the process associated with the thread

to also terminate, stop—continue. The details of mutex locking are covered in Section 

11.8, "Thread Synchronization." The handling of asynchronous signals by threads in 

Linux (using the LinuxThreads library implementation) departs somewhat from the 

POSIX standard. LinuxThreads are LWPs that have their own process IDs. Thus, a 

signal is always directed to a specific thread.

Table 11.9. The pthread_kill Library Function.

Include File(s) <pthread.h>

<signal.h>
Manual Section 3

Summary int pthread_kill(pthread_t thread, int signo);

Return

Success Failure Sets errno

0 Nonzero  

The pthread_kill library function accepts a thread ID (of a sibling) as its first argument 
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and an integer signal value as its second argument. Similar to the kill system call, the 

existence of a given thread can be checked by setting the signal argument for 

pthread_kill to 0 and examining the return value of the call. If pthread_kill is successful, 

the signal is sent, and the function returns a 0. If the call fails, a nonzero value is 

returned, and the signal is not sent. The return of ESRCH (3) means the specified 

thread does not exist, while the return of EINVAL (22) means an invalid signal was 

specified. The pthread_kill call cannot be used to send a signal to a thread in another 

process.

All the threads within the process share a common table of information specifying 

what action should be taken upon receipt of a specific signal. Each thread can alter its 

action for a particular signal (with certain constraints) by using a signal mask. When a 

thread is created, it inherits its signal mask and priority from its creating thread. The 

new thread starts with a clean slate and does not inherit any pending (not acted upon) 

signals from its creator. The signal mask can be manipulated with the pthread_sigmask

library function (Table 11.10).

As we are working with signals, an additional header file <signal.h> is required when 

using this call. The first argument for pthread_sigmask should be one of the defined 

constants below. These constants indicate how the signal mask should be changed.

Table 11.10. The pthread_sigmask Library Function.

Include File(s) <pthread.h>

<signal.h>
Manual Section 3

Summary int pthread_sigmask(int how,

                    const sigset_t *newmask,

                    sigset_t *oldmask);

Return

Success Failure Sets errno

0 Nonzero  

Constant Value Meaning

SIG_BLOCK 1 Block (ignore) the indicated signal(s).

SIG_UNBLOCK 2 Remove the indicated signal(s).



Constant Value Meaning

SIG_MASK 3 Replace the current mask with the referenced mask.

The second argument, newmask, is a reference to a sigset_t type object. If we track 

down the sigset_t data type, which is usually found in the include file <sys/signal.h>, we 

should find that it is a reference to an array of unsigned long integers. The array is used 

as a bit mask for signals. If we are modifying the signal mask, the newmask argument 

should reference the new signal mask. While we can hand-craft the new signal mask, 

most prefer to use the appropriate POSIX signal mask manipulation functions shown 

in Table 11.11.

Table 11.11. Signal Mask Manipulation Functions.

Signal Mask Function Functionality

int sigemptyset(sigset_t *set) Initialize the signal set to exclude all defined signals.

int sigfillset(sigset_t *set) Initialize the signal set to include all defined signals.

int sigaddset(sigset_t *set, int 

signo)
Add the indicated signal to the signal set.

int sigdelset(sigset_t *set, int 

signo)
Remove the indicated signal from the signal set.

int sigismember(sigset_t *set, 

int signo)
Returns a nonzero value if the indicated signal is a 

member of the referenced signal set.

When using the signal mask manipulation functions, be sure to initialize a signal mask 

before attempting to manipulate it.

The third argument of pthread_sigmask references the current signal mask (a returned 

value). Thus, if the second argument is set to NULL, making the how argument a 

don't-care, the function returns the current signal mask via the third argument, 

*oldmask.

If the pthread_sigmask call is successful, it returns a 0. It returns EFAULT (14) when 

passed an invalid address for newmask or oldmask. Otherwise, it returns the value 

EINVAL (22) if the how argument was not SIG_BLOCK, SIG_UNBLOCK, or 



SIG_MASK.

Program 11.3 demonstrates the use of the pthread_sigmask call and several of the 

signal mask manipulation calls.

Program 11.3 Using pthread_sigmask.

File : p11.3.cxx

  |     /*

  |         pthread_sigmask example

  |     */

  |     #define _GNU_SOURCE

  +     #define _REENTRANT

  |     #include <iostream>

  |     #include <cstdio>

  |     #include <cstring>

  |     #include <cstdlib>

 10     #include <pthread.h>

  |     #include <unistd.h>

  |     #include <signal.h>

  |     using namespace std;

  |     const int MAX=3;

  +     void  trapper( int );

  |     int   global_i = 0;

  |     int

  |     main(int argc, char *argv[]) {

  |       struct sigaction  new_action;

 20       new_action.sa_handler = &trapper;

  |       new_action.sa_flags = 0;

  |       sigset_t        my_sigs;            // Signal mask

  |       int             sig_in;

  |       setvbuf(stdout, (char *)NULL, _IONBF, 0);

  +       if ( argc > 1 && argc < MAX+2 ) {

  |         sigemptyset(&my_sigs);             // Clear it out, set to all 0's

  |         while( argc-- > 1 )                // Add signal #'s passed in

  |           sigaddset(&my_sigs, atoi(argv[argc]));

  |       } else {

 30         cerr << *argv << " SIG1 ... SIG" <<  MAX << endl;

  |         return 1;

  |       }

  |       for (int i=1; i < NSIG; ++i)        // Attempt to trap all signals

  |        sigaction(i, &new_action, NULL);

  +                                           // BLOCK signals in mask

  |       pthread_sigmask(SIG_BLOCK, &my_sigs, NULL);

  |       cout << "Signal bits turned on" << endl;



  |       for (int i=1; i < NSIG; ++i)

  |         putchar( sigismember(&my_sigs, i) == 0 ? '0' : '1');

 40       cout << "\nWaiting for signals\n";   // Wait for a few signals

  |       while (global_i < MAX){

  |         if ( (sigwait(&my_sigs, &sig_in)) != -1 )

  |           cout << "Signal " << sig_in

  |                << " in mask - no signal catcher" << endl;

  +         ++global_i;

  |       }

  |       return 0;

  |     }

  |     void

 50     trapper( int s ){

  |       cout << "Signal " << s << " not in mask - in signal catcher" << endl;

  |       ++global_i;

  |     }

Program 11.3 uses its command-line values (assumed to be numeric values 

representing valid signal numbers) to build a signal mask. The sigemptyset call clears 

the array representing the signal mask. Each value passed on the command line is 

added to the signal mask by a call to sigaddset (line 28). After the signal mask is 

created, the program uses the sigset call to replace the default action for the receipt of 

each signal with a call to the user-defined trapper function. The sole purpose of the 

trapper function is to print a message displaying the numeric value of an incoming 

signal. The call to pthread_sigmask blocks the receipt of the signals in the constructed 

signal mask. The specified signals will not be handled by the thread (keep in mind that 

even though we have not made a call to pthread_create, we are still dealing with a single 

thread within main). The content of the signal mask is displayed using the sigismember

function (line 39) to verify the presence or absence of specific signals in the signal 

mask.

The program then waits for the receipt of signals. In a loop the sigwait call (Table 

11.12) is used to wait for signals.



Table 11.12. The sigwait Library Function.

Include File(s) <pthread.h>

<signal.h>
Manual Section 3

Summary int sigwait(const sigset_t *set, int *sig);

Return

Success Failure Sets errno

0 Nonzero  

The POSIX version of sigwait takes two arguments: a reference to the signal set and a 

reference to a location to store the returned signal value. If successful, sigwait returns a 

0 and a reference to the signal as its second argument (remember, this call waits for 

any signal, not just those in the signal mask). If the call is not successful, it returns a 

nonzero value, sets its second argument to -1, and returns the value EINVAL (22), 

indicating an unsupported signal number was found in the signal set, or EFAULT (14) 

if passed an invalid signal set address.

It is unwise to use sigwait to manage synchronous signals, such as floating-point 

exceptions that are sent to the process itself. Additionally, the LinuxThreads library 

implementation of sigwait installs a dummy signal-catching routine for each signal 

specified in the signal mask. A sample run of Program 11.3 is shown in Figure 11.6.

Figure 11.6 Output from Program 11.3.

linux$ p11.3 2 3

Signal bits turned on

011000000000000000000000000000000000000000000000000000000000000

Waiting for signals

Signal 20 not in mask - in signal catcher            <-- 1

Signal 3 in mask - no signal catcher                 <-- 2

Signal 2 in mask - no signal catcher                 <-- 3

(1) User enters ^Z from keyboard.

(2) User enters ^\ from keyboard.



(3) User enters ^C from keyboard.

In the output shown, produced from a run of Program 11.3, the user passed the 

program the values 2 and 3 on the command line. The program uses these values to 

create a signal mask. When signal 2 or 3 is received, the initial thread, generated 

when main executes, does not handle the signals (that is, the trapper function is not 

called). When a non-blocked signal is received (for example the ^Z), the default action 

occurs: A call to the user-defined function trapper is made.

11-4 EXERCISE

Program 11.3 can be run in the background so signals that cannot be 

generated at the keyboard can be sent to the process. For example,

linux$ p11.3 32 33 19 &                              <-- 1

[1] 5414

linux$

Signal bits turned on

000000000000000000100000000000011000000000000000000000000000000

Waiting for signals

linux$ kill -32 5414                                 <-- 2

(1) Program is placed in the background. The system returns

the process ID.

(2) Send signal 32 to process.

When Program 11.3 is passed the set of signal values 32 33 19, what output is 

produced when, in turn, each of these signals is sent to the process? Why 

do you get this output?

In a multithreaded setting most authors advocate using a separate thread to handle 

signal processing. An example of how this can be done is shown in Program 11.4.



Program 11.4 Using a separate thread to handle signal processing.

File : p11.4.cxx

  |     /*

  |            Handling signals in a separate thread

  |     */

  |     #define _GNU_SOURCE

  +     #define _REENTRANT

  |     #include <pthread.h>

  |     #include <iostream>

  |     #include <csignal>

  |     #include <cstdlib>

 10     #include <unistd.h>

  |     using namespace std;

  |     void      *sibling(void *);

  |     void      *thread_sig_handler(void *);

  |     sigset_t  global_sig_set;

  +     int       global_parent_id;

  |     int

  |     main( ){

  |       pthread_t  t1,t2,t3;

  |       sigfillset( &global_sig_set );                // set of all signals

 20                                                     // BLOCK all in set

  |       pthread_sigmask(SIG_BLOCK, &global_sig_set, NULL);

  |                                                     // Create 3 threads

  |       pthread_create(&t1, NULL, thread_sig_handler, NULL);

  |       pthread_create(&t2, NULL, sibling, NULL);

  +       pthread_create(&t3, NULL, sibling, NULL);

  |       global_parent_id = getpid( );

  |       while (1){

  |         cout << "main thread \t PID: " << getpid() << " TID: "

  |              <<  pthread_self() << endl;

 30         sleep(3);

  |       }

  |       return 0;

  |     }

  |     void *

  +     sibling(void *arg){

  |       while(1){

  |         cout << "sibling thread \t PID: " << getpid() << " TID: "

  |              << pthread_self() << endl;

  |         sleep(3);

 40       }

  |       return NULL;

  |     }

  |     void *



  |     thread_sig_handler(void *arg) {

  +       int  sig;

  |       cout << "signal thread \t PID: " << getpid() << " TID: "

  |            <<  pthread_self() << endl;

  |       while(1){

  |         sigwait( &global_sig_set, &sig );

 50         if ( sig == SIGINT ){

  |           cout << "I am dead" << endl;

  |           kill( global_parent_id, SIGKILL );

  |         }

  |         cout << endl << "signal " << sig << " caught by signal thread "

  +              << pthread_self() << endl;

  |       }

  |       return NULL;

  |     }

In line 21 the program generates and fills a signal mask (indicating all signals). A call 

to pthread_sigmask blocks the signals (except, of course, those signals that even when 

requested cannot be blocked). Any threads that are subsequently generated will 

inherit this information. Next, a thread to handle signal processing is created. This 

thread runs the code in the thread_sig_handler function. This function identifies itself and 

enters an endless loop. In the loop the call sigwait causes this thread to block, waiting 

for the receipt of one of the signals in the signal mask. When a signal is received, it is 

examined. If the signal is SIGINT, the thread sends the parent process (running the 

main thread) a SIGKILL signal, which terminates all processing. Notice that due to their 

declaration placement in the program code, the signal mask and PID of the initial 

thread (process) are global. Once the signal-processing thread is established, two 

additional threads are generated. Both of these threads run the code found in the 

sibling function. This function contains another endless loop. Every couple of seconds 

the thread running this code identifies itself and displays its process and thread IDs. 

When all threads have been generated, main also enters a loop where every few 

seconds it identifies itself (process and thread IDs). A run of this program (shown in 

Figure 11.7) is very informative.

Figure 11.7 Output from Program 11.4.

linux$ p11.4

signal thread    PID: 15760 TID: 1026

sibling thread   PID: 15761 TID: 2051                <-- 1

main thread      PID: 15758 TID: 1024

sibling thread   PID: 15762 TID: 3076



signal 3 caught by signal thread 1026                <-- 2

signal 20 caught by signal thread 1026

sibling thread   PID: main thread        PID: 15758 TID: 1024    <-- 3

sibling thread   PID: 15761 TID: 2051

15762 TID: 3076

I am dead

signal 2 caught by signal thread 1026                <-- 4

Killed

(1) Four threads are generated: main, a signal thread and two sibling

threads. Each has its own thread ID and is run as a separate process.

(2) User enters ^\ and ^Z from the keyboard. These signals are handled

by the signal-processing thread.

(3) While output is not buffered, it is still interleaved as threads

compete.

(4) Entering a ^C (from the keyboard) terminates processing. The

signal-processing thread is able to slip in one last message.

11-5 EXERCISE

First, modify Program 11.4 to remove the global reference to the signal mask 

and parent process ID (check Program 11.2 for one way this can be done). 

Second, the threads running the sibling function should be passed a signal 

value that they (the threads) will be responsible for catching and processing. 

The first sibling should be passed SIGUSR1 and the second sibling passed 



SIGUSR2. The sibling threads should not make use of sigwait (think sigaction). 

Run the modified program in the background. Then use the user command 

kill to send SIGUSR1 and SIGUSR2 signals to the main and sibling threads. 

Record your output using the script command. Verify that each thread 

handles the receipt of signals properly. Is a signal-catching routine 

established in one thread shared by the others? Note that in older (2.1 or 

earlier) kernel implementations SIGUSR1 and SIGUSR2 were used by 

LinuxThreads for thread management. In these settings try using SIGINT 

and SIGQUIT in place of SIGUSR1 and SIGUSR2.
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11.8 Thread Synchronization

It is a given that to fully utilize threads, we need to reliably coordinate their activities. A 

thread's access to critical sections of common code that modify shared data 

structures must be protected in a manner such that the integrity of the data referenced 

is not compromised. POSIX thread activities can be synchronized in a variety of ways.

11.8.1 Mutex Variables

One of the easiest methods to ensure coordination is to use a mutual exclusion lock, 

or mutex. Conceptually, a mutex can be thought of as a binary semaphore with 

ownership whose state either allows (0, unlocked)[16] or prohibits (nonzero, locked) 

access. Unlike a binary semaphore, any thread within the scope of a mutex can lock a 

mutex, but only the thread that locked the mutex should unlock it. Again, while it

should not be done, unlocking a mutex that a thread did not lock does not generate an

error. However, such action results in undefined behavior—forewarned is forearmed.

Threads unable to obtain a lock are suspended. As actions on a mutex are atomic,

and only one thread at a time can successfully modify the state of a mutex, it can be

used to force the serialization of thread activities. If threads associated with multiple

processes are to be coordinated, the mutex must be mapped to a common section of

memory shared by the processes involved.

[16] I know, I know—thinking semaphore-wise, you might expect a 1 to

indicate unlocked and 0 locked. If the mutex is owned, it is considered

locked.

The manner in which a mutex is created and initialized determines how it will be used. 

A mutex is of data type pthread_mutex_t. Examining the include file <bits/pthreadtypes.h>, 

we find this data type to be the following structure:

typedef struct {



  int __m_reserved;                  /* Reserved for future use          */

  int __m_count;                     /* Depth of recursive locking       */

  _pthread_descr __m_owner;          /* Owner thread (if recursive or

                                        errcheck)                        */

  int __m_kind;                      /* Mutex kind: fast, recursive or

                                        errcheck                         */

  struct _pthread_fastlock __m_lock; /* Underlying fast lock             */

} pthread_mutex_t;

Keep in mind that pthread_mutex_t is what is known as an opaque data type. That is, its 

specific structure is implementation-dependent. Thus, a POSIX threads 

implementation for the pthread_mutex_t data type for Linux might well be different from 

Sun's implementation. When in doubt, check it out!

A mutex, like a thread, can have its attributes specified via an attribute object, which is 

then passed to the pthread_mutex_init library function. Not to be outdone, the mutex 

attribute object also has its own initialization function, pthread_mutexattr_init, a 

deallocation function, and library functions (such as pthread_mutexattr_settype) for 

modification of the attribute settings once the object has been created. Changing the 

settings of the mutex attribute object will not change the settings of those mutexes 

previously allocated. We will restrict this section of our discussion to the following 

library calls: pthread_mutexattr_init, pthread_mutexattr_ settype, and pthread_mutex_init (tables 

11.13, 11.14, and 11.15).

Table 11.13. The pthread_mutexattr_init Library Function

Include File(s) <pthread.h> Manual Section 3

Summary int pthread_mutexattr_init( pthread_mutexattr_t *attr );

Return

Success Failure Sets errno

0 Nonzero  

The pthread_mutexattr_init call, which initializes the mutex attribute object, is passed a 

reference to a pthread_mutexattr_t structure. The definition of this structure, shown 

below, is found in the /usr/include/bits/pthreadtypes.h file.

typedef struct {

 int __mutexkind;

} pthread_mutexattr_t;



At present, the LinuxThreads implementation of POSIX threads provides support only 

for the attribute specifying the mutex kind. In LinuxThreads a mutex can be one of the 

following three kinds, with the default being the type fast. The kind (type) of a mutex 

determines the system's behavior when a thread attempts to lock the mutex (Table 

11.14).

Table 11.14. 

Mutex Kind Constant Behavior

fast PTHREAD_MUTEX_FAST If the mutex is already 

locked by another thread, 

the calling thread blocks. If 

the thread that owns (locked) 

the mutex attempts to lock it 

a second time, the thread will 

deadlock! The thread that 

unlocks the mutex is 

assumed to be the owner of 

the mutex. Unlocking a 

nonlocked mutex will result 

in undefined behavior.

recursive PTHREAD_MUTEX_RECURSIVE The system will the record 

number of lock requests for 

the mutex. The mutex is 

unlocked only when an equal

number of unlock operations 

have been performed.

error-checking PTHREAD_MUTEX_ERRORCHECK If a thread attempts to lock a 

locked mutex, an error 

(EDEADLK) is returned.

If the pthread_mutexattr_init call is successful, it returns a 0 and a reference to a default 

pthread_mutexattr_t object; otherwise, it returns the value ENOMEM (12) to indicate 

there was insufficient memory to perform the initialization. One final note: A fast mutex 



(the default) is POSIX-based and thus portable. The mutex kinds recursive and 

error-checking are nonstandard and thus nonportable.

The pthread_mutexattr_settype library function is used to modify a mutex attribute object.

Table 11.15. The pthread_mutexattr_settype Library Function

Include File(s) <pthread.h> Manual Section 3

Summary

[View full width]

int

pthread_mutexattr_settype(pthread_mutexattr_t 

*attr,

                          int               kind );

Return

Success Failure Sets errno

0 Nonzero  

The pthread_mutexattr_settype library call is passed a valid reference to a 

pthread_mutexattr_t object (presumably previously initialized by a successful call to 

pthread_mutexattr_init) and an integer argument (defined constant) indicating the mutex 

kind. The mutex kind is specified by one of the previously discussed 

PTHREAD_MUTEX_xxx constants. For example, the code sequence

pthread_mutexattr_t      my_attributes;

pthread_mutexattr_init( &my_attributes );

. . .

pthread_mutexattr_settype( &my_attributes, PTHREAD_MUTEX_RECURSIVE);

would allocate a mutex attribute object, set the default attributes, and then at a later 

point change the mutex kind to recursive.[17] If the pthread_muexattr_settype call is 

successful, it returns a 0; otherwise, it returns the value EINVAL (22), indicating it has 

found an invalid argument.

[17] Older version LinuxThreads may not support the 

pthread_mutexattr_settype call. An equivalent but deprecated call would be



thread_mutexattr_setkind_np(&my_attributes, PTHREAD_MUTEX_RECURSIVE_NP);

At this point, we must keep several things in mind. First, initializing a mutex attribute 

object does not create the actual mutex. Second, if the mutex attribute object is to be 

shared by threads in separate address spaces, the user is responsible for setting up 

the mapping of the mutex attribute object to a common shared memory location. 

Third, if a mutex is shared across processes, it must be allocated dynamically, and 

therefore a call to pthread_mutex_init and/or pthread_init would be needed. The mechanics

of how to set up a shared mutex for threads sharing the same process space and 

those in separate process spaces can be found in Program 11.5.

Next, let's look at initializing a mutex using the pthread_mutex_init library call. Table 

11.16 provides the details for pthread_mutex_init.

Table 11.16. The pthread_mutex_init Library Function

Include File(s) <pthread.h> Manual Section 3

Summary int

pthread_mutex_init(pthread_mutex_t  *mutex,

                   const pthread_mutexattr_t

                   *mutexattr);

Return

Success Failure Sets errno

0 Nonzero  

The pthread_mutex_init library function initializes a mutex. Its first argument, *mutex, is a 

reference to the mutex, and the second argument, *mutexattr, is a reference to a 

previously initialized mutex attribute object. If the second argument is NULL, the 

mutex will be initialized with the default attributes. Thus, with pthread_mutex_init, we can 

generate a mutex with the default characteristics. For example, with the statements

. . .

pthread_mutex_t      my_lock;

. . .

pthread_mutex_init( &my_lock, NULL );

pthread_mutex_init returns a 0 and a reference to the mutex if successful. If the 

pthread_mutex_init call fails, it returns the value EINVAL (22) to indicate an invalid value 

for either the mutex or mutexattr argument.



While this approach (if we use an attribute object) is somewhat circuitous, it does 

allow greater freedom over the allocation of the mutex object. An alternate approach is 

to use a predefined constant PTHREAD_MUTEX_ INIIALIZER[18] to initialize the 

mutex. The code sequence for this is:

[18] In <pthread.h> we find this constant to be defined as {0, 0, 0, 

PTHREAD_MUTEX_TIMED_NP, __LOCK_INITIALIZER}.

pthread_mutex_t    my_lock = PTHREAD_MUTEX_INITIALIZER;

Additionally, LinuxThreads supports similar initializers for its two nonstandard mutex 

types: PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP and 

PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP.

Once the mutex has been created and initialized, there are four library functions that 

operate on the mutex, listed in Table 11.17.

Table 11.17. The mutex Manipulation Library Functions.

Include File(s) <pthread.h> Manual Section 3

Summary int pthread_mutex_lock(    pthread_mutex_t *mutex );

int pthread_mutex_trylock( pthread_mutex_t *mutex );

int pthread_mutex_unlock(  pthread_mutex_t *mutex );

int pthread_mutex_destroy( pthread_mutex_t *mutex );

Return

Success Failure Sets errno

0 Nonzero  

Each function takes a single argument, *mutex, a reference to the mutex. The library 

functions pthread_mutex_lock and pthread_mutex_unlock are used to lock and unlock a 

mutex. A pthread_mutex_lock, issued on a previously locked mutex, causes the issuing 

thread to block until the lock is free. If the mutex is unlocked, pthread_mutex_lock locks 

the mutex and changes the ownership of the mutex to the thread issuing the lock. The 

manual pages on this function note that should the owner of a mutex issue a second 

lock on mutex that it has previously locked, deadlock will result. The 

pthread_mutex_unlock library function is used to unlock a mutex. The thread issuing the 

unlock call should be the same as the thread that locked the mutex; otherwise, the 



resulting behavior is unspecified. Again, it is very easy to break the rules, as with the 

default fast type mutex, the concept of ownership is not enforced. The call 

pthread_mutex_ trylock is similar to pthread_mutex_lock (i.e., it will lock an unlocked mutex); 

however, it will not cause the thread to block if the indicated mutex is already locked. 

The library function pthread_mutex_destroy causes the referenced mutex to become 

uninitialized. However, the user must explicitly free the memory referenced by the 

mutex for it to be reclaimed by the operating system. In general, if two or more 

resources are to be acquired by multiple threads and each resource is protected by a 

mutex, a locking hierarchy should be established to reduce the chance of deadlock. 

That is, each thread should attempt to gain access to each resource in the same 

order, and when done, release the associated mutexes in the reverse order of their 

acquisition.

When these functions are successful, they return a 0; otherwise, they return a 

nonzero value. Both pthread_mutex_trylock and pthread_mutex_destroy return the value 

EBUSY (16) if the mutex is already locked. All functions return the value EINVAL (22) 

if the mutex argument is invalid.

We use two programs to demonstrate the use of a mutex. The programs are

adaptations of an earlier producer—consumer example described in some detail in

the chapter on semaphores (Chapter 7). As both programs use the same section of 

produce and consume logic, this code along with a small driver routine called do_work

has been placed in a separate file. For similar reasons, code for includes and 

declarations have been placed in a common header file called local_mutex.h. Program 

11.5 uses a mutex to coordinate the activities of multiple nondetached threads. Each 

thread executes a series of calls to the produce and consume routines. These routines 

access a shared file that acts as a common buffer. Access to the buffer is controlled 

by the mutex. The include file for Program 11.5 is shown below.

Program 11.5 Header file for mutex example.

File : local_mutex.h

  |     /*

  |          Common local header file: local_mutex.h

  |     */

  |     #ifndef LOCAL_MUTEX_H

  +     #define LOCAL_MUTEX_H

  |     #define _GNU_SOURCE

  |     #define _REENTRANT



  |     #include <iostream>

  |     #include <cstdio>

 10     #include <pthread.h>

  |     #include <fstream>

  |     #include <stdlib.h>

  |     #include <unistd.h>

  |     #include <sys/types.h>

  +     #include <sys/wait.h>

  |     #include <sys/time.h>

  |                                                // When we share a mutex

  |     #include <sys/ipc.h>                       // we will need these.

  |     #include <sys/shm.h>

 20     static const char *BUFFER="./buffer";

  |     static const int MAX=99;

  |     void do_work( void );

  |     using namespace std;

  |     #endif

Most of what we see in the header file is self-explanatory or has been covered in 

previous sections. However, there are some items of note. The first mutex program 

example contains multiple threads within one process space; the second example 

uses single threads, each associated with its own heavyweight process. When 

interprocess coordination is required, the mutex and two additional common variables 

must be mapped to a shared memory location. To accomplish this, we need to use 

the IPC shared memory functions (discussed in Chapter 8), and thus must include 

their corresponding header files. The defined constant BUFFER is the name of a local 

file that will be used as a common shared location to store generated data.

The listing containing the common logic for the production and consumption of data is 

shown in Program 11.5.PC.

Program 11.5.PC Common producer—consumer code for mutex examples.

File : p11.5.PC.cxx

  |     /*

  |           Common producer & consumer code

  |     */

  |     #include "local_mutex.h"

  +     struct timespec some_time;

  |     fstream         fptr;                  // common buffer location

  |     extern pthread_mutex_t *m_LOCK;        // shared mutex

  |     extern int             *s_shm,         // setup flag

  |                            *c_shm;         // counter



 10     /*

  |         Generate a random # within specified range

  |     */

  |     int

  |     my_rand(int start, int range){

  +       struct timeval t;

  |       gettimeofday(&t, (struct timezone *)NULL);

  |       return (int)(start+((float)range * rand_r((unsigned *)&t.tv_usec))

  |                    / (RAND_MAX+1.0));

  |     }

 20     /*

  |           Produce a random # and write to a common repository

  |     */

  |     void

  |     produce( ) {

  +       int   err, *n;

  |       cout << pthread_self( ) << "\t P: attempting to produce \t"

  |            << getpid( ) << endl;

  |       cout.flush( );

  |       if (pthread_mutex_trylock(m_LOCK) != 0) {      // LOCK

 30         cout << pthread_self( ) << "\t P: lock busy             \t"

  |              << getpid( ) << endl;

  |         cout.flush( );

  |         return;

  |       }

  +       n  = new int;                                  // allocate

  |       *n = my_rand(1,MAX);

  |       fptr.open(BUFFER, ios::out | ios::app);        // Open for append

  |       fptr.write( (char *) n, sizeof(*n) );

  |       fptr.close( );

 40       delete n;                                      // release

  |       cout << pthread_self() << "\t P: The # [" << *n

  |            << "] deposited    \t" << getpid( )  << endl;

  |         cout.flush( );

  |       some_time.tv_sec = 0; some_time.tv_nsec = 10000;

  +       nanosleep(&some_time, NULL);                   // sleep a bit

  |       if ((err=pthread_mutex_unlock(m_LOCK)) != 0){  // UNLOCK

  |         cerr << "P: unlock failure " << err << endl;

  |         cout.flush( );

  |         exit(102);

 50       }

  |     }

  |     /*

  |           Consume the next random number from the common repository

  |     */

  +     void



  |     consume( ) {

  |       int             err, *n;

  |       cout << pthread_self( ) << "\t C: attempting to consume \t"

  |            << getpid( ) << endl;

 60       cout.flush( );

  |       if (pthread_mutex_trylock(m_LOCK) != 0) {      // LOCK

  |         cout << pthread_self( ) << "\t C: lock busy             \t"

  |              << getpid( ) << endl;

  |         cout.flush( );

  +         return;

  |       }

  |       fptr.open(BUFFER, ios::in);                   // Try to read

  |       if ( fptr )  {                                 // If present

  |         fptr.close( );

 70         fptr.open (BUFFER, ios::in|uis::out);        // Reopen for R/W

  |       }

  |       fptr.seekp( *c_shm * sizeof(int), ios::beg );

  |       n = new int;                                   // allocate

  |       *n = 0;

  +       fptr.read( (char *)n, sizeof(*n));

  |       if ((*n) > 0) {                               // For positive values

  |         cout << pthread_self() << "\t C: The # [" << *n

  |              << "] obtained    \t" << getpid( )   << endl;

  |         cout.flush( );

 80         fptr.seekp( *c_shm * sizeof(int), ios::beg );

  |         *n = -(*n);

  |         fptr.write( (char *) n, sizeof(*n) );

  |         fptr.close( );

  |         ++*c_shm;                                   // increment counter

  +       } else {

  |         cout << pthread_self( ) << "\t C: No new # to consume     \t"

  |              << getpid( ) << endl;

  |         cout.flush( );

  |       }

 90       delete n;                                       // release

  |       fptr.close( );

  |       some_time.tv_sec = 0; some_time.tv_nsec = 10000;

  |       nanosleep(&some_time, NULL);

  |       if ((err=pthread_mutex_unlock(m_LOCK)) != 0){  // UNLOCK

  +         cerr<< "C: unlock failure " << err << endl;

  |         exit(104);

  |       }

  |     }

  |     /*

100       Simulate some work, 10 iterations about half produce, half consume

  |     */



  |     void

  |     do_work( ) {

  |       if (!(*s_shm)) {                               // Clear @ start

  +         pthread_mutex_lock(m_LOCK);                  // LOCK

  |         if (!(*s_shm)++) {

  |           cout << pthread_self( ) << "  \t  : clearing the buffer  \t"

  |                << getpid() << endl;

  |           fptr.open( BUFFER, ios::out | ios::trunc );

110           fptr.close( );

  |         }

  |         pthread_mutex_unlock(m_LOCK);                // UNLOCK

  |       }

  |       for (int i = 0; i < 10; ++i) {

  +         some_time.tv_sec = 0; some_time.tv_nsec = 10000;

  |         nanosleep(&some_time, NULL);                 // sleep a bit

  |         switch ( my_rand(1,2) ) {

  |         case 1:

  |           produce();

120           break;

  |         case 2:

  |           consume();

  |         }

  |       }

  +     }

Overall, the produce and consume code listed in Program 11.5.PC is very much the 

same as what we saw in the Chapter 7 example. Nonetheless, there have been some 

important changes and a few additions. At the top of the listing a timespec structure, 

some_time, is declared. The program uses the nanosleep real-time library function 

instead of sleep to suspend the current thread from execution.

Next is the declaration of a file stream pointer, fptr, which is used to reference the file 

where generated values will be stored and retrieved. Following this is a reference to a 

mutex (m_LOCK) and two references to integers (s_shm and c_shm). The first, s_shm, is 

used as a flag to indicate whether or not the file, used as a storage place for 

generated data, has been cleared (reset). The second, c_shm, is used as a

counter—index offset for the current item to be retrieved from the file. As the variables

m_LOCK, s_shm, and c_shm were initially declared in the source file with the code for the 

function main, they are qualified as extern (external) here.

As shown, the user-defined produce function attempts, using the pthread_mutex_trylock

call, to lock the mutex referenced by m_LOCK. If it is not successful, a message is 



displayed and the function is exited. If the mutex can be obtained, a random value is 

generated. The random value is stored at a temporarily allocated memory location 

referenced by n. Once the value is stored in the file, the file buffer is flushed and the 

file closed. Next, the temporary location is freed, and a call to nanosleep is made to 

simulate some additional processing. As a last step, the mutex is released.

Conversely, the user-defined consume function tries to lock the mutex. If it is 

successful, it tries to consume (read) a number from the file. To accomplish this, the 

file is opened for reading and writing (ios::in | ios::out). The offset into the file is 

calculated using the current index referenced by c_shm multiplied by the sizeof of the 

data value written to the file. The seekp method is used to move the file pointer to the 

proper offset in the file where the value is to be retrieved. As in the produce function, a 

temporarily allocated location is used to store the retrieved value. The newly allocated 

location is initially cleared (set to 0) prior to the call to read. If the value obtained is 

positive, the value is displayed. The displayed value is written back to its same 

location in the file as a negative number. The seekp method is used to move the file 

pointer back to its proper location so the update process will overwrite the correct data 

item. Rewriting the value as a negative is used as a technique for keeping track of 

consumed values. Once the value is rewritten, the file buffer is flushed and the current 

index value is incremented. Whether or not a valid value is retrieved, the file is closed. 

A short nanosleep (again to simulate additional processing) is made, and the temporary 

storage location freed. Finally, the mutex is unlocked and made available to other 

threads.

The user-defined function do_work uses the s_shm reference to determine if the file that 

stores the output has been cleared. Upon first entry, *s_shm references a 0. In this 

case the if logic is entered. The mutex referenced by m_LOCK is used to bracket 

access to the code that opens the file for writing (ios::out), truncating (ios::trunc) its 

content. The value referenced by s_shm is incremented in this process, allowing the 

initialization to occur only once. Following this, the user-defined do_work function 

sleeps for a few seconds to permit random startup times, and then loops 10 times to 

simulate a series of production and consumption events. If the random number 

generator is decent, there should be a somewhat even split of the calls to produce and 

consume within the loop. The loop also contains a call to nanosleep.

Program 11.5.INTRA contains the code for the function main for an intraprocess mutex 

example. All threads in this example share a common address space and are 



associated with an underlying LWP.

Program 11.5.INTRA Code for function main for intraprocess mutex example.

File : p11.5.INTRA.cxx

  |     /*

  |        INTRA process main (multiple threads - one process space)

  |        Compile: g++  p11.5.PC.cxx  p11.5.INTRA.cxx  -lpthread -o INTRA

  |     */

  +     #include "local_mutex.h"

  |     pthread_mutex_t LOCK,   *m_LOCK = &LOCK;

  |     int             setup,  *s_shm  = &setup,

  |                     current,*c_shm  = &current;

  |     int

 10     main(int argc, char *argv[]) {

  |       int  i, n;

  |       pthread_t worker[MAX];                 // worker TID's

  |       if ( argc != 2) {

  |         cerr << "Usage: " << *argv << " n_workers" << endl;

  +         return 1;

  |       }

  |       pthread_mutex_init(&LOCK,  NULL);

  |       *s_shm = 0;                            // Start as NOT setup

  |       *c_shm = 0;                            // current index (offset)

 20       n = atoi(argv[1]) < MAX ? atoi(argv[1]) : MAX;

                                                 // # of threads to create

  |       for( i=0; i < n; ++i)                  // create each thread

  |         pthread_create( &worker[i], NULL,

                           (void *(*)(void *))do_work, (void *)NULL );

  |                                              // wait for all to finish

  |       for(i=0; i < n; ++i )

  +         pthread_join(worker[i], (void **) NULL);

  |                                              // show contents of buffer

  |       cout << "Contents of " << BUFFER

  |            << " negative values were 'consumed'." << endl;

  |       fstream  fptr;

 30       bool     done = false;

  |       fptr.open( BUFFER, ios::in );

  |       while ( !done ) {

  |         fptr.read( (char *)&n, sizeof(n) );

  |         if ( fptr.fail() )

  +           done = true;

  |         else

  |           cout << n << endl;

  |       }



  |       fptr.close( );

 40       return 0;

  |     }

In Program 11.5.INTRA several static declarations are made (by their placement prior 

to the function main). These are a mutex called LOCK and a reference to the mutex 

called *m_LOCK. The variables setup (is the file setup—cleared) and current (the index 

into the file) are also statically allocated. In main the mutex is initialized (line 17).

Remember that initialization should be done only once—re-initializing an already

initialized mutex results in undefined behavior. As the value NULL is passed as the

second argument to pthread_mutex_init, the mutex has the default characteristics. The 

next two statements assign both the setup and current variables the value 0. Next, the 

program checks the value passed in on the command line. This value represents the 

number of threads to be produced. As written, the value should be less than MAX (set 

arbitrarily at 99 in the include file). A for loop is used to create the specified number of 

threads. The thread IDs are saved, and each thread is passed a reference to the 

do_work function. As the do_work function reference is not the required data type for this 

parameter, it must be cast to keep the compiler from complaining. Once all the 

threads are created, the program waits for all the threads to terminate. When all 

threads are done, the contents of the file (the common buffer used by the threads) is 

displayed.

A compilation and partial run of the program is shown in Figure 11.8.

Figure 11.8 A compile and partial run of Program 11.5 with intraprocess mutexes.

linux$ g++  p11.5.PC.cxx  p11.5.INTRA.cxx  -lpthread -o INTRA

linux$ INTRA 3

1026      : clearing the buffer         18353

1026     P: attempting to produce       18353

1026     P: The # [94] deposited        18353        <-- 1

2051     C: attempting to consume       18354

2051     C: lock busy                   18354

3076     C: attempting to consume       18355

3076     C: lock busy                   18355

. . .

1026     C: attempting to consume       18353

3076     P: attempting to produce       18355

3076     P: lock busy                   18355

1026     C: The # [48] obtained         18353

2051     C: attempting to consume       18354



2051     C: No new # to consume         18354

. . .

1026     P: The # [51] deposited        18353

1026     P: attempting to produce       18353

1026     P: The # [30] deposited        18353

Contents of ./buffer negative values were 'consumed'.

-94

-48

-50

-58

-98

-49

51

30

(1) Notice the different thread IDs. Each thread is mapped to a separate

LWP (that has its own PID).

While the output of this program tends to be somewhat voluminous, it is very 

informative. With all the cout statements, it is easy to see what individual threads are 

doing. In this case there are three threads, with the thread IDs of1026, 2051, and 

3076. The mutex forces the competing threads to access the shared data structure in 

a manner that prevents data loss. If we rerun the program and pass the output to grep

and keep only the lines containing the # symbol, we should find the output to be well 

behaved and furthermore note that the values placed in the file by one thread can be 

consumed by a different thread. A sample of this type of output is shown in Figure 

11.9.

Figure 11.9 Filtering the output of Program 11.3.

linux$ INTRA 3 | grep '#'

1026     C: No new # to consume         18321

3076     P: The # [51] deposited        18323

2051     P: The # [77] deposited        18322

3076     C: The # [51] obtained         18323

2051     P: The # [61] deposited        18322                                                     <-- 1

3076     P: The # [86] deposited        18323

2051     C: The # [77] obtained         18322

1026     C: The # [61] obtained         18321                                                     <-- 1

3076     C: The # [86] obtained         18323



1026     C: No new # to consume         18321

2051     P: The # [33] deposited        18322

3076     P: The # [96] deposited        18323

2051     C: The # [33] obtained         18322

3076     P: The # [91] deposited        18323

(1) Deposited by thread 2051 and consumed by thread 1026

11-6 EXERCISE

In the Chapter 7 example we used two semaphores (MADE and READ) to 

coordinate activities. How is it that in this example we were able to 

coordinate activities using just one mutex?

Edit the source file p11.5.PC.cxx and comment out all references to nanosleep. 

Recompile the program. Run the INTRA executable several times with a 

varying number of threads. Redirect the output to grep and have it search for 

the word obtained. Pass this output to wc -l to find the number of actual 

values obtained. For example,

linux$ INTRA 5 | grep obtained | wc -l

       18

linux$ INTRA 10 | grep obtained | wc -l

       40

Is there any relationship between the number of threads specified and the 

number of overall values obtained? (It's best to run each sequence a 

number of times and obtain an average.) If yes, what is the relationship 

(graphs are acceptable)? If no, why is there no relationship?

The section of code containing main can be rewritten to support multiple heavyweight 

processes using a mutex mapped to a shared memory location. In this implementation

the setup and current variables, which must be accessible across processes, are also 

mapped to a shared memory location. Program 11.5.INTER displays the code to 

accomplish this.



Program 11.5.INTER Code for function main for interprocess mutex example.

File : p11.5.INTER.cxx

  |     /*

  |        INTER process main (multiple processes - 1 thread each)

  |        Compile: g++  p11.5.PC.cxx  p11.5.INTER.cxx  -lpthread -o INTER

  |     */

  +     #include "local_mutex.h"

  |     pthread_mutex_t  *m_LOCK;                 // Shared memory pointer

  |     int              m_shmid, i_shmid,        // Shared memory IDs

  |                      *s_shm, *c_shm;          // Shared setup and counter

  |     int

 10     main(int argc, char *argv[]) {

  |       pthread_mutexattr_t  the_attr_obj;             // attribute object

  |       int  i, n;

  |       if ( argc != 2) {

  |         cerr << "Usage: " << *argv << " n_workers" << endl;

  +         return 1;

  |       }

  |       n = atoi(argv[1]) < MAX ? atoi(argv[1]) : MAX;

  |       if((m_shmid=shmget(IPC_PRIVATE,sizeof(pthread_mutex_t),IPC_CREAT| 0666))<0){

  |         perror("shmget fail mutex");

 20         return 2;

  |       }

  |       if ((m_LOCK=(pthread_mutex_t *)shmat(m_shmid,0,0)) == (pthread_ mutex_t *) -1){

  |         perror("shmat fail mutex");

  |         return 3;

  +       }

  |       if ((i_shmid=shmget(IPC_PRIVATE,sizeof(int)*2,IPC_CREAT|0666))<0){

  |         perror("shmget fail ints");

  |         return 4;

  |       }

 30       if ((s_shm=(int *) shmat(i_shmid, 0, 0)) == (int *) -1){

  |         perror("shmat ints");

  |         return 5;

  |       }

  |       c_shm  = s_shm + sizeof(int);            // reference  correct loc

  +       *s_shm = *c_shm = 0;                     // start counter (offset)

  |       pthread_mutexattr_init( &the_attr_obj);  // initialize attrib obj

  |       for( i=0; i < n; ++i)

  |         if ( fork() == 0 ){                    // generate child process

  |           do_work( );                          // child process does work

 40           exit( 2 );

  |         }

  |       while( (n = (int) wait( NULL)) && n != -1 )  // wait for child processes

  |                     ;



  |       shmdt((char *) m_LOCK);                  // cleanup shared memory

  +       shmdt((char *) s_shm);

  |       shmctl(m_shmid, IPC_RMID, (struct shmid_ds *) 0);

  |       shmctl(i_shmid, IPC_RMID, (struct shmid_ds *) 0);

  |       cout << "Contents of " << BUFFER         // show contents of buffer

  |            << " negative values were 'consumed'." << endl;

 50       fstream  fptr;

  |       bool     done = false;

  |       fptr.open( BUFFER, ios::in );

  |       while ( !done ) {

  |       fptr.read( (char *)&n, sizeof(n) );

  +         if ( fptr.fail() )

  |           done = true;

  |         else

  |           cout << n << endl;

  |       }

 60       fptr.close( );

  |       return 0;

  |     }

While some of the code is similar to the preceding intraprocess example, additional 

steps are taken to create and manipulate the shared mutex as well as the shared data 

values (setup and current). First, a shared memory segment large enough to hold a 

mutex is allocated (line 18), and a reference to the segment is to m_LOCK. Second, a 

shared memory segment large enough to hold two integers is allocated. The first part 

of the second segment, which will hold the value for setup, is referenced by s_shm. The 

second half of the segment, used to hold the value of current, is referenced by c_shm. 

The sizeof operator is used to find the proper offset for the second integer reference 

(see line 34). The shared memory locations for setup and current are set to 0. The for

loop that generated the threads is replaced with a loop to generate child processes 

(using fork). The child process, which by default has a single thread of control, 

executes the do_work function. The initial process waits for all the child processes to 

terminate. Once the child processes are finished, the shared memory is removed and 

the contents of thecommon buffer (the file) are displayed. This program segment can 

be compiled with the statement

linux$ g++ p11.5.PC.cxx p11.5.INTER.cxx -lpthread -o INTER

The output of this interprocess mutex example should be similar to the intraprocess 

example with the thread IDs remaining constant at 1024. A sample output sequence is

shown in Figure 11.10.



Figure 11.10 A run of Program 11.3 with inter-process mutexes.

linux$ INTER 3 | grep #

1024     P: The # [76] deposited        18755

1024     P: The # [25] deposited        18754

1024     C: The # [76] obtained         18755

1024     P: The # [68] deposited        18754

1024     C: The # [25] obtained         18755        <-- 1

1024     C: The # [68] obtained         18754

1024     C: No new # to consume         18753

1024     C: No new # to consume         18755

1024     C: No new # to consume         18754

1024     C: No new # to consume         18755

1024     P: The # [17] deposited        18754

1024     C: The # [17] obtained         18755

(1) Notice all the thread IDs are the same. Eachthread is associated

with a heavyweight (standard) process—not with a LWP

11-7 EXERCISE

Which example (the INTRA or the INTER) seems to be able to process the 

greatest number of values for the number of threads and processes 

involved? Run the two versions with /usr/bin/time to obtain CPU time-usage 

data. You may want to redirect the output of the programs to /dev/null to 

reduce the volume of output. Why are the results so different?

11.8.2 Condition Variables

Sometimes we need to coordinate the activities of threads using the current value of 

mutex-protected data. Say, for example, we want to notify a reader thread once a 

writer thread has filled its data set. The counter for the number of items in the data set 

and the access to the data is protected by a mutex. The POSIX implementation of 

threads provides a construct called a condition variable that can be used for this 



purpose. A condition variable is associated with a specific mutex and predicate 

(condition). Similar to a mutex, a condition variable should be global and can be 

mapped to shared memory if it is to be used by threads in more than one process 

space. A thread uses the condition variable to either notify other cooperating threads 

(with access to the same condition variable) that the condition (predicate) has been 

met or to block and wait for the receipt of notification. When a thread blocks on a 

condition variable, it atomically releases the associated mutex, allowing other threads 

access to the mutex. Several threads can be blocked, waiting for the same 

notification. The thread that generates the notification does so by signaling the 

associated condition variable.

The majority of what was discussed concerning the creation and initialization 

techniques of a mutex also applies to the creation and initialization ofacondition 

variable. The corresponding library functions have the occurrences of the string 

_mutex_ replaced with _cond_.

As with a mutex, a condition variable attribute object can be created, set, and then 

referenced when creating a condition variable. However, at present the LinuxThreads 

implementation of POSIX threads does not support condition variable attributes, and 

the reference to the cond_attr object (the second parameter to the pthread_cond_init

function) is ignored. Like a mutex, a condition variable can be created and initialized in 

a single statement:

pthread_cond_t my_condition = PTHREAD_COND_INITIALIZER;

When a thread wants to notify others, it uses the library function pthread_cond_signal

(signal one thread) or pthread_cond_broadcast (signal all threads). The specifics for the 

condition variable notification functions can be found in Table 11.18.

Table 11.18. The Condition Variable Notification Library Functions.

Include File(s) <pthread.h> Manual Section 3

Summary int pthread_cond_signal(   pthread_cond_t *cond );

int pthread_cond_broadcast(pthread_cond_t *cond );

Return

Success Failure Sets errno

0 Nonzero  



The argument *cond is a reference to a condition variable of the type pthread_cond_t. 

When pthread_cond_signal is used, one thread blocked on the same condition variable 

will be unblocked. If several threads are blocked, the thread receiving notification is 

not specified. If pthread_cond_broadcast is called, all threads blocked on the condition 

variable are notified. Once awakened, a thread must still acquire the associated 

mutex. Either call essentially becomes a no-op if there are no threads waiting for 

notification. The value EINVAL (22) is returned if *cond references an illegal address.

The library functions pthread_cond_wait and pthread_cond_ timedwait cause the calling 

thread to wait and block on a condition variable. Under the covers these functions 

atomically unlock the associated mutex (which must be locked prior to the call), 

suspend the thread's execution, and relock the mutex (by issuing a pthread_lock_mutex). 

The waiting thread does not consume CPU time.

Table 11.19. The Condition Wait Library Functions.

Include File(s) <pthread.h> Manual Section 3

Summary

[View full width]

int pthread_cond_wait(pthread_cond_t  *cond,

                      pthread_mutex_t *mutex);

int pthread_cond_timedwait(pthread_cond_t *cond,

                     pthread_mutex_t      *mutex,

                     const struct timespec 

*abstime);

Return

Success Failure Sets errno

0 Nonzero  

The first argument, *cond, is a reference to a condition variable. The second argument, 

*mutex, is a reference to the associated mutex. The pthread_cond_timedwait function is 

similar to pthread_cond_ wait except it will time out and return an error, ETIME (62), if the 

value referenced by *abstime is met or exceeded. The *abstime argument for 

pthread_cond_timedwait references a timespec structure that can be tracked down to the 

following structure:

typedef struct  timespec {



             time_t         tv_sec;         /* seconds         */

             long           tv_nsec;        /* and nanoseconds */

    } timespec_t;

If a signal or fork interrupts either of these calls, the value EINTR (4) is returned. If any 

of the arguments are invalid, the value EFAULT (14) is returned.

Program 11.6, a variation of a bounded buffer producer-consumer problem, 

demonstrates the use of a condition variable. In this program, a reader thread 

continually reads data from standard input and fills a small data buffer. When the 

buffer is full, the reader thread notifies a writer thread to empty (display) the buffer so 

that it may be filled again. When an end-of-file is encountered, notification is sent to 

the writer thread to write out any partial data left in the buffer. A finished flag is set, 

notifying both the reader and writer that processing is complete.

Program 11.6 Using a condition variable.

File : p11.6.cxx

  |     /*

  |         Using a condition variable

  |     */

  |     #define _GNU_SOURCE

  +     #define _REENTRANT

  |     #include <iostream>

  |     #include <cctype>

  |     #include <pthread.h>

  |     using namespace std;

 10     const int MAX=5;

  |                                                   // global

  |     pthread_mutex_t lock_it  = PTHREAD_MUTEX_INITIALIZER;

  |     pthread_cond_t  write_it = PTHREAD_COND_INITIALIZER;

  |     typedef struct {                              // a small data buffer

  +       char            buffer[MAX];                // the buffer

  |       int             how_many;                   // # of chars in buffer

  |     } BUFFER;

  |     BUFFER         share = {"", 0};               // start as empty

  |     void           *read_some (void *),

 20                    *write_some(void *);

  |     bool           finished = false;using namespace std;

  |     int

  |     main( ) {

  |     pthread_t       t_read,

  +                     t_write;                     // TID's



  |                                                  // create the threads

  |       pthread_create(&t_read,  NULL, read_some, (void *) NULL);

  |       pthread_create(&t_write, NULL, write_some,(void *) NULL);

  |                                                   // wait for the writer

 30       pthread_join(t_write, (void **) NULL);

  |       pthread_mutex_destroy( &lock_it  );         // clean up

  |       pthread_cond_destroy(  &write_it );

  |      return 0;

  |    }

  +    //        Code to fill the buffer

  |    void *

  |    read_some(void * junk) {

  |      char  ch;

  |      cout << "R " << pthread_self( ) << "\t: Starting" << endl;

 40      while (!finished) {

  |        pthread_mutex_lock(&lock_it);

  |        if (share.how_many != MAX) {                 // buffer not full

  |          cin.get(ch);

  |          if ( cin.fail( ) ) {                       // end-of-file

  +            share.buffer[share.how_many] = (char)NULL;

  |            share.how_many = MAX;

  |            finished       = true;                // we are all done

  |            cout << "R " << pthread_self( ) << "\t: Signaling done" << endl;

  |            pthread_cond_signal(&write_it);       // signal condition var

 50            pthread_mutex_unlock(&lock_it);

  |            break;

  |          } else {                                // sanitize input chars

  |            share.buffer[share.how_many] =  isalnum(ch) ? ch : '#';

  |            cout << "R " << pthread_self( ) << "\t: Got char ["

  +                         << share.buffer[share.how_many++] << "]" << endl;

  |            if ( share.how_many == MAX ) {           // if full

  |              cout << "R " << pthread_self( ) << "\t: Signaling full" << endl;

  |              pthread_cond_signal(&write_it);

  |            }

 60          }

  |        }

  |        pthread_mutex_unlock(&lock_it);

  |      }

  |      cout << "R " << pthread_self( ) << "\t: Exiting" << endl;

  +      return NULL;

  |    }

  |    //    Code to write (display) buffer

  |    void *

  |    write_some(void *junk) {

 70      int i;

  |      cout << "W " << pthread_self( ) << "\t: Starting" << endl;



  |      while (!finished ) {

  |        pthread_mutex_lock(&lock_it);

  |        cout << "W " << pthread_self( ) << "\t: Waiting" << endl;

  +        while (share.how_many != MAX)                // while not full

  |          pthread_cond_wait(&write_it, &lock_it);    // wait for notify

  |        cout << "W " << pthread_self( ) << "\t: Writing buffer" << endl;

  |        for( i=0; share.buffer[i] && share.how_many; ++i, share.how_many--)

  |          cout.put(share.buffer[i]);

 80        cout.put('\n');

  |        pthread_mutex_unlock(&lock_it);

  |      }

  |       cout << "W " << pthread_self( ) << "\t: Exiting" << endl;

  |       return NULL;

  +     }

In this program a mutex, lock_it, and a condition variable, write_it, are allocated and 

initialized to their default settings prior to main. Their location, prior to main and to the 

functions that will reference them, guarantees they will be global in scope and 

accessible by all threads associated with this process space. A small buffer consisting 

of five locations and an indexing counter is defined, and a buffer of this type, called 

share, is allocated and initialized. A Boolean flag called finished is set to false before 

processing begins. In main, two threads are created: one to be the reader (consuming 

data from an input source) that executes the read_some function and another to be the 

writer (producing output) that executes the write_some function. After the threads are 

created, the program waits for the thread executing the write_some function to 

terminate. When this occurs, the mutex and condition variables are removed and the 

program terminates.

The read_some function loops while the finished flag is false. The mutex lock_it is used to 

serialize access to the code that manipulates theshared buffer. Once the mutex is 

obtained, the count of the number of characters in the buffer (the predicate) is 

checked. If the buffer is full, the mutex is released (the assumption being the buffer will 

be processed by awriter, which will need to gain access via the mutex). If the buffer is 

not filled, an additional character is obtained from standard input. The new character 

ischecked; if it is not an end-of-file value, the character is added to the buffer and the 

character count is incremented. If the character fills the buffer, a call to 

pthread_cond_signal is made to notify the condition variable write_it. If the input character 

was an end-of-file value, a NULL value isinserted in the buffer in place of the 

end-of-file value. Next, the character counter is set to its maximum value to satisfy the 

predicate check in the writer,the finished flag is set to true, and pthread_cond_signal is 



used to notify the writer, so the remaining contents of the buffer can be processed.

The thread executing the writer code also loops, while the finished flag is set to false. 

Like the reader, it uses the lock_it mutex to gain access to the shared code and data. 

The inner while statement checks the count of the number of characters stored in the 

buffer. As long as the count is less than the maximum, the thread executing this code 

continues to block due to the call to pthread_cond_wait. When notified by the reader 

(when the character count is at the maximum), the while loop is exited, and the writer 

displays the contents of the common buffer. As the contents of the buffer are 

displayed, the character counter is decremented accordingly.

A compilation and run of Program 11.6 on a local system is shown in Figure 11.11.

Figure 11.11 A compile and run of Program 11.6.

linux$ $ g++ p11.6.cxx -lpthread -o p11.6

linux$ p11.6                                         <-- 1

R 1026  : Starting

W 2051  : Starting

twinkle toes                                         <-- 2

R 1026  : Got char [t]

W 2051  : Waiting

R 1026  : Got char [w]

R 1026  : Got char [i]

R 1026  : Got char [n]

R 1026  : Got char [k]

R 1026  : Signaling full                             <-- 3

W 2051  : Writing buffer

twink

R 1026  : Got char [l]

W 2051  : Waiting

R 1026  : Got char [e]

R 1026  : Got char [#]

R 1026  : Got char [t]

R 1026  : Got char [o]

R 1026  : Signaling full

W 2051  : Writing buffer

le#to

R 1026  : Got char [e]

W 2051  : Waiting

R 1026  : Got char [s]

R 1026  : Got char [#]

^D                                                   <-- 4



R 1026  : Signaling done

R 1026  : Exiting

W 2051  : Writing buffer

es#

W 2051  : Exiting

(1) Program is run—a reader (TID 1026) and writer (TID 2051) thread

are generated.

(2) User enters the phrase "twinkle toes," terminated by a carriage

return.

(3) Reader thread signals it is full.

(4) User types CTRL+D to signify end-of-file from the keyboard. The

remaining stored input is displayed.

When the program is run, its input is obtained from the keyboard. The user enters the 

string twinkle toes, and the program responds by displaying each character as it is 

obtained. Display by individual threads is labeled as either R for reader or W for writer, 

and the thread's ID is given. After the fifth character is processed, the reader thread 

signals the condition variable. As there is only one writer thread (in this case thread ID

2051), it "wakes up" and processes (displays) the contents of the buffer. 

Nonalphanumeric characters are displayed as #. When a CTRL+D is entered to 

indicate end-of-file, the remaining contents of the buffer are displayed and the 

program terminates.

A little experimentation with this program produces some interesting output. For 

example, if we duplicate the writer pthread_create statement in main (line 28) so we have 

two writers, each with its own thread of control, the program on our system produces 

the output shown in Figure 11.12.



Figure 11.12 A run of Program 11.6 with two writers, using signal notification.

linux$ p11.6

R 1026  : Starting

W 2051  : Starting                                   <-- 1

W 3076  : Starting

twinkle toes

R 1026  : Got char [t]

W 2051  : Waiting

W 3076  : Waiting

R 1026  : Got char [w]

R 1026  : Got char [i]

R 1026  : Got char [n]

R 1026  : Got char [k]

R 1026  : Signaling full

W 2051  : Writing buffer                             <-- 2

twink

R 1026  : Got char [l]

W 2051  : Waiting

R 1026  : Got char [e]

R 1026  : Got char [#]

R 1026  : Got char [t]

R 1026  : Got char [o]

R 1026  : Signaling full

W 3076  : Writing buffer                             <-- 3

le#to

R 1026  : Got char [e]

W 3076  : Waiting

R 1026  : Got char [s]

R 1026  : Got char [#]

^D

R 1026  : Signaling done

R 1026  : Exiting

W 2051  : Writing buffer                             <-- 4

es#

W 2051  : Exiting

^C

(1) This time there are two writer threads, TID 2051 and 3076.

(2) Writer TID 2051 is notified first that the buffer is full.



(3) Writer TID 3076 is notified second that the buffer is full.

(4) Writer TID 2051 is notified this time. Buffer is written out and this

thread exits. Remaining writer thread does not exit until CTRL+C is 

entered.

The output shows the writer threads alternating the task of displaying the output. At 

the end of the input sequence, CTRL+D causes the reader thread to signal the 

condition variable that termination is necessary. The thread to act upon the signal is 

the writer thread 2051 (2051 and 3076 are alternating). Writer thread 3076 (the thread 

ID passed to the single call to join) is unaware of the change, continues looping, and 

must be terminated with a CTRL+C.

If we keep two writer threads and change the two pthread_cond_signal calls to 

pthread_cond_broadcast (lines 49 and 58), we obtain the output shown in Figure 11.13.

Figure 11.13 A run of Program 11.6 with two writer threads, using broadcast notification.

linux$ p11.6

R 1026  : Starting

W 2051  : Starting

W 3076  : Starting

twinkle toes

R 1026  : Got char [t]

W 2051  : Waiting

W 3076  : Waiting

R 1026  : Got char [w]

R 1026  : Got char [i]

R 1026  : Got char [n]

R 1026  : Got char [k]

R 1026  : Signaling full

W 3076  : Writing buffer

twink

R 1026  : Got char [l]

W 3076  : Waiting

R 1026  : Got char [e]

R 1026  : Got char [#]

R 1026  : Got char [t]



R 1026  : Got char [o]

R 1026  : Signaling full

W 3076  : Writing buffer

le#to

R 1026  : Got char [e]

W 3076  : Waiting

R 1026  : Got char [s]

R 1026  : Got char [#]

^D

R 1026  : Signaling done

R 1026  : Exiting

W 2051  : Writing buffer

es#

W 2051  : Exiting

^C

In this example, when all threads are awakened with the call to pthread_cond_broadcast

and placed in contention, the thread with the ID of 3076 is always the first to act on the 

signal until the last (exiting) broadcast is made. Keep in mind that the actual thread 

chosen by the operating system is not specified. While our example seems robust, 

there are still some conditions we did not try (see Exercise 11.9).

11-8 EXERCISE

To some, the second while statement on line 75 in the user-defined writer 

function write_some appears to be superfluous. Can this while statement be 

replaced with an if statement? Why, or why not?

11-9 EXERCISE

Three computer science students, Alice, Kumar, and Rocco were 

experimenting with the original version of Program 11.6 on a Linux system. 

They wanted to see if the program would process information correctly if 

there were multiple reader threads with a single writer thread and multiple 

reader threads with multiple writer threads. Also, they were curious as to 

whether or not starting the writer thread(s) before the reader thread(s) would 

cause the program to fail. What did these students find (and why)? Be sure 



to compile, run, and record the program's output to document what you 

found.

11.8.3 Read/Write Locks

When writing programs, it is not unusual to run into a situation, such as with 

adatabase, where the data involved is read more often than it is modified (written). In 

these situations a locking mechanism that permits simultaneous reading of data if no 

writing is occurring and the writing of data if no reading or writing of data is needed. 

Until fairly recently, a POSIX thread implementation of read/write locks was not 

available and users were left to write their own. Fortunately, newer versions of 

LinuxThreads contain support for POSIX-based read/write locks.

A read/write lock should always be set before it is used. A read/write lock is initialized 

with the library function pthread_rwlock_init (Table 11.20).

Table 11.20. The pthread_rwlock_init Library Function.

Include File(s) <pthread.h> Manual Section 3

Summary int

pthread_rwlock_init( pthread_rwlock_t     *rwlock,

               const pthread_rwlockattr_t *attr );

Return

Success Failure Sets errno

0 Nonzero  

The data type of the first argument of this call, pthread_rwlock_t, is defined as

typedef struct _pthread_rwlock_t {

struct _pthread_fastlock __rw_lock; /* Lock to guarantee mutual exclusion */

int __rw_readers;                   /* Number of readers */

_pthread_descr __rw_writer;         /* Identity of writer, or NULL if none */

_pthread_descr __rw_read_waiting;   /* Threads waiting for reading */

_pthread_descr __rw_write_waiting;  /* Threads waiting for writing */

int __rw_kind;                      /* Reader/Writer preference selection */

int __rw_pshared;                   /* Shared between processes or not */

} pthread_rwlock_t;



The argument *rwlock is a reference to the read/write lock to be initialized. The 

argument attr is used to reference an attribute object (similar to previously presented 

pthread functions). If this argument is set to NULL, the read/write lock is set to the 

default.

A typical read/write lock initialization sequence for use with multiple threads in a single 

process is.[19]

[19] As in previous initialization discussions, the explicit call 

pthread_rwlock_init can be skipped when we use the single statement 

approach; that is,

pthread_rwlock_t rw_lock = PTHREAD_RWLOCK_DEFAULT_NP;.

pthread_rwlock_t  rw_lock;

. . .

pthread_rwlock_init( &rw_lock, NULL );

If the pthread_rwlock_init call is successful, it returns a 0. If the call fails, a nonzero value 

is returned. The return of EINVAL (22) indicates an invalid argument.

As with mutexes, there is a suite of read/write lock manipulation functions. A summary 

of some of the more commonly used functions is shown in Table 11.21. All the 

functions take a single reference to an allocated read/write lock. We restrict our 

discussion to the basics: locking and unlocking a read/write lock.

Table 11.21. Some Common Read/Write Lock Library Functions.

Function Prototype Description

int pthread_rwlock_rdlock(

    pthread_rwlock_t *rwlock );
Locks the referenced read/write lock for reading. If the 

lock is currently held for writing, the calling thread blocks. 

Multiple threads can hold the lock for reading.

int pthread_rwlock_wrlock(

    pthread_rwlock_t *rwlock );
Locks the referenced read/write lock for writing. If the lock 

is currently held for reading or writing, the calling thread 

blocks. Only one thread can hold the lock for writing.



Function Prototype Description

int pthread_rwlock_unlock(

    pthread_rwlock_t *rwlock );
Unlock a read/write lock held by the calling thread. If other 

threads are blocked on the read/write lock, one of them 

will be unblocked. At present, the implementation favors 

blocked writers over blocked readers. If the calling thread 

does not hold a lock for reading or writing but issues this 

unlock call, the program's behavior is undefined.

int pthread_rwlock_tryrdlock(

    pthread_rwlock_t *rwlock );
Try to lock the referenced read/write lock for reading. If 

the lock is not held for writing, it returns a read lock. If the 

lock is currently heldfor writing, it returns the error value 

EBUSY (16).

int pthread_rwlock_trywrlock(

    pthread_rwlock_t *rwlock );
Try to lock the referenced read/write lock for writing. If the 

lock is not held for reading or writing, return a write lock. If 

the lock is currently held for reading or writing, return the 

error value EBUSY (16).

Program 11.7 uses read/write locks to allow multiple threads read/write access to a 

stack of characters stored as a singularly linked list. Each thread can push (add) a 

character to the list, pop (remove) a character from a non-empty list, display the list, 

sleep, or quit. A random number generator drives the activities of each thread. 

Threads compete with one another for access to the list. The header file for Program 

11.7 is shown below.

Program 11.7 Header file for read/write lock example.

File : local_stack.h

  |     /*

  |          Common local header file: local_stack.h

  |     */

  |     #ifndef  LOCAL_STACK_H

  +     #define  LOCAL_STACK_H

  |     #define  _GNU_SOURCE

  |     #define  _REENTRANT

  |     #include <iostream>

  |     #include <cstdlib>

 10     #include <pthread.h>

  |     #include <unistd.h>

  |     #include <sys/time.h>



  |     using namespace std;

  |     const int MAX=6;

  +     class Stack {

  |        public:

  |                   Stack     ( ) : head( NULL ) {}    <-- 1

  |                   ~Stack    ( );

  |           bool    StackEmpty( void ) const { return (head == NULL); }

 20           void    Display   ( void ) const ;

  |           void    Push      ( const char );

  |           char    Pop       ( void );

  |        private:

  |           struct node {

  +              char         item;

  |              struct node *next;

  |           };

  |           node *head;

  |     };

 30     #endif

(1) User-defined Stack class implemented as a linked list.

As might be expected, the content of this file is similar to that of the header file for the 

previous example. However, some new items have been added. This example uses a 

user-defined Stack class. The definition of the class is found at the bottom of the 

header file. Code for the more complex Stack methods is found in the Program 11.7B. 

Additionally, Program 11.7B contains the code each thread will execute. This code 

consists of a driver function called do_stack that randomly chooses an activity for the 

thread on each pass through the loop.

Program 11.7B Stack class methods and common list manipulation functions for read/write 

lockexample.

File : p11.7B.cxx

  |     #include "local_stack.h"

  |                                                // previously declared

  |     extern pthread_rwlock_t  *rw_ACCESS;       // RW lock

  |     extern Stack   *S;                         // Stack

  +                                                // remaining Stack methods

  |     Stack::~Stack( ){                          // List destructor

  |       node *curr = head, *next;

  |       while( curr ){



  |         next = curr->next;

 10         delete curr;

  |         curr = next;

  |       }

  |       head = NULL;

  |     }

  +     void                                       // Display the list

  |     Stack::Display( void ) const {

  |       node *temp = head;

  |       cout << "\t" << pthread_self() << " [head]" << endl;

  |       while( temp != NULL ){

 20          cout << "\t" << pthread_self() << " [" << temp->item

  |               << "]" << endl;

  |          cout.flush( );

  |          temp = temp->next;

  |          sleep(1);                             // slow things down

  +       }

  |       cout << "\t" << pthread_self( ) << " [tail]" << endl;

  |     }

  |     void                                       // Add an item

  |     Stack::Push( const char item ){

 30       node *temp = new node;

  |       temp->item = item;

  |       temp->next = head;

  |       head       = temp;

  |     }

  +     char                                       // Remove an item

  |     Stack::Pop( void ){

  |       char item;

  |       node *temp = head;

  |       item = temp->item;

 40       head = temp->next;

  |       delete temp;

  |       return item;

  |     }

  |     int                                        // Random # in range

  +     my_rand(int start, int range){

  |       struct timeval t;

  |       gettimeofday(&t, (struct timezone *)NULL);

  |       return (int)(start+((float)range * rand_r((unsigned *)&t.tv_usec))

  |                    / (RAND_MAX+1.0));

 50     }

  |     void *

  |     do_stack( void *junk ) {                  // Activity for thread

  |       char  item;

  |       sleep( my_rand(1,3) );                  // random start up time



  +       do {

  |         switch ( my_rand(1,10) ) {            // choose value 1-10

  |         case 1: case 2:                       // Display 2/10

  |           pthread_rwlock_rdlock(rw_ACCESS);   // read lock - block on W

  |           cout << pthread_self( ) << " Display:" << endl;

 60           if ( S->StackEmpty( ) )

  |             cout << pthread_self( ) << " Empty list" << endl;

  |           else

  |             S->Display();

  |           pthread_rwlock_unlock(rw_ACCESS);   // unlock

  +           break;

  |         case 3: case 4: case 5:               // Add item 3/10

  |           item = my_rand(1,25) + 64;

  |           pthread_rwlock_wrlock(rw_ACCESS);   // write lock - block on W|R

  |           cout << pthread_self( ) << " Push   : " << item << endl;

 70           S->Push( item );

  |           pthread_rwlock_unlock(rw_ACCESS);   // unlock

  |           break;

  |         case 6: case 7: case 8:               // Remove item 3/10

  |           pthread_rwlock_wrlock(rw_ACCESS);   // write lock - block

                                                     on W|R

  +           if (S->StackEmpty( ))

  |             cout << pthread_self( ) << " Underflow" << endl;

  |           else {

  |             cout << pthread_self( ) << " Pop    : ";

  |             item = S->Pop( );

 80             cout << pthread_self( ) << " " << item << endl;

  |           }

  |           pthread_rwlock_unlock(rw_ACCESS);   // unlock

  |           break;

  |         case 9:                               // Sleep 1/10

  +           cout << pthread_self( ) << " Sleep  :" << endl;

  |           sleep( my_rand(1,3));

  |           break;

  |         case 10:                              // Quit 1/10

  |           cout << pthread_self( ) << " Quit   :" << endl;

 90           return NULL;

  |         }

  |       } while ( 1 );

  |     }

In the do_stack loop, a random value from 1 to 10 is generated. This value determines 

the thread's activity. Given a good distribution of random values, approximately 20 

percent of the time the thread executing this code should display the current list. 

About 30 percent of the time the thread should generate a new character and push 



the character onto the list. Roughly 30 percent of the time the thread should pop a 

character off the top of the list (if it is not empty). The remaining 20 percent of the 

thread will either sleep a few seconds or quit its activity.

The activities other than sleep or quit are bracketed with the appropriate read/write 

lock calls. As the display (reading) of the list can be done by multiple threads, a call to 

pthread_rwlock_rdlock is made before the display to obtain a read lock, and a call to 

pthread_rwlock_unlock is made once the display is completed to release the read lock. 

The Push and Pop methods, which cause the list contents to be modified, are 

bracketed with a call to pthread_rwlock_wrlock and pthread_rwlock_unlock calls. Thus, only 

one thread at a time is allowed to modify the linked list. It is important to note that all 

critical code was bracketed with the read/write locks. For example, if we were to move 

outside the bracketed area and check for an empty stack found in the section of code 

that calls Pop (line 75), we would on occasion find our program failing due to race 

conditions. This could occur when we have one item in our list. For example, say a 

thread calls Stack_Empty, finds the stack is not empty, and attempts to Pop (remove) the 

item. At the same time, a second thread (also finding the list to be not empty) also 

attempts to remove an item. While both consider the list to be not empty, one of the 

threads will draw an error, as the competing thread will have beaten it to the punch.

Each line of output identifies the underlying thread that generated it. The code for main

is found in Program 11.7C.

Program 11.7C Code for function main for read/write lock example.

File : p11.7C.cxx

  |     #include "local_stack.h"

  |                                                    // global by placement

  |     pthread_rwlock_t *rw_ACCESS=new pthread_rwlock_t;

  |     Stack            *S=new Stack;

  +     void *do_stack( void * );

  |     int

  |     main( int argc, char *argv[] ){

  |       int  i, n;

  |       pthread_t worker[MAX];

 10       pthread_rwlock_init(rw_ACCESS, NULL);

  |       if ( argc != 2) {

  |         cerr << "Usage: " << *argv << " n_workers" << endl;

  |         return 1;

  |       }



  +       n = atoi(argv[1]) < MAX ? atoi(argv[1]) : MAX;

  |       for( i=0; i < n; ++i )                         // create threads

  |         pthread_create(&worker[i],NULL,do_stack,(void *) NULL);

  |       for( i=0; i < n; ++i )                         // wait

  |         pthread_join(worker[i], (void **) NULL);

 20       return 0;

  |     }

Figure 11.14 shows a portion of the output generated from a run of Program 11.7

when four threads are competing for access to the list. As can be seen, multiple 

threads can display the list, but only one thread at a time can modify the list.

Figure 11.14 A compilation and run of Program 11.7 with four competing threads.

linux$ g++ p11.7B.cxx p11.7C.cxx -o p11.7 -lpthread

linux$ p11.7  4

2051 Push   : A

2051 Sleep  :

3076 Pop    : 3076 A

3076 Push   : L                                      <-- 1

3076 Push   : L

3076 Push   : L

3076 Push   : K

3076 Push   : K                                      <-- 1

3076 Push   : F

3076 Quit   :

1026 Pop    : 1026 F

1026 Quit   :

4101 Push   : J

4101 Pop    : 4101 J

4101 Display:                                        <-- 2

        4101 [head]

        4101 [K]

2051 Display:

        2051 [head]                                  <-- 2

        2051 [K]

        4101 [K]

        2051 [K]

        4101 [L]

        2051 [L]

        4101 [L]

        2051 [L]

        4101 [L]

        2051 [L]

        4101 [tail]



4101 Display:

        4101 [head]

        4101 [K]

        2051 [tail]                                  <-- 3

        4101 [K]

        4101 [L]

        4101 [L]                                     <-- 3

        4101 [L]

        4101 [tail]

. . .

(1) A series of letters are pushed onto the list by several different

threads.

(2) Thread 4101 begins to display the list. Shortly, thereafter, thread

2051 displays the list as well. This is perfectly acceptable, as more than 

one thread can access the list concurrently for reading. Their output is 

interspersed on the screen.

(3) Eventually, each thread finishes its display of the list.

11-10 EXERCISE

Adjust the switch statement in the user-defined do_stack function of Program 

11.7 so approximately 70 percent of the thread's activity will be the display of 

the list. Recompile and run the program using the maximum number of 

threads. Direct the output to a temporary file (say output.txt). Use the grep, 

sort, and uniq utilities to obtain information on the number of times push, pop, 

and display were done. For example, the sequence

linux$ p11.7   6   > output.txt

linux$ grep  Push  output.txt | sort | uniq -c



would tally the number of times the word Push (printed each time push was 

called) was displayed by each thread. The sequence

linux$ grep  :  output.txt | wc -l

can be used to find the total number of activity lines displayed (each tagged 

with a :1).

Do you consistently find that percentage you specify is what is actually being 

done? Why, or why not? Does removing the sleep call in the user-defined 

Display method of the Stack class make a difference in the distribution of

activities—the total number of activities before all threads terminate?

Generate output to support your answer. You should run each sequence

multiple times to be sure you are obtaining an accurate view of the

program's activities.

11.8.4 Multithread Semaphores

The activities of threads may also be coordinated with semaphores. A semaphore is 

similar in function to a mutex. However, a semaphore can act as either a binary entity 

similar to a mutex or as a counting entity. Counting semaphores can be used to 

manage multiple resources. As they are somewhat more complex, semaphores are 

more system-intensive than mutexes. Semaphore concepts and operations were 

presented in some detail in Chapter 7. However, the Chapter 7 semaphore operations

are System V-based and are not multithread safe. POSIX 1003.1b defines 

semaphores that can be used with threads. As these semaphore operations were 

written prior to the creation of the POSIX thread library calls, their interface has a 

slightly different flavor. Most notably, these operations do not begin with the sequence 

pthread_ and do set errno when they fail. All programs that contain POSIX semaphore 

operations must include <semaphore.h>.

Conceptually, a POSIX semaphore is a nonnegative integer value that can be used to 

synchronize thread activities. Increment (post) and decrement (wait) operations are 

performed on the semaphore. A decrement issued on a 0 valued semaphore will 

cause the issuing thread to block until another thread increments the semaphore. 



Unlike a mutex, for which there is a sense of ownership, a semaphore does not need 

to be acquired (decremented) and released (incremented) by the same thread.

A semaphore must be initialized before it is used. The library call sem_init, shown in 

Table 11.22, is used to initialize a semaphore.

Table 11.22. The sem_init Library Function.

Include File(s) <semaphore.h> Manual Section 3

Summary int

sem_init( sem_t *sem, int pshared,

          unsigned int value );

Return

Success Failure Sets errno

0 -1 Yes

The sem_t data type referenced by sem is declared in <semaphore.h> as

/* System specific semaphore definition. */

typedef struct {

  struct _pthread_fastlock __sem_lock;

  int __sem_value;

  _pthread_descr __sem_waiting;

} sem_t;

The sem argument references the semaphore to be initialized. The pshared argument is 

used to indicate if the semaphore will be shared between processes. A value of 0 

indicates the semaphore is not to be shared between processes, while a nonzero 

value indicates the semaphore is shareable. If the semaphore is to be shared 

between processes, the programmer is responsible for mapping the semaphore to a 

shared memory location or to a memory-mapped file. At present, the LinuxThreads 

implementation of POSIX threads does not support process-shared semaphores. 

Given this limitation, this argument should always be set to 0. The argument value is a 

nonnegative integer that specifies the starting value of the semaphore. A successful 

sem_init call returns a 0 and sets the referenced semaphore to the indicated initial 

value. If the call fails, it returns a value of -1 and sets errno to indicate the source of the 

error (see Table 11.23). In a multithreaded setting a semaphore should be initialized 

only once.



Table 11.23. sem_init Error Messages.

# Constant perror Message Explanation

22 EINVAL Invalid argument The value argument exceeds the value of 

SEM_VALUE_MAX.

89 ENOSYS Function not 

implemented

The pshared argument is not 0.

Once created, a semaphore can be locked using the library call sem_wait or sem_trywait. 

Keep in mind that underneath locking, a semaphore is an atomic decrement operation

against the value of the semaphore.

Both calls require a reference to a semaphore of type sem_t. If the referenced 

semaphore is nonzero, the call decrements (by one) the referenced semaphore. If the 

semaphore is 0, the sem_wait call blocks until the semaphore becomes greater than 

zero. If the semaphore is 0, the sem_trywait call does not block and returns 

immediately. Both calls return a 0 if they are successful; otherwise, sem_trywait returns 

a -1 and sets errno to the value shown in Table 11.25. Unsuccessful calls do not 

change the state of the semaphore.

Table 11.24. The sem_wait and sem_trywait Library Functions.

Include File(s) <semaphore.h> Manual Section 3

Summary int sem_wait( sem_t * sem );

int sem_trywait( sem_t * sem );

Return

Success Failure Sets errno

0 -1 sem_trywait only



Table 11.25. sem_wait and sem_trywait Error Message.

# Constant perror Message Explanation

11 EAGAIN Resource temporarily 

unavailable

The sem_trywait found the semaphore 

to be 0.

Semaphores are unlocked (i.e., incremented) using the sem_post library call (Table 

11.26).

Table 11.26. The sem_post Library Function.

Include File(s) <semaphore.h> Manual Section 3

Summary int sem_post(sem_t *sem);

Return

Success Failure Sets errno

0 -1 Yes

The sem_post call unlocks the referenced semaphore. If the semaphore was previously 

at 0 and there are other threads or LWPs blocking on the semaphore, they will be 

notified using the current scheduling policy (most often, the highest priority, longest 

waiting thread or LWP is scheduled next). If the semaphore was not previously at 0, 

its value is incremented by one. If successful, sem_post returns a value of 0; otherwise, 

it returns a value of -1 and sets errno to the value in Table 11.27 to indicate the error 

condition. The sem_post call is asynchronous-signal-safe (able to be called from within 

a signal handler).

Table 11.27. sem_post Error Message.

# Constant perror Message Explanation

34 ERANGE Numerical result 

out of range

If the semaphore were incremented, its value 

would exceed SEM_VALUE_MAX.

Chapter 7 provides a number of semaphore examples that can be readily adapted to a

multithreaded setting by changing the nonmultithreaded semaphore operations to 

their POSIX multithread equivalents. Rather than duplicate these previous examples, 



in Program 11.8 I have used a semaphore to coordinate the activity of cooperating 

threads to determine when the threads have carried on their activities in a specific 

sequence.

Program 11.8 Using POSIX Semaphores with Threads

File : p11.8.cxx

  |     /*

  |            Using semaphores with threads

  |     */

  |     #define _GNU_SOURCE

  +     #define _REENTRANT

  |     #include <pthread.h>

  |     #include <iostream>

  |     #include <cstdio>

  |     #include <cstdlib>

 10     #include <cstring>

  |     #include <unistd.h>

  |     #include <sys/time.h>

  |     #include <semaphore.h>                        // for POSIX semaphores

  |     using namespace std;

  +     const int BUF_SIZE= 15;

  |     const int MAX     = 4;

  |     int   world_state = 1;

  |     sem_t check_state;

  |     typedef struct {

 20             char word[BUF_SIZE];

  |             int  my_state;

  |     } Info;

  |     void *speaker( Info * );

  |     //   Generate a random # within given range

  +     int

  |     my_rand(int start, int range){

  |       struct timeval t;

  |       gettimeofday(&t, (struct timezone *)NULL);

  |       return (int)(start+((float)range * rand_r((unsigned *)&t.tv_usec))

 30                    / (RAND_MAX+1.0));

  |     }

  |     int

  |     main( int argc, char *argv[] ){

  |       pthread_t t_ID[MAX];

  +       Info     words[MAX];

  |       if ( argc != MAX+1 ) {

  |          cerr << "Usage " << *argv << " word1 ... word" << MAX << endl;

  |          return 1;



  |       }

 40       sem_init( &check_state, 0, 1 );      // start semaphore at 1

  |       for (int i = 0; i < MAX; ++i){

  |         strcpy( words[i].word, argv[i+1] );

  |         words[i].my_state = i+1;

  |         if ( (pthread_create( &t_ID[i],NULL,

  +            ( void *(*)(void *) )speaker,(void *) &words[i])) != 0 ) {

  |          perror("Thread create speaker");

  |          return i;

  |          }

  |       }

 50       pthread_join( t_ID[MAX-1], (void **) NULL);

  |       cout << "!" << endl;

  |       return 0;

  |     }

  |     /*

  +        Display the passed in word

  |     */

  |     void  *

  |     speaker( Info * s ){

  |       while( true ) {

 60         sleep(my_rand(1,3));

  |         sem_wait( &check_state );        // obtain & decrement else block

  |         cout << s->word << " ";

  |         cout.flush( );

  |         if ( s->my_state == world_state ) {

  +           ++world_state;

  |           if ( world_state > MAX ) break;

  |         } else {

  |           cout << endl;

  |           world_state = 1;

 70         }

  |         sem_post( &check_state );          // release & increment

  |       }

  |       return( (void *) NULL );

  |     }

In Program 11.8 the file <semaphore.h> is included, as POSIX semaphores are used. A 

global integer, world_state (declared before main), is allocated and set to 1. This variable 

is used by the cooperating threads to determine when processing should stop (i.e., 

when this variable exceeds the value MAX). Access to the world_state variable is 

controlled by the semaphore check_state. A typedef is used to create a user-defined type 

called Info. Items of this type will have storage for 15 characters and an integer value. 

The character array will hold a short sequence of characters (a word), and the integer, 



a value indicating the current state of output. In main two arrays are allocated. The 

first, t_ID, is used to store the thread IDs. The second array, called words, stores the 

word and state information that is passed to each thread. The sem_init call is used to 

set the allocated semaphore to 1. As the second argument of this call is 0, only 

threads within the same process space can share the semaphore. A loop is used to 

create additional threads and pass each a value obtained from the command line 

(stored in the elements of the words array) and its state value. Each thread is directed 

to execute the user-defined function speaker. The thread in main then waits (by way of a 

pthread_join) for the last thread generated to exit. When the pthread_join is completed, 

the program concludes.

The speaker function loops continuously. It sleeps for a random number of seconds

(1—3), and then attempts to lock (obtain) the semaphore. Once it is successful, the

thread displays the word it was passed. It then checks its state value against the

current state value for the process (stored as world_state). If its state value is equivalent 

to the current value of world_state, the world_state is incremented, as progress is being 

made toward the printing of the words in the proper (command line) order. If the 

thread's state value is not equivalent to the world_state value, out-of-order processing 

has occurred, and the world_state variable is reset to 1 to indicate a restarting of the 

sequence. Once the evaluation and manipulation of world_state is complete the 

semaphore is released.

A run of Program 11.8 and its output are shown in Figure 11.15.

Figure 11.15 A run of Program 11.8.

linux$ p11.8 once upon a time

upon

a

once time                                            <-- 1

upon

a

once time

upon

once time

a

time

once upon a once

time

a



a

once upon a time !                                   <-- 2

(1) Each time progress is no longer being made, the output sequence

restarts.

(2) All command-line arguments are displayed in order; processing

stops.

As can be seen, the threads do not finish their activity until they successfully display 

the sequence in the same order that it was passed on the command line.

The function sem_getvalue, which retrieves the current value of the semaphore, is also 

supported (Table 11.28).

Table 11.28. The sem_getvalue Library Function.

Include File(s) <semaphore.h> Manual Section 3

Summary int sem_getvalue(sem_t * sem, int * sval);

Return

Success Failure Sets errno

0 -1  

This function stores, in the location referenced by sval, the current value of the 

semaphore referenced by sem. The returned value should not be used by the program 

to make decisions, as it is transient and its use in a decision construct could result in 

race conditions.

11-11 EXERCISE

Write a program that implements a multithreaded bubble—merge sort. Have

the initial process generate 10,000 random numbers—writing the numbers



in groups of 1,000 each to 10 separate temporary files. Then create 10

threads and pass each a reference to one of the temporary files and a

common bubble-sorting routine. As each thread finishes, its sorted results

should be returned to the initial thread that performs a merge of sorted

results (i.e., the temporary 1,000 number file) with a final, fully sorted file.

Where appropriate, use semaphores and/or mutexes or condition variables

to coordinate activities. Run your solution several times to be sure it works

correctly. Once all the data is ordered, display every 100th value in the final

data set to attempt to establish if the data was truly sorted. All temporary

files and other data structures should be removed once processing is

complete.

If time permits, keep the total number of values to be sorted constant (let's

say 10,000) and attempt to determine empirically if there is a lower bound

for the size of the list (e.g., 1,000 values per starting list with 10 files versus

100 values per starting list with 100 files, etc.) that is passed to the

bubble—merge sort routines whereby no appreciable decrease in

processing time is discernible. To maintain your sanity, keep the granularity

of the list sizes you try fairly large. The executable file grays_mbms, found with 

the program files for this chapter, will allow you to compare your solution to 

that of the author. This program takes two command-line arguments: the 

number of values to sort and the number of files.

     

Top
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11.9 Thread-Specific Data

Sometimes we need to be able to maintain data that is specific to a given thread but is 

referenced in a section of code that will be executed by multiple threads. Data of this 

nature, stored in a memory block private to the thread, is usually termed 

thread-specific data, or TSD. This data is referenced using a thread-specific pointer 

and the associated key. The keys for TSD are global to all the threads within the 

process. To make use of TSD, a thread must allocate and bind (associate) the key 

with the data. The library call pthread_key_create (Table 11.29) is used to allocate a new 

key. Only one thread should issue the create call for a TSD item.

Table 11.29. The pthread_key_create Library Function.

Include File(s) <pthread.h> Manual Section 3

Summary int pthread_key_create( pthread_key_t  *key,

                       void(*destr_function)

                       (void *) );

Return

Success Failure Sets errno

0 -1  

As its first argument, the pthread_key_create library call is passed a reference, *key, to a 

pthread_key_t data type. The pthread_key_t data type is typedefed as an unsigned int. If the 

call to pthread_key_create is successful, the *key argument references the newly 

allocated key. There is a system limit on the number of keys per thread. The limit is 

designated by the defined constant PTHREAD_KEYS_MAX.

The second argument for pthread_key_create is a reference to a destructor function. If 

this argument is non-NULL, the referenced function is called and passed the 

associated TSD when the thread exits (i.e., calls pthread_exit) or is cancelled. If TSD is 

allocated within the destructor function, the system attempts to repeat destructor calls 

until all keys are NULL. As might be expected, this behavior could lead to some 
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interesting recursive situations. Some thread implementations, such as LinuxThreads, 

limit the number of calls to resolve the removal of TSD; some do not. In LinuxThreads 

these calls are limited by the defined constant 

PTHREAD_DESTRUCTOR_ITERATIONS. If the call to pthread_key_create is 

successful, it returns a value of 0; otherwise, it returns the value EAGAIN (11) if the 

limit for the number of keys has been exceeded or ENOMEM (12) if insufficient 

memory is available to allocate the key.

The pthread_key_delete library function (Table 11.30) is used to remove the storage 

associated with a specific key (versus the data associated with the key).

Table 11.30. The pthread_key_delete Library Function.

Include File(s) <pthread.h> Manual Section 3

Summary int pthread_key_delete(pthread_key_t key);

Return

Success Failure Sets errno

0 -1  

A valid TSD key is pthread_key_delete's only argument. If the key value is non-NULL, it is 

removed. While it would seem reasonable, the pthread_key_delete function does not 

automatically call the key's associated destructor function. If the function is passed an 

invalid key, it returns the value EINVAL (22); otherwise, it returns a 0, indicating 

successful removal of the key.

TSD is manipulated with the pthread_setspecific and pthread_getspecific library calls (Table 

11.31).

Both functions accept a globally allocated key argument. The key, created by a call to 

pthread_key_create, is used by the pthread_setspecific library function to store the data 

referenced by the pointer argument. By definition, each calling thread can bind a 

different data value with the key. Most often, pointer references memory that has been 

dynamically allocated by the calling thread. Once bound, the associated values are 

individually maintained on a per-thread basis. The pthead_setspecific function will fail and

return the value ENOMEM (12) if there is insufficient memory to associate a value with 

a key. If successful, pthread_setspecific returns a 0. The pthread_getspecific library function 

uses the key argument to retrieve (return) a reference to the TSD. If the key is not 



bound, a NULL (0) is returned.

Table 11.31. The TSD manipulation Library Functions.

Include File(s) <pthread.h> Manual Section 3

Summary int

pthread_setspecific(pthread_key_t  key,

                    const void     *pointer);

void

*pthread_getspecific(pthread_key_t key);

Return

Success Failure Sets errno

0 -1  

Program 11.9 demonstrates one approach for using TSD.

Program 11.9 Using TSD.

File : p11.9.cxx

  |     /*

  |       Using thread specific data

  |     */

  |     #define _GNU_SOURCE

  +     #define _REENTRANT

  |     #include <iostream>

  |     #include <pthread.h>

  |     #include <stdlib.h>

  |     #include <unistd.h>

 10     using namespace std;

  |     const int MAX=20;

  |     void *TSD( int ),                             // manipulates TSD

  |           free_me( void *  );                     // destructor

  |     static pthread_key_t  key;                    // global TSD key

  +     int

  |     main( int argc, char *argv[] ) {

  |       pthread_t thr_id[MAX];

  |       int inc;

  |       if ( argc  < 2 || atoi(argv[1]) > MAX){

 20         cerr << *argv << " num_threads" << endl;

  |         return 1;

  |       }

  |                                                   // generate key (once)



  |       pthread_key_create(&key, (void(*)(void*))free_me);

  +       for(int i=0; i < atoi(argv[1]); ++i){

  |        inc = i+1;                                 // can't cast an expr

  |        if (pthread_create(&thr_id[i],NULL,(void *(*)(void *))TSD,

           (void *)inc) > 0){

  |          cerr << "pthread_create failure" << endl;

  |          return 2;

 30        }

  |       }

  |                                                   // wait for all threads

  |       for(int i=0; i < argc-1; ++i)

  |         pthread_join(thr_id[i], NULL);

  +       sleep( 1 );

  |       return 0;

  |     }

  |     /*

  |        TSD routine - passed a value that it will keep private

 40     */

  |     void *

  |     TSD( int private_stuff ){

  |       static pthread_mutex_t  the_lock;

  |       void   *tsd = NULL;

  +       tsd = pthread_getspecific(key);             // initially NULL

  |       if (tsd == NULL) {

  |         tsd = new pthread_key_t;                  // create storage

  |         tsd = &private_stuff;                     // make the association

  |         pthread_setspecific(key, tsd);

 50         cout << pthread_self( ) << " TSD starts at \t "

  |              <<  *(int *)pthread_getspecific(key) << endl;

  |       }

  |       for( int i=0; i < 3; ++i ){

  |         sleep(1);

  +         pthread_mutex_lock(&the_lock);            // enter critical region

  |         cout << pthread_self( ) << " incrementing" << endl;

  |         *(int *)pthread_getspecific(key) *= 2;    // double private value

  |         cout << pthread_self( ) << " yielding" << endl;

  |         pthread_mutex_unlock(&the_lock);          // exit critical region

 60         sched_yield();                            // notify scheduler

  |       }

  |       cout << pthread_self( ) << " TSD finishes at \t "

  |            << *(int *)pthread_getspecific(key) << endl;

  |       cout.flush( );

  +       pthread_exit(NULL);

  |       return NULL;

  |     }

  |     /*



  |           Dummy destructor routine

 70     */

  |     void

  |     free_me( void *value ){

  |       cout << pthread_self( ) << " free reference to \t "

  |            << *(int *) value  << endl;

  +     }

The prototype for the user-defined function TSD that will manipulate the TSD and the 

user-defined function free_me that will act as a destructor are placed prior to main. In 

addition, the key that will be used to access TSD is allocated prior to main. Its 

placement assures it will be global in scope. In main, a call is made to pthread_key_create

(line 24), and the addresses of the key and the destructor function are passed. A cast 

is used to keep the compiler from complaining about argument type mismatch. In the 

first for loop in main, the value of the loop counter plus one is assigned to the variable 

inc.[20] As each thread is created, it is passed a reference to the user-defined TSD

function and the value stored in inc. Again, the cast operator is used to keep the 

compiler from flagging what it would consider to be mismatched arguments. Once the 

threads have been generated, main uses a second for loop with a call to pthread_join to 

wait for the threads to finish their activities. A call to sleep follows the pthread_join loop to 

allow the final terminating thread sufficient time to flush its output buffer.

[20] Note that the inc variable is used as a temporay storage location, as 

in this setting it is not legal to pass a reference to an expression.

In the user-defined function TSD a mutex, the_lock, and a void pointer, tsd, are allocated. 

The storage class for the_lock is static, while the storage class for tsd is auto (the 

default). A call is made to pthread_getspecific, and the value returned is assigned to tsd. 

If the key passed to pthread_getspecific has not been associated with a TSD value, the 

pthread_getspecific call will return a NULL value. If the returned value is NULL (which it 

should be upon initial entry), a storage location is allocated using the new operator 

(line 47). The TSD is associated with the key using the pthread_setspecific library 

function. Next, a for loop is used to simulate activity. Within the loop, a mutex called 

the_lock is used to bracket a section of code where we would like to keep our display 

messages from being interleaved with those of other threads that will be executing the 

same code. In this section of code the TSD is multiplied by 2. A cast is used to coerce 

the void * to an int *. A call to library function sched_yield causes the current thread to 

yield its execution to another thread with the same or greater priority. At different 



points within the program, informational messages tagged with the thread ID are 

displayed.

A run of Program 11.9 is shown in Figure 11.16.

Figure 11.16 A run of Program 11.9 with four competing threads.

1026 TSD starts at       1                           <-- 1

2051 TSD starts at       2

3076 TSD starts at       3

4101 TSD starts at       4

1026 incrementing

1026 yielding

4101 incrementing

4101 yielding

3076 incrementing

3076 yielding

2051 incrementing                                    <-- 2

2051 yielding

1026 incrementing

1026 yielding

4101 incrementing

4101 yielding

3076 incrementing

3076 yielding

2051 incrementing

2051 yielding

1026 incrementing

1026 yielding

1026 TSD finishes at     8                           <-- 3

1026 free reference to   8

4101 incrementing

4101 yielding

3076 incrementing

3076 yielding

2051 incrementing

2051 yielding

4101 TSD finishes at     32

4101 free reference to   32

3076 TSD finishes at     24

3076 free reference to   24

2051 TSD finishes at     16

2051 free reference to   16



(1) Each thread has a different starting value for its data.

(2) Each thread accesses its private data, increments it and then yields

three times for each tread.

(3) As each thread finishes, it releases its reference to the TSD. The

order of processing is determined by the scheduler and may vary across 

multiple invocations.

As can be seen in Figure 11.16, each thread maintains its own TSD value. The call to 

the destructor function free_me is made as each thread finishes its execution.

In Program 11.9 we allocated the key for the TSD prior to main and created the key in 

main. We can, if we are careful, allocate and create the key within the code segment 

shared by multiple threads. For example, in Program 11.9 we can remove (comment 

out) the statement prior to main that allocates the key (line 14)

// static pthread_key_t  key;

and the pthread_key_create statement (line 24) within main

// pthread_key_create(&key, (void(*)(void*))free_me);

and add the following statements (lines 45 to 53) to the user-defined TSD function.

  |     /*

  |        TSD routine - passed a value that it will keep private

 40     */

  |     void *

  |     TSD( int private_stuff ){

  |       static pthread_mutex_t  the_lock;

  |       void   *tsd = NULL;

  +                                                      // do once

  |       static pthread_key_t      key;

  |       static int                done_once = 0;

  |       if ( !done_once ) {



  |         pthread_mutex_lock(&the_lock);               // bracket code

 50         if ( !done_once++ )                          // re-check & inc

  |           pthread_key_create(&key, (void(*)(void*))free_me);

  |         pthread_mutex_unlock(&the_lock);             // end bracket

  |       }

  |       tsd = pthread_getspecific(key);                // initially NULL

In this second approach the storage class qualifier static is used in the user-defined 

TSD function when allocating the key. An integer flag variable called done_once, 

specified as static, is also allocated and initially set to 0 (which with the static qualifier 

should be its default value anyway). The mutex is used to bracket the inner check of 

the content of the done_once variable. Only one thread will find the done_once variable at 

0, increment the variable, and create the key. After the done_once variable is 

incremented, the outer if will prevent further access to this section of code. This is by 

no means the only way in which this can be done. Another approach is to use the 

pthread_once library function.[21]

[21] If this were a text on just threads, an examination of pthread_once

would be in order. However, as this is only an introduction, we will skip 

the details concerning pthread_once at this time and direct the interested 

reader to the associated manual page on pthread_once.

This section ends with a final program example, Program 11.10, that uses TSD and

incorporates a number of the previously discussed thread-related functions. In this

example the program is passed the name of a file to store its output and the number

of threads (1—10) to generate. Each thread, represented by a different uppercase

letter of the alphabet, is responsible for moving about within a common

two-dimensional grid. As the thread moves, its path is displayed on the screen. The

starting point for a thread is marked by an @ symbol. When the thread moves to a

new location, its previous location is changed to lowercase. As written, a thread can

move in one of four directions: left, right, up, or down. Moves that run off the grid are

wrapped, in a modular fashion, to the next valid row—column location. If a thread

moves to a location that is boxed in (i.e., a location where its neighbors on the left,

right, top, and bottom are occupied), the thread expires. The program terminates

when all threads have been boxed in.

To make the output a bit more interesting, the current state of the grid is displayed 

using basic vt100 escape codes.[22] The vt100 escape codes are incorporated in the 



user-defined functions LOCATE (used to place the cursor at a specific screen 

coordinate) and CLS (used to clear the screen). The display is updated dynamically, 

and in vt100 supported settings, produces a rough appearance of animation. The 

header information for Program 11.10 is placed in the file local_TSD.h. The contents of 

local_TSD.h are shown in Figure 11.17.

[22] I am aware that using vt100 emulation—escape codes will limit the

range of platforms on which the example may run. However, as vt100

emulation is fairly ubiquitous, the actual number of platforms excluded

should be minimal.

Figure 11.17 The local_TSD.h file for Program 11.10.

File : local_TSD.h

  |     /* local header file for example p11.10.cxx

  |      */

  |     #define _REENTRANT

  |     #define _GNU_SOURCE

  +     #include <pthread.h>

  |     #include <iostream>

  |     #include <cstdio>

  |     #include <cstdlib>

  |     #include <cstring>

 10     #include <fcntl.h>

  |     #include <unistd.h>

  |     #include <sys/types.h>

  |     #include <sys/time.h>

  |     #include <sys/stat.h>

  +     #include <sys/mman.h>

  |     using namespace std;

  |     const int  ROW=20, COL=42, MAX=10;

  |     const char ESC='\033';

  |     inline

 20     void LOCATE(int row, int col){

  |       cout << ESC << "[" << row << ";" << col << "H";

  |     }

  |     inline

  |     void CLS( ){

  +       LOCATE(1, 1);

  |       cout << ESC << "[2J";

  |     }

  |     int

  |     my_rand(int start, int range){



 30       struct timeval t;

  |       gettimeofday(&t, (struct timezone *)NULL);

  |       return (int)(start+((float)range * rand_r((unsigned *)&t.tv_usec))

  |                    / (RAND_MAX+1.0));

  |     }

  +     typedef struct {

  |        int left, right, top, bot;

  |     }  DIRECTION;

  |     static char     guys[] = "ABCDEFGHIJ";

  |     int             n_dead = 0;

 40     char            *the_file;

  |     pthread_mutex_t scrn_lock;

  |                                                     // function prototypes

  |     void            display_screen(char *);

  |     bool            boxed(char *, int, int);

  +     void            move(char *, int *, int *, char);

  |     void            neighbors( int , int , DIRECTION * );

  |     void            *play( void * );

Along with the vt100 functions, the local_TSD.h file contains a type definition for a 

DIRECTION structure that will hold the indices of neighbor locations. Within the program 

the two-dimensional grid is treated as a vector. Five user-defined functions are 

prototyped. The display_screen function, passed a reference to the grid, displays the 

current contents of the grid at a set location on the screen. The boxed function, passed

a reference to the grid and a row and column location, returns a true if the neighbors

of the row—column location are all occupied; otherwise, it returns false. The move

function finds and moves to a new location. The move function is passed a reference to

the grid and the row—column location, as well as a copy of the current letter

associated with a given thread. Upon completion of move, the grid and the

row—column location are updated. The neighbors function is passed a copy of a

row—column location and returns a DIRECTION structure containing the indices of the 

neighbor locations. The play function, passed to each thread, serves as a driver routine 

for the activities of the thread.

Program 11.10 Animating threads.

File : p11.10.cxx

  |     /*

  |            p11.10.cxx: Thread animation

  |            Compile   : g++ -o p11.10  p11.10.cxx  -lpthread

  |     */

  +     #include "local_TSD.h"



  |     int

  |     main(int argc, char *argv[]) {

  |       char        the_screen[ROW][COL];

  |       pthread_t   thread_id[MAX];

 10       int         fd0, n_threads;

  |       struct stat buf;

  |       if (argc != 3) {                               // check cmd line

  |         cerr << "Usage " << *argv <<  " file_name #_threads" << endl;

  |         return 1;

  +       }

  |       if ((n_threads = atoi(argv[2])) > MAX ) {

  |         cerr << "# threads must be < " <<  MAX+1 << endl;

  |         return 2;

  |       }

 20       setbuf(stdout, NULL);

  |       guys[n_threads] = '\0';

  |       memset(the_screen, ' ', sizeof(the_screen));   // clear screen

                                                            array

  |                                                      // open file for

                                                            mapping

  |       if ((fd0 = open(argv[1], O_CREAT | O_RDWR, 0666)) < 0) {

  +         cerr << "Open error on file " << argv[1] << endl;

  |         return 3;

  |       }                                              // write screen

                                                            to file

  |       write(fd0, the_screen, sizeof(the_screen));

  |       if (fstat(fd0, &buf) < 0) {                    // stats on mapped

                                                            file

 30         cerr << "fstat error on file " << the_file << endl;

  |         return 4;

  |       }                                              // establish the

                                                            mapping

  |       if ((the_file =(char *) mmap(0, (size_t) buf.st_size, PROT_READ |

               PROT_WRITE,

  |                            MAP_SHARED, fd0, 0)) ==  NULL) {

  +         cerr << "mmap failure" << endl;

  |         return 5;

  |       }

  |       CLS( );                                        // clear the display

  |       for (int i=0; i < n_threads; ++i) {            // generate the

                                                            threads

 40         pthread_create( &thread_id[i], NULL, play, (void *)i);

  |       }

  |       do {                                        // in main thread

  |         sleep(1);                                 // pause a bit

  |         pthread_mutex_lock( &scrn_lock);



  +           display_screen(the_file);               // display screen

  |         pthread_mutex_unlock( &scrn_lock);

  |       } while (n_dead < n_threads);               // while threads left

  |       for(int i=0; i < n_threads; ++i)

  |         pthread_join( thread_id[i], (void **) NULL);

 50       LOCATE(25, 1);

  |       close(fd0);

  |       return 0;

  |     }

  |     /*

  +           Play the game by moving a character around the grid

  |     */

  |     void *

  |     play( void *numb ){

  |       static pthread_mutex_t  the_lock;            // single copy of these

 60       static pthread_key_t    the_key;

  |       static int              first_time = 1;

  |       int                     row, col;            // local to each

                                                          invocation

  |       char                    pch;

  |       void                    *my_let = NULL;      // thread specific

                                                          data

  +       if ( first_time ) {

  |         pthread_mutex_lock( &the_lock );

  |         if ( first_time ) {

  |           pthread_key_create( &the_key, NULL );

  |           first_time = 0;

 70         }

  |         pthread_mutex_unlock( &the_lock );

  |       }

  |       if ( (my_let = pthread_getspecific( the_key )) == NULL ) {

  |         my_let = (int *) &numb;

  +         pthread_setspecific( the_key, my_let );    // associate with key

  |       }

  |       row=my_rand(1,ROW)-1;                        // start at random

                                                          location

  |       col=my_rand(1,COL)-1;

  |       pch = (char) (65+*(int *)pthread_getspecific(the_key));

 80       do {

  |         move(the_file, &row, &col, pch);           // move around

  |       } while( !boxed( the_file, row, col));       // while not boxed in

  |       n_dead++;                                    // update terminated

                                                          threads

  |       guys[*(int *)pthread_getspecific(the_key)] = '*';

  +       pthread_mutex_lock( &scrn_lock );

  |         LOCATE(1, 1);



  |         cout << "Dead = " << n_dead << "[" << guys << "]";

  |       pthread_mutex_unlock( &scrn_lock );

  |       return NULL;

 90     }

  |     /*

  |            Find and move to new location.

  |     */

  |     void

  +     move(char *s, int *r, int *c, char pch) {

  |       int       old_offset = (*r * COL + *c),

  |                 new_offset = -1;

  |       DIRECTION d;

  |       neighbors( *r, *c, &d );                       // get neighbor

                                                            locations

100       do {

  |         if ( my_rand(1,3) == 1 ) sleep(1);           // 1/3 time sleep first

  |         switch ( my_rand(1,4) ) {

  |         case 1:

  |           if ( *(s + d.left )  == ' ' ) new_offset = d.left;

  +           break;

  |         case 2:

  |           if ( *(s + d.right ) == ' ' ) new_offset = d.right;

  |           break;

  |         case 3:

110           if ( *(s + d.top   ) == ' ' ) new_offset = d.top;

  |           break;

  |         case 4:

  |           if ( *(s + d.bot   ) == ' ' ) new_offset = d.bot;

  |           break;

  +         }

  |       } while( new_offset == -1 );

  |       *r = new_offset / COL;

  |       *c = new_offset % COL;

  |       *(s + new_offset) = pch;                       // assign new

                                                            location

120       if ( *(s + old_offset) != '@' )                // if its not a

                                                            start loc

  |         *(s + old_offset) += 32;                     // change old loc

                                                            to LC

  |     }

  |     /*

  |           Display the screen using VT100 escape codes for cursor

              placement.

  +     */

  |     void

  |     display_screen(char *s) {



  |       static int   pass = 1;

  |       static char  buffer[COL + 1];

130       LOCATE(1, 33);

  |       cout << "Thread World";

  |       LOCATE(2, 18);

  |       cout << "+------------------------------------------+";

  |       for (int i=3; i < 23; ++i) {

  +         LOCATE(i, 18);                               // move to screen location

  |         strncpy(buffer, (s + (i - 3) * COL), COL);   // get output segment

  |         cout << "|" << buffer << "|";

  |       }

  |       LOCATE(23, 18);

140       cout << "+------------------------------------------+";

  |       LOCATE(24, 20);

  |       cout << "Pass " << ++pass;

  |     }

  |     /*

  +            Check neighbors to see if any free locations are left

  |     */

  |     bool

  |     boxed(char *s, int r, int c) {

  |       DIRECTION d;

150       neighbors( r, c, &d );                         // get my neighbors

  |       return ( *(s+d.left) != ' ' && *(s+d.right) != ' ' &&

  |                *(s+d.bot ) != ' ' && *(s+d.top  ) != ' ');

  |     }

  |     /*

  +            Calculate the surrounding locations

  |     */

  |     void

  |     neighbors( int row, int col, DIRECTION *d ){

  |       d->left  =  row * COL + (col > 0 ? col - 1 : COL - 1);

160       d->right =  row * COL + (col > COL - 2 ? 0 : col + 1);

  |       d->top   =  (row > 0 ? row - 1 : ROW - 1) * COL + col;

  |       d->bot   =  (row > ROW - 2 ? 0 : row + 1) * COL + col;

  |     }

In main, a character array, the_screen, is allocated along with an array to hold the thread 

IDs. The command-line contents are examined. The user must pass the name of a file

and the number of threads to be generated. The number of threads, stored as 

n_threads, is used as an index to place a NULL in the guys array. The guys array is a list 

of uppercase letters that represent the active threads. A series of statements are used 

to map the the_screen display to the file name passed on the command line. While 

mapping the display to a file is not integral to the overall functionality of the example, it 



does show how this can be done and would allow, should the user so desire, a means

for archiving the program's output. A loop is used to create the threads, and each is 

passed a reference to the user-defined function play. The initial thread, executing main, 

then loops until all threads have finished their activities. As it loops, after each 

one-second sleep, the screen is redisplayed.

The user-definded play function allocates the key. The logic to accomplish this is a 

variation of our previous example. The TSD *my_let reference, local to each invocation 

of play, is associated with the key by checking the return from the pthread_getspecific

library function. If a NULL value is returned, as in the initial pass-through, the loop 

value from main (passed in as numb) is assigned to my_let and associated with the key

via a call to pthread_setspecific.

A random location is chosen as the starting point for the thread. The character to be 

displayed is retrieved with a call to pthread_getspecific. Using a do-while loop, the thread 

moves about the grid while it is not boxed in. Once boxed in, the thread exits the 

activity loop. It then increments a global value representing the number of inactive 

(expired) threads and marks the appropriate location in the guys array with an *. 

Finally, it updates the display of terminated threads and exits.

As written, this example usually produces rather entertaining output. However, as the 

program contains some oversights in logic, it will on occasion not work as 

advertised.[23]

[23] The oversights are the basis for the exercises associated with this 

program.

Figure 11.18 contains an output display of a partial run of Program 11.10 with five

competing threads (letters A—E).

Figure 11.18. Partial output from Program 11.10.



In the run shown, five threads were generated. Thread D was terminated when it 

became boxed in (in this case surrounded by its own previous movements shown by 

the lowercase d's). The upper left corner of the output shown has an * in place of the 

letter D (indicating its termination). As shown, thread C has also become boxed in. 

However, either the program has somehow missed this fact (the previously mentioned

oversight) or it was interrupted before it had a chance to fully update the screen. The 

remaining threads are active. As shown, the thread executing main had completed its 

15th pass.

11-12 EXERCISE

If we run Program 11.10 several times, we should occasionally notice the 

program does not terminate properly. When this happens, the program 

appears to believe one or more threads are still active, even though the 

display clearly indicates that they are boxed in. Find, and correct, the source 

of this "problem."

11-13 EXERCISE

The logic for the user-defined move function is simplistic. Modify Program 

11.10 to incorporate two (or more) different move functions. These new move

function(s), each run by a separate thread, should attempt to move in such a 

manner as to keep the thread from being boxed in for as long as possible. 

Where practical, they should also attempt to block in (thus terminate) other 

threads. Gather data to show your move function is superior to the initial 



simplistic version. If time permits, try pitting your move function against the 

move functions written by others. If you do not want to share your source for 

the function, just supply the unique move function name for its invocation in 

main and link the object code for your move function at compile time.

11-14 EXERCISE

Using the code in Program 11.10 as a base, write a threaded version of 

Conway's Game of Life, whereby each thread manages a starting 

configuration of cells. Establish your own rules for what happens when 

competing threads attempt to access the same cell location.

      

Top
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11.10 Debugging Multithreaded Programs

Writing multithreaded programs that execute correctly can be quite a challenge. 

Fortunately, there are some tools available to help with the task. Many current C, C++ 

compilers are bundled with thread-aware debuggers. For example, newer versions of 

the GNU C, C++ compiler gcc, g++, come with gdb, and Solaris' C, C++ compiler comes 

with dbx. Thread-aware debuggers automatically recognize multithreaded code. Such 

debuggers can be used to step through multithreaded programs and examine the 

contents of mutexes and TSD.

We will use Program 11.11 as source for our thread-debugging example. The 

debugger presented will be GNU's gdb (version 5.1.90CVS-5.)[24] As presented, this 

program is syntactically correct but contains logic errors pertaining to the access and 

manipulation of common data by the multiple detached threads.

[24] Only the command-line version of the debugger will be addressed. 

GNU also provides a graphical interface for its debugger called xxgdb for 

those who are working in a windowing environment.

Program 11.11 Debugging multithreaded programs.

File : p11.11.cxx

  |     /*

  |          Debugging multithreaded prgrms - WITH LOCKING ERRORS

  |          Compile: g++ p11.11.cxx -lpthread -o p11.11

  |     */

  +     #define _REENTRANT

  |     #define _GNU_SOURCE

  |     #include <iostream>

  |     #include <cstdio>

  |     #include <cstdlib>

 10     #include <pthread.h>

  |     #include <unistd.h>

  |     #include <sys/time.h>

  |     using namespace std;
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  |     const int  MAX=5,

  +                HOME=25;

  |     int

  |     my_rand(int start, int range){

  |       struct timeval t;

  |       gettimeofday(&t, (struct timezone *)NULL);

 20       return (int)(start+((float)range * rand_r((unsigned *)&t.tv_usec))

  |                    / (RAND_MAX+1.0));

  |     }

  |     typedef struct {

  |       int increment;

  +       char *phrase;

  |     } argument;

  |     void  step( void * );

  |                                                  // common to all threads

  |     pthread_t       thread_id[MAX];

 30     bool            alive = true, home = false;

  |     int             position,total=0;

  |     char   walk[] = "     |     | ";

  |     int

  |     main(int argc, char *argv[]) {

  +       argument right={ +1, "ZOINK! Stepped off the RIGHT side.\n"},

  |                left ={ -1, "SPLAT! Stepped off the LEFT side.\n"};

  |       pthread_attr_t attr_obj;

  |       if (argc < 2) {                           /* check arg list       */

  |         cerr <<  *argv << " start_position" << endl;

 40         return 1;

  |       }

  |       position = atoi(argv[1]);

  |       if ( position < 1 )

  |          position = 1;

  +       else if ( position > MAX )

  |          position = MAX;

  |       walk[position+5] = '*';

  |       setvbuf(stdout, (char *) NULL, _IONBF, 0);

  |       cout << "The drunken sailor walk" << endl << endl;

 50       cout << "     +12345+" << endl;

  |       cout << walk << endl;

  |       pthread_attr_init( &attr_obj );

  |       pthread_attr_setdetachstate( &attr_obj, PTHREAD_CREATE_DETACHED );

  |       pthread_create(&thread_id[0], &attr_obj,

  +                      (void *(*) (void *)) step, (void *) &right);

  |       pthread_create(&thread_id[1], &attr_obj,

  |                      (void *(*) (void *)) step, (void *) &left );

  |       pthread_exit(NULL);

  |       return 0;



 60     }

  |     void

  |     step( void *a ) {

  |       argument *my_arg=(argument *)a;

  |       do {

  +         sleep( my_rand(1,3) );                  // pause a bit

  |         walk[position+MAX] = ' ';               // clear old position

  |         position += my_arg->increment;          // calculate new position

  |         alive = bool(position > 0  && position <= MAX);

  |         walk[position+MAX] = alive ? '*' : '$';

 70         cout << walk << endl;

  |         home = bool(++total >= HOME);

  |         if ( !alive || home ) {

  |           if ( !alive )

  |             cout << my_arg->phrase;

  +           else

  |             cout << "The sailor made it home safely this time!\n";

  |           pthread_kill(thread_id[ (position < 1 ? 1 : 0)], 9);

  |         }

  |         sched_yield( );

 80       } while ( alive && !home );

  |     }

Program 11.11 contains an assortment of POSIX thread calls. The program, which is 

purely pedagogical in nature, implements a version of the "drunken sailor" problem. In 

this version, a drunken sailor is given a starting position on a boardwalk that is five 

steps wide. The program traces the path of the sailor as he or she progresses down 

the boardwalk toward home (located an arbitrary number of steps from the start). If 

the sailor steps off either side of the boardwalk, he or she perishes. If the sailor is still 

on the boardwalk after a set number of steps he or she is considered to have made it 

home. The sailor's position on the boardwalk is stored in a variable called position. Two 

threads manipulate this data. One thread executes a user-defined function, step, 

moving the sailor to the right, while a second thread executes the same function, 

moving the sailor to the left (the movement is based on the argument passed to the 

step function). Both threads are detached from the initiating thread. When the sailor 

perishes or reaches the end of the walk, the detached threads are terminated. Typical 

output from Program 11.11 is shown in Figure 11.19.

Figure 11.19. Several runs of Program 11.11.



In the first run it appears that the program is working pretty much as would be

expected. However, the second and third run produces somewhat unexpected results.

In the second run it looks as if there might be two sailors on the boardwalk (I suppose

one could be seeing double—but this is not the case). In the third run the right side of

the boardwalk seems to have disappeared. Clearly, something funny is going on! The

problem is tied to the unrestricted access of common data by competing threads. One

way to check on what is happening is to run the program in the debugger.

To prepare the program for the debugger, pass the -g argument at compilation time to 

prevent the automatic removal of additional symbol table information from the 

executable. For example, the command sequence

linux$ g++ -g p11.11.cxx -lpthread -o p11.11

produces an executable, p11.11, that can be loaded and run in the debugger. When 

the debugger is invoked, it is passed the name of the executable. For our example 

this would be

linux$ gdb p11.11

GNU gdb Red Hat Linux (5.1.90CVS-5)

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB.  Type "show warranty" for details.

This GDB was configured as "i386-redhat-linux"...

(gdb)

Suppose we want the debugger to stop in the user-defined function step. We can use 

the list command in gdb to show us a given sequence of lines (with their line numbers). 



For example,

(gdb) list 61,81

61      void

62      step( void *a ) {

63        argument *my_arg=(argument *)a;

64        do {

65          sleep( my_rand(1,3) );                    // pause a bit

66          walk[position+MAX] = ' ';                 // clear old position

67          position += my_arg->increment;            // calculate new position

68          alive = bool(position > 0  && position <= MAX);

69          walk[position+MAX] = alive ? '*' : '$';

70          cout << walk << endl;

71          home = bool(++total >= HOME);

72          if ( !alive || home ) {

73            if ( !alive )

74              cout << my_arg->phrase;

75            else

76              cout << "The sailor made it home safely this time!\n";

77            pthread_kill(thread_id[ (position < 1 ? 1 : 0)], 9);

78          }

79          sched_yield( );

80        } while ( alive && !home );

81       }

Or, we can also use the list command and pass the name of the user-defined function 

we would like to see listed (such as step). If we do this, the debugger will show the first 

N (usually 10) lines of the referenced function. The listing usually begins a line or two 

prior to the actual function.

(gdb) list step

57                       (void *(*) (void *)) step, (void *) &left );

58        pthread_exit(NULL);

59        return 0;

60      }

61      void

62      step( void *a ) {

63        argument *my_arg=(argument *)a;

64        do {

65          sleep( my_rand(1,3) );                       // pause a bit

66          walk[position+MAX] = ' ';                    // clear old position

To stop at line 66, we establish a breakpoint.

(gdb) break 66



Breakpoint 1 at 0x8048b61: file p11.11.cxx, line 66.

To execute (run) the program, the run command is used. Any values that would 

normally be passed on the command line are placed after the run command.

(gdb) run 5

Starting program: /home/faculty/gray/revision/11/sailor/p11.11 5

[New Thread 1024 (LWP 3176)]

The drunken sailor walk

     +12345+                                         <-- 1

     |    *|

[New Thread 2049 (LWP 3193)]

[New Thread 1026 (LWP 3194)]

[New Thread 2051 (LWP 3195)]

[Switching to Thread 1026 (LWP 3194)]

Breakpoint 1, step (a=0xbffffb48) at p11.11.cxx:66

66          walk[position+MAX] = ' ';                    // clear old position

(1) General program output.

When the debugger stops at the indicated line, the command info thread can be issued 

to obtain a wealth of thread information.

(gdb) info thread

  4 Thread 2051 (LWP 3195)  0x420b4b31 in nanosleep () from /lib/i686/libc.so.6

* 3 Thread 1026 (LWP 3194)  step (a=0xbffffb48) at p11.11.cxx:66

  2 Thread 2049 (LWP 3193)  0x420e0037 in poll () from /lib/i686/libc.so.6

  1 Thread 1024 (LWP 3176)  0x420292e5 in sigsuspend () from /lib/i686/libc.so.6

The astute reader will notice a number of things. Thread 1 (the initiating thread) was 

directed to exit (line 58, pthread_exit(NULL);) but at this juncture still appears to be 

active. At present, there are four threads associated with the program. The current 

active thread, identified with an asterisk, is thread ID 3, which is associated with LWP 

3194.

The command display variable_name, where variable_name is the name of the variable of 

interest, directs the debugger to display the current contents of the variable each time 

a breakpoint is encountered. In the sequence below we have directed the debugger to 

display the contents of the global variables alive, position, and home before we issue run.

.



.

.

Starting program: /home/faculty/gray/revision/11/sailor/p11.11 5

[New Thread 1024 (LWP 3274)]

The drunken sailor walk

     +12345+

     |    *|

[New Thread 2049 (LWP 3291)]

[New Thread 1026 (LWP 3292)]

[New Thread 2051 (LWP 3293)]

[Switching to Thread 1026 (LWP 3292)]

Breakpoint 1, step (a=0xbffffb48) at p11.11.cxx:66

66          walk[position+MAX] = ' ';                    // clear old position

3: home = false

2: position = 5                                      <-- 1

1: alive = true

(gdb) cont

Continuing.

     |     $

ZOINK! Stepped off the RIGHT side.

[Switching to Thread 2051 (LWP 3293)]

Breakpoint 1, step (a=0xbffffb40) at p11.11.cxx:66

66          walk[position+MAX] = ' ';                    // clear old position

3: home = false

2: position = 6                                      <-- 2

1: alive = false

(gdb) cont

Continuing.

     |    *

Breakpoint 1, step (a=0xbffffb40) at p11.11.cxx:66

66          walk[position+MAX] = ' ';                    // clear old position

3: home = false

2: position = 5

1: alive = true

.                                                    <-- 3

.

.

(1) At this point the sailor, at position 5, has not reached home and is



still alive.

(2) Now the sailor is at position 6. He or she has not reached home and

is no longer alive. The program should stop here, but it does not.

(3) Suddenly, the sailor is at position 5. While still having reached home,

the sailor is now alive! Clearly, the thread doing the decrement to the 

position has performed its activity before the test for being alive was 

done.

A specific thread can be referenced with the command thread N, where N is the 

number of the appropriate thread. As shown below, information specific to the thread 

can be referenced once the thread is loaded.

(gdb) thread 4

[Switching to thread 4 (Thread 2051 (LWP 3342))]#0  step (a=0xbffffb40) at

p11.11.cxx:66

66          walk[position+MAX] = ' ';                     // clear old

                                                            position

(gdb) print *my_arg

$24 = {increment = -1, phrase = 0x8048da0 "SPLAT! Stepped off the LEFT  side.\n"}   <-- 1

(gdb) thread 3

[Switching to thread 3 (Thread 1026 (LWP 3341))]#0  step (a=0xbffffb48) at p11.11.cxx:66

66          walk[position+MAX] = ' ';                    // clear old

                                                            position

(gdb) print *my_arg

$25 = {increment = 1, phrase = 0x8048d60 "ZOINK! Stepped off the RIGHT

       side.\n"}

(1) This is the thread that does the decrement.

Anytime the debugger is stopped, the contents of a mutex can be displayed 

(assuming it is within the current scope). For example, if we had a mutex called 

my_lock, its contents before it is acquired would be

(gdb) print my_lock



$1 = {__m_reserved = 0, __m_count = 0, __m_owner = 0x0, __m_kind = 0,

  __m_lock = {__status = 0, __spinlock = 0}}                                    <-- 1

(gdb) print my_lock                                  <-- 1

$2 = {__m_reserved = 0, __m_count = 0, __m_owner = 0x0, __m_kind = 0,

  __m_lock = {__status = 1, __spinlock = 0}}

(1) This member is set to 1 when the mutex is locked.

and after it is acquired

(1) This member is set to 1 when the mutex is locked.

The quit command is used to leave the debugger. An abbreviated listing of gdb

commands can be displayed in gdb using the command help. The manual pages on gdb

contain a more detailed explanation of how to invoke gdb. On the command line, info 

gdb provides a wealth of information on how to use gdb (including a fairly detailed 

sample session).

11-15 EXERCISE

Modify Program 11.11 to support two (or more) sailors walking down the 

boardwalk at the same time (you may need to increase the width of the 

boardwalk). Use a different symbol for each sailor. No two sailors should 

occupy the same location at the same time (it's the law!). The program 

should end when either, all sailors have expired, or one or more sailors have 

reached their goal, say a set number of steps.
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11.11 Summary

A thread is a distinct sequence of steps performed by one or more processes. By 

definition, all programs contain a single thread of control. Threads, which are created 

dynamically and execute independently, can be used to provide concurrency at a 

minimal cost (both in system resources and programming effort). Problems that 

consist of multiple individual tasks lend themselves to a threaded solution, while 

problems that are serial in nature do not.

Thread libraries (such as the POSIX thread library) provide programmers with a 

means for generating and coordinating multiple threads. These threads can be 

contained within a single process or spread across multiple processes. Threads within 

a process share most of the process's state information. At a system-implementation 

level, a thread can be bound (directly associated with an underlying LWP) or 

unbound. Unbound threads are mapped on an as-needed basis to an LWP from a 

pool maintained by the system. Threads can be specified as detached. A detached 

thread cannot be waited upon and exits once it has finished its processing. A 

nondetached thread can be waited upon (often by its creating thread) and its exiting 

status obtained. When a thread is created, it is passed a reference to the code it is to 

execute. Each thread has an associated priority and scheduling algorithm that is used 

by the system to determine how and when the thread will receive processing time. 

The actual scheduling of a thread is done by the thread library (if unbound) or by the 

kernel (if bound). Threads can send and receive signals. In a multithreaded setting, 

often one thread is designated as the signal catcher. A signal mask is used to specify 

whether or not a thread will act upon or ignore a particular signal.

Thread activity can be coordinated with mutexes (mutual exclusion locks), condition 

variables, and semaphores. A mutex is used to lock a specific section of code (often 

called the critical section) where the integrity of the data accessed must be 

maintained. The term monitor is sometimes used when the section of code to be 

locked encompasses the entire module to be executed. Some thread libraries support 

read/write mutexes. A read/write mutex allows any number of threads to read 

protected data, but only one thread at a time to write or modify the data. Read/write 
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mutexes are considerably slower than their less complicated brethren. Mutexes that 

are used by threads in different processes must be mapped to a shared memory 

location. Condition variables are used to force a thread to block on an arbitrary 

condition. Multithread-safe semaphores, based on a POSIX4 implementation, can be 

binary or counting. Semaphores can be used to manage multiple resources. Usually, it 

is best to lock the minimal number of lines of code needed to maintain data 

consistency.

If needed, it is possible to have data items in common sections of code that contain a 

value specific to each thread. Such data, called thread-specific data (TSD), is 

accessible to all threads but is maintained on a per-thread basis. The system uses a 

unique key value to determine the data value in a given thread.
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11.12 Nomenclature and Key Concepts

/usr/bin/time utility

_POSIX_C_SOURCE defined constant

_REENTRANT defined constant

<pthread.h> include file

<semaphore.h> include file

<signal.h> include file

clone system call

condition variable

gdb utility

heavyweight process

kernel-level thread

lightweight process (LWP)

multithreaded

mutex

nanosleep real-time library function

nonpreemptive scheduling

opaque data type
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parallelism

POSIX 1003.1 standard

POSIX 1003.1c standard

preemptive scheduling

pthread_attr_getschedparam library function

pthread_attr_init library function

pthread_attr_setschedparam library function

pthread_cleanup_pop library function

pthread_cleanup_pop_restore_np library function

pthread_cleanup_push library function

pthread_cleanup_push_defer_np library function

PTHREAD_COND_ INITIALIZER defined constant

pthread_cond_broadcast library function

pthread_cond_signal library function

pthread_cond_timedwait library function

pthread_cond_wait library function

pthread_create library function

PTHREAD_CREATE_DETACHED defined constant

PTHREAD_CREATE_JOINABLE defined constant

PTHREAD_DESTRUCTOR_ITERATIONS defined constant

pthread_detach library function



PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP

pthread_exit library function

PTHREAD_EXPLICIT_SCHED defined constant

pthread_getschedparam library function

pthread_getspecific library function

PTHREAD_INHERIT_SCHED defined constant

pthread_join library function

pthread_key_create library function

pthread_key_delete library function

pthread_kill library function

pthread_mutex_destroy library function

PTHREAD_MUTEX_ERRORCHECK defined constant

PTHREAD_MUTEX_FAST defined constant

pthread_mutex_init library function

PTHREAD_MUTEX_INITIALIZER defined constant

pthread_mutex_lock library function

PTHREAD_MUTEX_RECURSIVE defined constant

pthread_mutex_t data type

pthread_mutex_trylock library function

pthread_mutex_unlock library function

pthread_mutexattr_init library function



pthread_mutexattr_settype library function

pthread_once library function

PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP

pthread_rwlock_init library function

pthread_rwlock_rdlock library function

pthread_rwlock_t data type

pthread_rwlock_tryrdlock library function

pthread_rwlock_trywrlock library function

pthread_rwlock_unlock library function

pthread_rwlock_wrlock library function

PTHREAD_SCOPE_PROCESS defined constant

PTHREAD_SCOPE_SYSTEM defined constant

pthread_setschedparam library function

pthread_setspecific library function

pthread_sigmask library function

reentrant function

SCHED_FIFO defined constant

sched_get_priority_max library function

sched_get_priority_min library function

SCHED_OTHER defined constant

SCHED_RR defined constant



sched_yield system call

sem_getvalue library function

sem_init library function

sem_post library function

sem_trywait library function

sem_wait library function

setpriority system call

SIG_BLOCK defined constant

SIG_MASK defined constant

SIG_UNBLOCK defined constant

sigaction library function

sigaddset library function

sigdelset library function

sigemptyset library function

sigfillset library function

sigismember library function

sigwait library function

strace utility

thread

thread states

timespec_t data type



user-level thread
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Appendix A. Using Linux Manual Pages

Section A.1.  Manual Page Sections

Section A.2.  Manual Page Format

Section A.3.  Standard Linux System Calls

     

Top

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/eBook.Prentice_Hall_PTR-Interprocess_Communications_in_Linux.ShareReactor.chm/23021533.htm


     

 

A.1 Manual Page Sections

The online manual pages found in Linux provide a wealth of information. The manual 

pages are loosely grouped by category into the following sections:

User commands and application programs.1.

System calls. A complete list of system calls can be found at the end of this 

appendix.

2.

Library functions—these functions do not directly invoke kernel primitives.3.

Devices.4.

File formats.5.

Games and demonstrations.6.

Special conventions and protocols, character set standards, the standard file 

system layout, and a variety of other miscellaneous things.

7.

Administrative and privileged commands available only to the superuser.8.

Device drivers and kernel interfaces.9.

New.10.

There are a variety of ways to access manual page information. The most standard 

approach is to use the man utility on the command line. For example, almost every 

section has a manual page called intro that provides an overview of the section. To 

obtain the proper intro manual page for a section, the section number is passed on the 

command line when the man command is invoked. For example, the intro manual page 

for Section 2 (system calls) is specified as

linux$ man 2 intro



On the command line a manual page can be sent to the printer using the command 

sequence

linux$ man 2 intro | col -b | lp

In this sequence the output of the man command is piped to the col utility. This utility, 

when passed the -b option, filters out any backspaces and outputs only the last 

character written to each column position. The output of the col utility is then piped to lp

for printing.

Another approach is to use the info utility. This program, which is a document-reading 

utility, helps to facilitate manual page navigation and access to related topics. The 

command line sequence

linux$ info info

brings up the manual page on the info utility. On our Linux system this brings up the 

following screen.

File: info.info, Node: Top, Next: Getting Started, Up: (dir)

Info: An Introduction

*********************

  Info is a program, which you are using now, for reading documentation of

computer programs. The GNU Project distributes most of its on-line manuals

in the Info format, so you need a program called "Info reader" to read the

manuals. One of such programs you are using now.

  If you are new to Info and want to learn how to use it, type the

command 'h' now. It brings you to a programmed instruction sequence.

  To learn advanced Info commands, type 'n' twice. This brings you to

'Info for Experts', skipping over the 'Getting Started' chapter.

* Menu:

* Getting Started::          Getting started using an Info reader.

* Advanced Info::            Advanced commands within Info.

* Creating an Info File::    How to make your own Info file.

* Index::                    An index of topics, commands, and variables.

Entering the letter h at this first screen displays the basics of how to use this utility. 



Entering the letter q quits (exit) the info utility.

Even another approach is to use xman, the X Window System manual browser. For 

example, on our Linux system entering the command sequence

linux$ setenv MANPATH /mit/kit/man:/usr/share/man

linux$ xhost+

linux$ xman &

assigns the environment variable MANPATH (used by xman) the directory locations to 

be searched,[1] disables access control (allowing X Window clients to connect from 

any host), and invokes xman, placing it in the background. On the client a small X 

Window similar to the one below is displayed.

[1] Things get a bit dicey here as they vary somewhat from system to 

system. Check the file /etc/man.config for specifics about the content of 

the MANPATH variable. In any case, when using xman, be sure to add 

/mit/kit/man to the directories to be searched.

Selecting [Help] displays a window with online help, [Quit] terminates service, and 

[Manual Page] displays a window containing a manual page browser. Entering [Ctrl] + [S]

after selecting [Manual Page] generates a text entry box where the name of a specific 

command can be entered.

The file /etc/man.config is a text based file that holds the default customization 



specifications for the man utility. Contained in this file are a variety of uppercase 

identifiers which are assigned values. These identifiers parallel corresponding 

environment variables used by the man utility. The values assigned to the identifiers in 

the man.config file act as the default values if the corresponding environment variable 

has not been set. Aside from MANPATH another item of passing interest is the value 

assigned to MANSECT. MANSECT stipulates which manual sections are to be 

searched and their order. On our system when initially configured MANSECT is set to:

MANSECT   1:8:2:3:4:5:6:7:9:tcl:n:l:p:o

This is fine from an administrative viewpoint. However, if you are doing a great deal of 

programming you might want to change the default order by moving section 8 

(administrative and privileged commands) further back in the sequence and placing 

section 2 (system calls) and 3 (library functions) nearer the front. One such 

rearrangement would be:

MANSECT   3:2:1:4:5:6:7:8:9:tcl:n:l:p:o
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A.2 Manual Page Format

Individual manual pages, as viewed with the man command, follow a somewhat 

standard format. A typical manual page (perror found in Section 3) is shown below.

PERROR(3)               Library functions                    PERROR(3)

NAME

   perror - print a system error message             <-- 1

SYNOPSIS

   #include <stdio.h>

   void perror(const char *s);                       <-- 2

   #include <errno.h>

   const char *sys_errlist[];

   int sys_nerr;

DESCRIPTION

   The routine perror() produces a message on the standard error output, de-

   scribing the last error encountered during a call to a system or library

   function. First (if s is not NULL and *s is not NUL) the argument string

   s is printed, followed by a colon and a blank. Then the message and a new-

   line.                                             <-- 3

   .

   .

   .                                                 <-- 3

   that errno is undefined after a successful library call: this call may well

   change this variable, even though it succeeds, for example because it in-

   ternally used some other library function that failed. Thus, if a failing

   call is not immediately followed by a call to perror, the value of errno

   should be saved.

CONFORMING TO

   ANSI C, BSD 4.3, POSIX, X/OPEN                    <-- 4

SEE ALSO

   strerror(3)                                       <-- 5

                                                     <-- 6 2001-12-14                       PERROR(3)



(1) A brief summary-often is the same information returned by the apros

or man -k command.

(2) Syntactical information—include files, external variables, function

prototype, function return data type, parameter data types, and so on.

This is a key section. Special attention should be paid to arguments

passed as a reference.

(3) A detailed narration of what this system call or library function does.

(4) As provided, the standards this system call or library function meets.

(5) Other related system calls and/or library functions.

(6) Last update .

Across the top of the manual page is a title line. Following the title line is a series of 

subdivisions delineated by uppercase labels. The subdivisions common to most (but 

not all) system call sand library function manual pages are

NAME The name of the item is followed by a brief description. The 

description is often similar to, if not the same as, the description 

returned when a man -k (know) query for a specific topic is made.[2]

The man -k pipe command returns all manual page summaries for 

any item (system call, library function, etc.) that contains the term 

pipe. For example,

linux$  man   -k pipe

fifo     (4)  - first-in first-out special file, named pipe



funzip   (1)  - filter for extracting from a ZIP archive in

                a pipe

IO::Pipe (3pm)- supply object methods for pipes

mkfifo   (1)  - make FIFOs (named pipes)

mkfifo   (3)  - make a FIFO special file (a named pipe)

open     (n)  - Open a file-based or command pipeline channel

perlipc  (1)  - Perl interprocess communication (signals,

                fifos, pipes, safe subprocesses, sockets,

                and semaphores)

pipe     (2)  - create pipe

On most systems, man -k is equivalent to using the apropos utility, 

(i.e., man -k pipe returns the information as apropos pipe).

SYNOPSIS This provides the syntactical information for the correct use of the 

item. In the case of a system call or library function, the requisite 

include file(s), external variables referenced, and prototype are 

given. The data type of the return value of the system call or library 

function can be obtained from the prototype definition. For 

example, the manual page for the perror library function has the 

following SYNOPSIS:

#include <stdio.h>

void perror(const char *s);

#include <errno.h>

const char *sys_errlist[];

int sys_nerr;

This indicates that to use perror, the header file stdio.h must be 

included. The perror call accepts a single argument, s, which is a 

pointer to a constant of type char. The return value for perror is of 

type void, indicating it does not return a value. Additionally, the 

SYNOPSIS indicates that if we want to make use of the external 

list of errors referenced by sys_errlist or the external variable sys_nerr

(that has the number of possible errors), we should include the file 

errno.h. Be sure to note arguments that are pointers (references). 

These arguments must reference the correct data type (e.g., char, 

int, etc.). If information is to be passed to the system call or library 

function, the referenced object must be set to the proper initial 

value. In addition, if information is to be returned via the reference, 



the programmer must allocate sufficient space for the referenced 

item prior to the call.

DESCRIPTION This subdivision contains a detailed narration of what the system 

call or library function does.

RETURN 

VALUE

The value(s) the system call or library function returns and how to 

interpret them. The RETURN VALUE entry should indicate 

whether or not errno is set.

CONFORMING

TO

The standard(s) to which the system call or library function 

conforms. Typically the standards are abbreviated, such as SVr4, 

SVID, POSIX, X/OPEN, or BSD 4.3. On occasion a specific option 

for compilation and/or the definition of a specific constant (such as 

_GNU_SOURCE) is noted.

ERRORS When present (i.e., errno is set), this entry lists the error codes 

generated by the system call or library function if it fails. A short 

explanation of how to interpret each error code is given.

FILES Files accessed or modified by the system call or library function.

SEE ALSO Other items of interest, such as related system calls or library 

functions.

NOTES A catchall containing additional pertinent information that does not 

fall into any particular category.

LINUX NOTES Notes specific to the Linux implementation.

AUTHORS A list of authors (often with their email address).

[2] The -k command option for man uses the windex database, which is 

created by running the catman program. If the system administrator has 

not run this program, or the windex database is out of date, the -k option 

for man will not work correctly.

There are several other manual page divisions that surface on an infrequent basis. 

These, like those above, are usually self-explanatory (e.g., OPTIONS, EXAMPLE, 

BUGS, HISTORY, WARNINGS, DIAGNOSTICS, etc.). On occasion, small flashes of 

self-deprecating humor are encountered. The following is from the manual page on 



the system command tune2fs (used for tuning a second extended file system in Linux) 

"We haven't found any bugs yet. That doesn't mean there aren't any...." Unfortunately, 

as things become more standardized, such frivolities are becoming less common.
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A.3 Standard Linux System Calls

_llseek init_module sched_setaffinity

_newselect ioctl sched_setparam

_sysctl ioperm sched_setscheduler

access iopl sched_yield

acct ipc security

adjtimex kill select

afs_syscall lchown sendfile

alarm lchown32 sendfile64

bdflush lgetxattr setdomainname

break link setfsgid

brk listxattr setfsgid32

capget llistxattr setfsuid

capset lock setfsuid32

chdir lremovexattr setgid

chmod lseek setgid32

chown lsetxattr setgroups

chown32 lstat setgroups32

chroot lstat64 sethostname

clone madvise setitimer

close madvise1 setpgid

creat mincore setpriority

create_module mkdir setregid

delete_module mknod setregid32
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dup mlock setresgid

dup2 mlockall setresgid32

execve mmap setresuid

exit, _exit mmap2 setresuid32

fchdir modify_ldt setreuid

fchmod mount setreuid32

fchown mprotect setrlimit

fchown32 mpx setsid

fcntl mremap settimeofday

fcntl64 msync setuid

fdatasync munlock setuid32

fgetxattr munlockall setxattr

flistxattr munmap sgetmask

flock nanosleep sigaction

fork nfsservctl sigaltstack

fremovexattr nice signal

fsetxattr oldfstat sigpending

fstat oldlstat sigprocmask

fstat64 oldolduname sigreturn

fstatfs oldstat sigsuspend

fsync olduname socketcall

ftime open ssetmask

ftruncate pause stat

ftruncate64 personality stat64

futex pipe statfs

get_kernel_syms pivot_root stime

getcwd poll stty

getdents prctl swapoff



getdents64 pread swapon

getegid prof symlink

getegid32 profil sync

geteuid ptrace sysfs

geteuid32 putpmsg sysinfo

getgid pwrite syslog

getgid32 query_module time

getgroups quotactl times

getgroups32 read tkill

getitimer readahead truncate

getpgid readdir truncate64

getpgrp readlink ugetrlimit

getpid readv ulimit

getpmsg reboot umask

getppid removexattr umount

getpriority rename umount2

getresgid rmdir uname

getresgid32 rt_sigaction unlink

getresuid rt_sigpending uselib

getresuid32 rt_sigprocmask ustat

getrlimit rt_sigqueueinfo utime

getrusage rt_sigreturn vfork

getsid rt_sigsuspend vhangup

gettid rt_sigtimedwait vm86

gettimeofday sched_get_priority_max vm86old

getuid sched_get_priority_min wait4

getuid32 sched_getaffinity waitpid

getxattr sched_getparam write



gtty sched_getscheduler writev

idle sched_rr_get_interval  
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Appendix B. UNIX Error Messages

Errors generated by the failure of a system call or library function, can be displayed 

using the perror or strerror library function calls (see "Managing Failures" Section 1.5, 

"Managing System Call Failures"). For example, the error messages returned by 

strerror on a Linux system can be displayed in their entirety using Program B.1.

Program B.1 Displaying strerror messages.

File : errors.cxx

  |     #include <iostream>

  |     #include <cstring>

  |     #include <errno.h>

  |     extern int sys_nerr;

  +     using namespace std;

  |     int

  |     main( ){

  |       for (int err=0; err < sys_nerr; ++err )

  |         cout << err << '\t' << strerror(err) << endl;

 10       return 0;

  |     }

As the output of the program will fill more than one screen, it may be helpful to redirect 

the output to either a file, for future reference, or to the more command to permit 

viewing of the output at a controlled pace. To compile the source file and capture the 

output of the program in a file called emessages, the command sequence is

linux$  g++ errors.cxx -o errors

linux$  errors > emessages

If, after compilation, you want the program output to be piped to more, the command 

sequence is

linux$   errors | more

Note that the error message returned by strerror (and perror) in a C/C++ program is the 



same message that is returned by the Linux command-line utility called perror. A 

command-line sequence to determine the error message associated with error 

number 13 is

linux$ perror 13

Error code  13:  Permission denied

A Bourne shell script that uses the command-line perror utility to display all error 

messages is shown in Program B.2.

Program B.2 Bourne shell script that uses perror to generate error messages.

File : errors_script

  |     #! /bin/bash

  |     err=0

  |     while test $err -lt  125; do

  |       echo -n "$err    "

  +       perror -s $err

  |       err='expr $err + 1'

  |     done

Table B.1 lists the error number, its symbolic name, and the actual message 

generated by strerror.



Table B.1. Error messages.

Error # Symbolic Constant Message Generated by strerror

0  Success

1 EPERM Operation not permitted

2 ENOENT No such file or directory

3 ESRCH No such process

4 EINTR Interrupted system call

5 EIO Input/output error

6 ENXIO No such device or address

7 E2BIG Argument list too long

8 ENOEXEC exec format error

9 EBADF Bad file descriptor

10 ECHILD No child processes

11 EAGAIN Resource temporarily unavailable

12 ENOMEM Cannot allocate memory

13 EACCES Permission denied

14 EFAULT Bad address

15 ENOTBLK Block device required

16 EBUSY Device or resource busy

17 EEXIST File exists

18 EXDEV Invalid cross-device link

19 ENODEV No such device

20 ENOTDIR Not a directory

21 EISDIR Is a directory

22 EINVAL Invalid argument



23 ENFILE Too many open files in system

24 EMFILE Too many open files

25 ENOTTY Inappropriate ioctl for device

26 ETXTBSY Text file busy

27 EFBIG File too large

28 ENOSPC No space left on device

29 ESPIPE Illegal seek

30 EROFS Read-only file system

31 EMLINK Too many links

32 EPIPE Broken pipe

33 EDOM Numerical argument out of domain

34 ERANGE Numerical result out of range

35 EDEADLK Resource deadlock avoided

36 ENAMETOOLONG File name too long

37 ENOLCK No locks available

38 ENOSYS Function not implemented

39 ENOTEMPTY Directory not empty

40 ELOOP Too many levels of symbolic links

41 EWOULDBLOCK Unknown error 41

42 ENOMSG No message of desired type

43 EIDRM Identifier removed

44 ECHRNG Channel number out of range



46 EL3HLT Level 3 halted

47 EL3RST Level 3 reset

48 ELNRNG Link number out of range

49 EUNATCH Protocol driver not attached

50 ENOCSI No CSI structure available

51 EL2HLT Level 2 halted

52 EBADE Invalid exchange

53 EBADR Invalid request descriptor

54 EXFULL Exchange full

55 ENOANO No anode

56 EBADRQC Invalid request code

57 EBADSLT Invalid slot

58 EDEADLOCK Unknown error 58

59 EBFONT Bad font file format

60 ENOSTR Device not a stream

61 ENODATA No data available

62 ETIME Timer expired

63 ENOSR Out of streams resources

64 ENONET Machine is not on the network

65 ENOPKG Package not installed

66 EREMOTE Object is remote

67 ENOLINK Link has been severed



69 ESRMNT Srmount error

70 ECOMM Communication error on send

71 EPROTO Protocol error

72 EMULTIHOP Multihop attempted

73 EDOTDOT RFS-specific error

74 EBADMSG Bad message

75 EOVERFLOW Value too large for defined data type

76 ENOTUNIQ Name not unique on network

77 EBADFD File descriptor in bad state

78 EREMCHG Remote address changed

79 ELIBACC Can not access a needed shared library

80 ELIBBAD Accessing a corrupted shared library

81 ELIBSCN .lib section in a.out corrupted

82 ELIBMAX Attempting to link in too many shared libraries

83 ELIBEXEC Cannot exec a shared library directly

84 EILSEQ Invalid or incomplete multibyte or wide character

85 ERESTART Interrupted system call should be restarted

86 ESTRPIPE Streams pipe error

87 EUSERS Too many users

88 ENOTSOCK Socket operation on nonsocket

89 EDESTADDRREQ Destination address required

90 EMSGSIZE Message too long



92 ENOPROTOOPT Protocol not available

93 EPROTONOSUPPORT Protocol not supported

94 ESOCKTNOSUPPORT Socket type not supported

95 EOPNOTSUPP Operation not supported

96 EPFNOSUPPORT Protocol family not supported

97 EAFNOSUPPORT Address family not supported by protocol

98 EADDRINUSE Address already in use

99 EADDRNOTAVAIL Cannot assign requested address

100 ENETDOWN Network is down

101 ENETUNREACH Network is unreachable

102 ENETRESET Network dropped connection on reset

103 ECONNABORTED Software caused connection abort

104 ECONNRESET Connection reset by peer

105 ENOBUFS No buffer space available

106 EISCONN Transport endpoint is already connected

107 ENOTCONN Transport endpoint is not connected

108 ESHUTDOWN Cannot send after transport endpoint shutdown

109 ETOOMANYREFS Too many references: cannot splice

110 ETIMEDOUT Connection timed out

111 ECONNREFUSED Connection refused

112 EHOSTDOWN Host is down

113 EHOSTUNREACH No route to host



115 EINPROGRESS Operation now in progress

116 ESTALE Stale NFS file handle

117 EUCLEAN Structure needs cleaning

118 ENOTNAM Not a XENIX named type file

119 ENAVAIL No XENIX semaphores available

120 EISNAM Is a named type file

121 EREMOTEIO Remote I/O error

122 EDQUOT Disk quota exceeded

123 ENOMEDIUM No medium found

124 EMEDIUMTYPE Wrong medium type

Error # Symbolic Constant Message Generated by strerror

Keep in mind that in C/C++ programs it is always best to reference a specific error by

its symbolic constant, as the underlying numeric value for an error can change from

one implementation of UNIX to another (and even from one version of the same

implementation to the next). For example, in Solaris 2.8 (EBADR—Invalid request

descriptor) is associated with error number 51; in Red Hat Linux 7.3 this same error is

associated with error number 53. Likewise, EIDRM—Identifier removed, is error

number 43 in Red Hat Linux 7.3 but is error number 37 in Solaris 2.8.

In addition to error messages the command-line perror utility returns MyISAM/ISAM[1]

table-handler error codes and messages. These codes and their associated 

messages are shown in Table B.2. Again, as with other error messages, these are 

mostly system-dependent.

[1] ISAM is short for Indexed Sequential Access Method a technique for 

storing and retrieving data.



Table B.2. MyISAM/ISAM Error Messages.

Error # MyISAM/ISAM Message Generated by perror

120 Didn't find key on read or update

121 Duplicate key on write or update

122  

123 Someone has changed the row since it was read

124  

126 Index file is crashed/wrong file format

127 Record file is crashed

131 Command not supported by database

132 Old database file

133 No record read before update

134 Record was already deleted (or record file crashed)

135 No more room in record file

136 No more room in index file

137 No more records (read after end of file)

138 Unsupported extension used for table

139 Too big row (>= 16 M)

140 Wrong create options

141 Duplicate unique key or constraint on write or update

142 Unknown character set used

143 Conflicting table definition between MERGE and mapped table

144 Table is crashed and last repair failed

145 Table was marked as crashed and should be repaired

146 Lock timed out; retry transaction



Error # MyISAM/ISAM Message Generated by perror

147 Lock table is full; restart program with a larger lock table

148 Updates are not allowed under a read-only transaction

149 Lock deadlock; retry transaction
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Appendix C. RPC Syntax Diagrams

Section C.1.  Introduction

Section C.2.  RPC Definitions

Section C.3.  RPC Keywords

Section C.4.  Some RPC Examples
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C.1 Introduction

The correct syntax for the RPC language (XDR with the addition of the program and 

version types) can be obtained by tracing through the syntax diagrams[1] following the 

flow indicated by the arrows. In each diagram, the words or symbols that are listed in 

boxes with rounded corners should be entered exactly as shown. Items in boxes with 

square corners that contain entries that are not italicized reference further syntax 

diagrams. Italicized entries reference "common" items. These items consist of

[1] While I would like to be able to note that these syntax diagrams follow 

defined standards, they do not exactly. However, they are close enough 

in format and style that most readers should find no difficulty interpreting 

them.

identifiers (e.g., const-ident, type-ident, etc.), which adhere to standard syntax 

for C identifiers;

types, which reference standard C data types (e.g., int, double, etc.) with the 

addition of three special XDR language data types: bool (boolean), string (a 

sequence of characters terminated by a NULL), and opaque (untyped data); and

values, which reference standard C values (e.g., integer constants, literals, 

etc.).

The rpcgen compiler converts all RPC definitions into standard C. Statements that have 

a % in the first column are passed through without interpretation.

The RPC language consists of a series of RPC definitions delineated by semicolons:

The RPC definition is divided into six categories or definitions.
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C.2 RPC Definitions

C.2.1 Program-Definition

C.2.1.1 Version



C.2.1.2 Procedure

C.2.2 Const-Definition

C.2.3 Enum-Definition



C.2.3.1 Enum-Value-List

C.2.3.2 Enum value

C.2.4 Typedef-Definition



C.2.4.1 Declaration
[2]

[2] These are type declarations, not variable declarations (e.g., int 

my_number ), which are unsupported by rpcgen.

C.2.4.2 Simple Declaration

C.2.4.3 Fixed-Array Declaration

C.2.4.4 Variable-Array Declaration
[3]

[3] The integer value in angle brackets indicates a maximum size or, if 

empty, an array of any size.



C.2.4.5 Pointer Declaration
[4]

[4] Not actually an address. Technically called optional-data; often used 

for references to linked structures.

C.2.5 Structure-Definition

C.2.6 Union-Definition[5]

[5] In RPC, unions are closer in syntax (and spirit) to variant records in 

Pascal are than standard C/C++ unions.



C.2.6.1 Case-List
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C.3 RPC Keywords

The following RPC keywords have special meaning and cannot be used as identifiers.

bool      const      enum        int            string      typedef

char      double     hyper       quadruple      switch      unsigned

void      case       default     float          struct      union
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C.4 Some RPC Examples

In the examples below, each set of entries in an RPC .x file is followed by a sequence 

of statements in gray, which are those produced by the rpcgen compiler.

/*

 *****************      const   *********************

 */

const MAX = 1024;

const DELIMITER = "@";

/* is converted to:                    */

#define MAX 1024                                                     <-- 1

#define DELIMITER "@"

/*

 ****************       enum    **********************

 */

enum primary { red, yellow = 4, blue  };

/* is converted to:                    */

enum primary {                                                     <-- 2

        red = 0,

        yellow = 4,

        blue = 4 + 1

};

typedef enum primary primary;

/*

 ****************       typedef ********************/

typedef colors strange;         /* simple                      */

typedef char line[80];          /* fixed length array          */

typedef string var_line<80>;    /* variable len array with max */

typedef int some_ints< >;       /* variable len array - NO max */

typedef var_line  *line_ptr;    /* pointer                     */

/* is converted to:                              */

typedef colors strange;                                                     <-- 3

typedef char line[80];

typedef char *var_line;

typedef struct {

    u_int some_ints_len;

   int  *some_ints_val;

} some_ints;



typedef var_line *line_ptr;

/*

 ****************       struct  **********************

 */

struct record {

        var_line  name;

        int       age;

};

/* is converted to:                    */

struct record {                                                     <-- 4

        var_line name;

        int age;

};

typedef struct record record;

/*

 ****************       union   **********************

*/

union ret_value switch( extern errno ) {

case 0:

        line answer;

default:

        void;

};

/* is converted to:                    */

struct ret_value {                                                     <-- 5

        extern errno;

        union {

                line answer;

        } ret_value_u;

};

typedef struct ret_value ret_value;

(1) The equal sign and semicolon are removed, and const is replaced 

with #define

(2) Notice how the assignment of each color is handled. The duplicate

use of primary is acceptable, as the C/C++ compiler stores these 

identifiers in a different namespace.



(3) The variable length array is mapped to a structure with two

members. The first stores the number of elements in the array. The 

second references the base address of the array. Note how the 

members are named incorporating the base name of the array.

(4) This conversion is pretty much what one would expect. Again,

because of namespace, there is no conflict with using record twice in the 

typedef.

(5) The union is mapped to a structure containing a reference to the

externally declared errno value and a union whose element is the larger 

(storage-wise) of the initially listed members.
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Section D.1.  Introduction

Section D.2.  Sample Program for Profiling

Section D.3.  Generating Profile Data

Section D.4.  Viewing and Interpreting Profile Data
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D.1 Introduction

One way to obtain useful information about the execution of a program is to use the 

GNU profiler utility gprof. This utility, which is part of most standard Linux installations, 

provides information on functions your program calls. By analyzing the data it 

provides, you can often improve the execution speed of a program by revising slow, 

inefficient sections of code. Additionally, profiling may illuminate bugs that may not 

have surfaced. The following sections present an overview of how to use gprof. 

Interested readers seeking additional information on this utility are encouraged to read 

the manual page for the utility and to visit the official GNU website (www.gnu.org) and 

peruse the full set of online documentation on gprof.

Profiling a program is a three-step process:

The program is compiled and linked with profiling enabled.1.

The executable version of the program is run to generate a special profile data 

file.

2.

The gprof utility is used to analyze and display the profiling data.3.
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D.2 Sample Program for Profiling

A selection sort program is used to demonstrate the profiling process. A selection sort 

is a general-purpose sort that is a variation of an exchange sort. Basically, this sort 

passes through a list of elements and finds the index (location) of the smallest (least) 

element. It exchanges the data at this index with the data stored in the first element of 

the list. It then repeats the selection process with the remaining list to find the second 

smallest element, and exchanges the data at this index with the data stored in the 

second element of the list. The process is repeated until the list is ordered.

There are numerous ways to code a selection sort. Below is a C++ version of this sort.

File : ss.cxx

  |     #include <iostream>

  |     using namespace std;               // Function prototypes

  |     void Get_Data  ( int [], int );

  |     void Display   ( int [], int );

  +     void Do_S_Sort ( int [], int );

  |     int  Find_Least( const int [], int, int );

  |     int  Compare   ( const int & , const int & );

  |     void Swap      ( int &, int & );

  |     int

 10     main( ) {

  |       const int max = 10;

  |       int List[max];

  |       Get_Data ( List, max );              // Obtain data

  |       cout << "Initial list" << endl;

  +       Display  ( List, max );              // Show it

  |       Do_S_Sort( List, max );              // Sort it

  |       cout << "Sorted list" << endl;

  |       Display  ( List, max );              // Show it again

  |       return 0;

 20     }

  |     // Obtain data to sort from standard input

  |     void

  |     Get_Data(int a[], int n) {

  |       cout << "Please enter " << n << " integers" << endl;

  +       for(int i=0; i < n; ++i)



  |          cin >> a[i];

  |     }

  |     // Display the current contents of list

  |     void

 30     Display(int a[], int n) {

  |       for(int i=0; i < n; ++i)

  |          cout << " " << a[i];

  |       cout << endl;

  |     }

  +     //  Do the Selection Sort, Display after each pass

  |     void

  |     Do_S_Sort( int a[], int n ){

  |       int index;

  |       for (int i=0; i < n-1; ++i){

 40         index=Find_Least( a, i, n );

  |         if ( i != index )

  |           Swap( a[i], a[index] );

  |         cout << "After pass " << i+1 << " : ";

  |         Display( a, n );

  +       }

  |     }

  |     //  Find the index of the least element in list

  |     int

  |     Find_Least( const int a[], int start, int stop ){

 50       int Index_of_Least = start;

  |       for (int i=start+1; i < stop; ++i )

  |         if ( Compare(a[i], a[Index_of_Least]) )

  |           Index_of_Least = i;

  |       return Index_of_Least;

  +     }

  |     //  Compare two data elements

  |     int

  |     Compare( const int &a, const int &b ){

  |       return ( a < b );

 60     }

  |     //  Exchange two data elements

  |     void

  |     Swap( int &a, int &b ){

  |       int temp;

  +       temp = a;

  |       a    = b;

  |       b    = temp;

  |     }

As shown, six functions are used to implement the sort



FUNCTION PURPOSE

Get_Data Obtains the data to be sorted from standard input.

Display Prints the current contents of the list to standard output.

Do_S_Sort Performs the selection sort routine.

Find_Least Traverses a portion of the list to find (and ultimately return) the index of 

the smallest element.

Compare Compares two list elements and returns a nonzero value if the first 

element is less than the second element.

Swap Exchanges the data for two elements in the list.

At first glance, using so many functions for such a simple algorithm may seem to be 

overkill. However, coding some statements (such as the compare in line 52) as a 

function call will facilitate referencing when generating profile information with gprof.

A good portion of the work done by the selection sort is actually performed by the 

Find_Least function (see line 49). This function is passed the list and two integer values. 

The first integer value is the starting point for the search through the remainder of the 

list. The second value is the size of the list (which in this case reflects its end or 

stopping point). This function works by storing, in the variable Index_of_Least, the index 

of the element having the smallest value. Initially, this is the index of the current start 

of the list (see line 50). It then uses a for loop to pass through the reminder of the list, 

checking each location against the current smallest value to determine if it has found a 

lesser value. Each check is carried out by the Compare function. If the value is less, the 

index (not the value) of the location is stored. When the loop finishes, the index of the 

element with the smallest value is returned to the calling function. If the returned index 

is not the index of the current head of list, the two values are exchanged by calling the 

Swap function. If the current value is already in order, no exchange is needed.
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D.3 Generating Profile Data

To collect profiling information, a program must be compiled and linked with profiling 

enabled. To accomplish this, the command-line option -pg is passed to the compiler. 

For example, if our source program was ss.cxx, we would use the following command:

linux$ g++ ss.cxx -pg -o ss

If your program consists of separate source files, which are compiled individually, 

each intermediate compilation should be passed the -pg option if you want to profile 

the functions found in the source file. If the debug command-line option -g is also 

specified, the gprof utility will generate additional line-by-line profiling information. This 

technique is discussed in detail at the end of this appendix.

Once successfully compiled, the program is run using its normal arguments, input 

files, and so on. The profiling data generated by the program's execution is stored in a 

file called gmon.out in the current directory. Should there be an existing gmon.out file, it is 

overwritten. Note that the gmon.out file will not be produced if the program does not exit 

normally (i.e., does not return from main or call exit).[1] The gmon.out file is a data file not 

a plain text file and as such should not be directly printed or displayed on the screen.

[1] In this case calling _exit would not work, as it does not perform the 

cleanup activities that a call to exit does.
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D.4 Viewing and Interpreting Profile Data

The profile data stored in the gmon.out file is analyzed and displayed using the gprof

utility. If called with no options or command-line arguments, gprof assumes that the 

executable it is working with is a.out and that the profile data for this executable is in 

the file gmon.out. Also, unless directed otherwise, gprof generates and displays a fully 

annotated flat profile and a call graph using the collected data. Like most utilities, gprof

supports an extensive set of options. We will examine a small subset of its options.

Staying with our selection sort example, as shown previously, the command-line 

sequence

linux$ g++ ss.cxx -pg -o ss

compiles the source file ss.cxx into the executable file ss. The program is then run. In 

this example the program obtains its input, via command-line redirection, from a data 

file called data_reverse. The data file contains the numbers 1 through 10 in reverse 

order. The output from the program's execution is displayed on the screen.

linux$ ss < data_reverse                             <-- 1

Please enter 10 integers

Initial list                                         <-- 2

10 9 8 7 6 5 4 3 2 1

After pass 1 :  1 9 8 7 6 5 4 3 2 10

After pass 2 :  1 2 8 7 6 5 4 3 9 10

After pass 3 :  1 2 3 7 6 5 4 8 9 10

After pass 4 :  1 2 3 4 6 5 7 8 9 10

After pass 5 :  1 2 3 4 5 6 7 8 9 10                 <-- 3

After pass 6 :  1 2 3 4 5 6 7 8 9 10

After pass 7 :  1 2 3 4 5 6 7 8 9 10

After pass 8 :  1 2 3 4 5 6 7 8 9 10

After pass 9 :  1 2 3 4 5 6 7 8 9 10

Sorted list

1 2 3 4 5 6 7 8 9 10

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/eBook.Prentice_Hall_PTR-Interprocess_Communications_in_Linux.ShareReactor.chm/23021533.htm


(1) Program is run normally; obtains input from a data file.

(2) Its output is displayed on the screen.

(3) Given the unique nature of the input data (it starts in descending

order) and the algorithm's logic, the data is actually sorted before the 

program terminates!

Once the program is run, the gprof utility is used to analyze and view the profile data. If 

options are to be passed to gprof, they should be specified individually on the 

command line following the call to the utility. The name of the executable file comes 

after the options. If not specified, the default is a.out. The executable file name is 

optionally followed by the profile file name, which, if not given, defaults to gmon.out. In 

the example below the -b option (for brief) is specified.

linux$ gprof -b ss                                   <-- 1

(1) Call gprof and pass it the -b option and the name of the executable 

file (ss). The profile data file, which is not specified, is assumed to be 

gmon.out.

The output generated by this invocation is divided into two sections, the first of which 

is a flat profile. This section shows how much time the program spent in each function 

and how many times the function was called. Sorting 10 items is a trivial task even 

with the somewhat inefficient selection sort. Therefore, to produce a more instructive 

data set, the number of values to be sorted was increased to 1,000 and the program 

recompiled and rerun. To reduce the time needed for display, the output of the 

executable was discarded by directing it to /dev/null.

linux$ ss < data_reverse > /dev/null

The gprof output below is based on sorting 1,000 values.

Flat profile:



Each sample counts as 0.01 seconds.

  %   cumulative  self           self     total

 time  seconds  seconds  calls  us/call  us/call  name

100.00   0.04    0.04     999    40.04    40.04  Find_Least(int const *, int, int)

  0.00   0.04    0.00  499500     0.00     0.00  Compare(int const &, int const &)

  0.00   0.04    0.00    1001     0.00     0.00  Display(int *, int)

  0.00   0.04    0.00     500     0.00     0.00  Swap(int &, int &)

  0.00   0.04    0.00       1     0.00 40000.00  Do_S_Sort(int *, int)

  0.00   0.04    0.00       1     0.00     0.00  Get_Data(int *, int)

In the flat profile section each function is listed in decreasing order based on its 

runtime (if the runtime is too small to be recorded, it is reported as 0). The meaning of 

each field in the flat profile is listed in the following table.

FIELD NAME MEANING

% time The percentage of total execution time.

cumulative 

seconds
Total seconds executing this function and all those listed above it in 

the table.

self seconds Total seconds executing just this function (the primary sort key).

calls The number of times this function was called (blank if not called).

self Ts/call Average number of T seconds spent in this function (m = milli, u = 

micro, n = nano, etc.).

total Ts/call Per call, the average number of T seconds in this function and its 

descendants.

name Function name (acts as the secondary sort key)

As might be anticipated with a list of 1,000 elements, the Compare function in our 

example is called 499,500 times (the summation of 999 + 998 + 997 + 1, the series 

representing the number of compares). Clearly, the Find_Least function is the most time 

intensive of the group.

The flat profile is followed by a call graph that details the amount of time spent in each 

function. The output in this section is divided into a series of entries, one per function. 

Each entry, which is one or more lines in length, is separated from the next by a series 

of dashes. Within each entry there is one primary line. The primary line indicates the 



function associated with the entry data. The primary line is easily identified, as it 

begins with an index number surrounded by set of square brackets. In each entry 

lines that precede the primary line are functions that call the function, while lines that 

follow the primary line are functions that are called by the function (in call 

graph-speak, its children). If the caller of a function cannot be determined, 

<spontaneous> is printed instead.

Here is the call graph for our selection sort program when it sorts a list of 1,000 

values, which were initially in inverse order. For ease of reference, each primary line 

has been highlighted.

                        Call graph

granularity: each sample hit covers 4 byte(s) for 25.00% of 0.04 seconds

index % time   self  children    called  name

               0.04    0.00     999/999     Do_S_Sort(int *, int) [2]

[1]    100.0   0.04    0.00     999       Find_Least(int const *, int, int) [1]

               0.00    0.00  499500/499500  Compare(int const &, int const &) [4]

-----------------------------------------------

               0.00    0.04       1/1        main [3]

[2]    100.0   0.00    0.04       1     Do_S_Sort(int *, int) [2]

               0.04    0.00     999/999      Find_Least(int const *, int, int) [1]

               0.00    0.00     999/1001     Display(int *, int) [5]

               0.00    0.00     500/500      Swap(int &, int &) [6]

-----------------------------------------------

                                             <spontaneous>

[3]    100.0   0.00    0.04             main [3]

               0.00    0.04       1/1        Do_S_Sort(int *, int) [2]

               0.00    0.00       2/1001     Display(int *, int) [5]

               0.00    0.00       1/1        Get_Data(int *, int) [7]

-----------------------------------------------

               0.00    0.00  499500/499500   Find_Least(int const *, int, int) [1]

[4]      0.0   0.00    0.00  499500     Compare(int const &, int const &) [4]

-----------------------------------------------

               0.00    0.00       2/1001     main [3]

               0.00    0.00     999/1001     Do_S_Sort(int *, int) [2]

[5]      0.0   0.00    0.00    1001     Display(int *, int) [5]

-----------------------------------------------

               0.00    0.00     500/500      Do_S_Sort(int *, int) [2]

[6]      0.0   0.00    0.00     500     Swap(int &, int &) [6]

-----------------------------------------------

               0.00    0.00       1/1        main [3]

[7]      0.0   0.00    0.00       1     Get_Data(int *, int) [7]

-----------------------------------------------



Index by function name

[4] Compare(int const &, int const &) [2] Do_S_Sort(int *, int)

[7] Get_Data(int *, int)              [5] Display(int *, int)

[1] Find_Least(int const *, int, int) [6] Swap(int &, int &)

The meaning of each field is based on its context (i.e., the line's designation): primary, 

function's callers (call this function), or called functions (called by this function).

FIELD PRIMARY FUNCTION'S 

CALLERS

CALLED FUNCTIONS

index Index number of this 

function.

  

% time Percent of total time 

spent in this function 

and its children.

  

self Total amount of time 

just spent in this 

function (same as self 

seconds value in flat 

profile).

Estimate of time spent in 

this function when 

invoked by the .caller 

function.

Estimate of time spent 

in called function.

children Total amount of time 

spent in the function 

calls made by this 

function.

Estimate of time spent in 

calls to its children.

Estimate of time spent 

in the children of the 

called function.

called Number of times this 

function was called. A 

+is used to separate 

recursive calls.

Number of times this 

function is called; the 

total number of 

nonrecursive calls.

Number of times this 

function is called; the 

total number of 

nonrecursive calls.

name The name and index 

number of the function.

The name and index 

number of the function.

The name and index 

number of the function.

If we look at the first entry in the call graph output, we note that the primary line is 

flagged by [1]. The associated function, Find_Least, is called by the Do_S_Sort function 

999 times. In turn, the Find_Least function calls the Compare function 499,500 times.



The gprof utility can be directed to display an annotated source code listing where it 

identifies the number of calls for the function. To produce this output, the source 

program must be compiled with the -g option, and gprof passed the -A option (indicating 

annotated source). Using our same source program, this sequence would be

linux$ g++ -g ss.cxx -pg -o ss

linux$ ss < data_reverse > /dev/null

linux$ gprof -A ss

As shown below, gprof's output lists the program source code and indicates the 

number of times each function is called. At the end of the listing, it displays a top 10 

list indicating the top 10 lines based on their execution activity. Following the top 10 

list is an execution summary.

*** File /home/faculty/gray/revision/profile/ss.cxx:

                #include <iostream>

                using namespace std;                   // Function prototypes

                void Get_Data  ( int [], int );

                void Display   ( int [], int );

                void Do_S_Sort ( int [], int );

                int  Find_Least( const int [], int, int );

                int  Compare   ( const int &, const int & );

                void Swap      ( int &, int & );

                int

       ##### -> main( ) {

                  const int max = 1000;

                  int List[max];

                  Get_Data ( List, max );              // Obtain data

                  cout << "Initial list" << endl;

                  Display  ( List, max );              // Show it

                  Do_S_Sort( List, max );              // Sort it

                  cout << "Sorted list" << endl;

                  Display  ( List, max );              // Show it again

                  return 0;

                }

                // Obtain data to sort from standard input

                void

           1 -> Get_Data(int a[], int n) {

                  cout << "Please enter " << n << " integers" << endl;

                  for(int i=0; i < n; ++i)

                     cin >> a[i];

                }

                // Display the current contents of list

                void



        1001 -> Display(int a[], int n) {

                  for(int i=0; i < n; ++i)

                     cout << " " << a[i];

                  cout << endl;

                }

                //  Do the Selection Sort, Display after each pass

                void

           1 -> Do_S_Sort( int a[], int n ){

                  int index;

                  for (int i=0; i < n-1; ++i){

                    index=Find_Least( a, i, n );

                    if ( i != index )

                      Swap( a[i], a[index] );

                    cout << "After pass " << i+1 << " : ";

                    Display( a, n );

                  }

                }

                //  Find the index of the least element in list

                int

         999 -> Find_Least( const int a[], int start, int stop ){

                  int Index_of_Least = start;

                  for (int i=start+1; i < stop; ++i )

                    if ( Compare(a[i], a[Index_of_Least]) )

                      Index_of_Least = i;

                  return Index_of_Least;

                }

                //  Compare two data elements

                int

      499500 -> Compare( const int &a, const int &b ){

                  return ( a < b );

                }

                //  Exchange two data elements

                void

         500 -> Swap( int &a, int &b ){

                  int temp;

                  temp = a;

                  a    = b;

                  b    = temp;

       ##### -> }

Top 10 Lines:

     Line      Count

       58     499500

       30       1001

       49        999

       63        500

       23          1



       37          1

Execution Summary:

        8   Executable lines in this file

        8   Lines executed

   100.00   Percent of the file executed

   502002   Total number of line executions

 62750.25   Average executions per line

While the gprof utility is helpful in analyzing the execution of programs, the current 

Linux version of this utility does have a serious limitation. As implemented, the utility 

uses a signal handler to collect profile information. The signal handler is invoked by 

the periodic generation of a SIGPROF (27) signal. When a child process is generated 

via a fork or a new thread is created with a call to pthread_create, they do not, by default, 

receive these signals. As a result, no profile data is collected for the child process or 

new thread.

      

Top
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