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The topic of interprocess communication techniques is broad, challenging and
dynamic. All but the most basic operating systems provide methods for processes
communication. Early on, UNIX supported a number of rudimentary process
communication constructs (such as lock files, signals and pipes). In the early 1980s,
facilities such as message queues, semaphores, and shared memory were added to
the mix by AT&T with its release of UNIX System V. Somewhat concurrently, the
Berkeley Software Distribution added support for Internet protocols (4.3BSD) and the
socket interface as a communication construct. By the mid-1990s, threads and
multithreaded programming techniques were making significant, permanent inroads
into the UNIX mainstream.

Along the way, UNIX spawned innumerable UNIX-like operating systems. One such
operating system was MINIX. MINIX, written by Andrew S. Tanenbaum, is a small
(about twelve thousand lines) PC version of UNIX. MINIX was presented as a
pedagogical tool to permit the user to gain a better understanding of the inner working
of a UNIX-like operating system. As all of the operating system source code was



provided, the user could tinker with the code and refine its functionality. As a university
student, Linus Torvalds' exposure to MINIX led him to develop a more robust
UNIX-like operating system called Linux. In brief, Linux is a freely distributed hybrid
version of UNIX. Linux system administration is BSD-like while its programming
environment has a definite AT&T flavor. A number of commercial versions of Linux
populate the market. These versions bundle Linux with a variety of other operating
system related utilities and software packages. One of the more widely distributed
commercial versions is Red Hat Linux. Red Hat Linux includes Richard Stallman's
GNU project C (gcc) and C++ (g++) compilers.

This text explores the intricacies of interprocess communications as supported by Red
Hat Linux version 7.3 and 8.0. It is assumed that the reader has a working knowledge
of C/C++ programming. It is further assumed that while not being an expert, the
reader has worked in a UNIX type environment and is reasonably familiar with
generating and editing text using an editor such as vi or pico (available from the
University of Washington). This text makes extensive references to specific system
calls and predefined library functions. The reader is encouraged to read the manual
pages for each system call/library function as it is encountered. As in UNIX, the
manual pages in Linux are an unparalleled source of information. Eééendix Al covers
the format and use of manual pages.

All programming references and examples were generated on a PC Pentium-based
platform running Red Hat Linux 7.3, using the GNU C/C++ compiler version 2.96. With
the release of Red Hat Linux 8.0 and GNU 3.2 the examples were revisited and
tweaked where necessary. Many of the examples and most of the exercises have also
been compiled and run in a Solaris 2.8 setting using GNU 2.95. Most often, few if any
modifications were needed to generate clean, executable code in this alternate
environment.

Each example is a complete standalone program. Command line examples, except
where noted, are Korn shell based. In any setting, IPC (interprocess communication)
support must be available for the user to pursue the materials covered in the chapters
on semaphores, message queues, and shared memory. When Linux is installed,
usually IPC support is enabled (check the /proc directory for the presence of the sysvipc
directory). If it is not present you may need to modify system configuration files and
recompile the kernel. There are a number of places that one can peruse for
information on how this might be done. One source of information is the Configure.help



file that resides in the /usr/src/linuxXXXX/Documentation subdirectory (where XXXX is the
version of Linux). A second source is the URL http://www.tldp.org/docs.html. However,

unless you are the system administrator, you most likely will want to seek help when

doing this. To work with threads, a POSIX compliant thread library (such as
LinuxThreads) must be available. Fortunately, most new versions of Linux come with
thread libraries that are distributed with the GNU compiler (check the /usr/lib directory
for files names containing pthread, €.g., libpthread.a or libpthread.so). The URL
Etté://sources.reqlhat.com/qlibc provides a web page with additional information on

glibc the GNU libc program.

Works of any complexity are never completely finished. Your comments, suggestions,
corrections, and exercise solutions are welcome. | can be contacted at

Erav@cs.ha_rtford.edi]. Program examples can be obtained at jww.phptr.com/gray.
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1.1 Introduction

Fundamental to all operating systems is the concept of a process. A process is a
dynamic entity scheduled and controlled by the operating system. While somewhat
abstract, a process consists of an executing (running) program, its current values,
state information, and the resources used by the operating system to manage the
process. In a UNIX-based operating system, such as Linux, at any given point in time,
multiple processes appear to be executing concurrently. From the viewpoint of each of
the processes involved, it appears they have access to and control of all system
resources as if they were in their own standalone setting. Both viewpoints are an
illusion. The majority of operating systems run on platforms that have a single
processing unit capable of supporting many active processes. However, at any point
in time, only one process is actually being worked upon. By rapidly changing the
process it is currently executing, the operating system gives the appearance of
concurrent process execution. The ability of the operating system to multiplex its
resources among multiple processes in various stages of execution is called
multiprogramming (or multitasking). Systems with multiple processing units, which by
definition can support true concurrent processing, are called multiprocessing.

As noted, part of a process consists of the execution of a program. A program is an
inactive, static entity consisting of a set of instructions and associated data.

If a program is invoked multiple times, it can generate multiple processes. We can
consider a program to be in one of two basic formats:

® source program— A source program is a series of valid statements for a
specific programming language (such as C or C++). The source program is
stored in a plain ASCII text file. For purposes of our discussion we will consider
a plain ASCII text file to be one that contains characters represented by the
ASCII values in the range of 32—127. Such source files can be displayed to the
screen or printed on a line printer. Under most conditions, the access
permissions on the source file are set as nonexecutable. A sample C++

language source program is shown in Program 1.1
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® executable program— An executable program is a source program that, by

way of a translating program such as a compiler, or an assembler, has been

put into a special binary format that the operating system can execute (run).

The executable program is not a plain ASCII text file and in most cases is not

displayable on the terminal or printed by the user.

Program 1.1 A source program in C++,

File : p1.1.cxx
|/
| Display Hello World 3 times
|
| #include <iostream>
+ #include <unistd.h> /I needed for write
| #include <cstring> /I needed for strcpy
| #include <cstdlib> /I needed for exit
| using namespace std;
| char *cptr = "Hello World\n"; // static by placement
10 char bufferl[25];
| intmain(){
| void showit(char *); / function prototype
| int i=0; /I automatic variable
| strcpy(bufferl, "A demonstration\n™); // library function
+ write(1, bufferl, strlen(bufferl)+1); // system call
| for (;i<3; ++i)
| showit(cptr); I function call
| return O;
|}
20 void showit( char *p ){
| char *buffer2;
| buffer2= new char[ strlen(p)+1 J;
| strcpy(buffer2, p); /I copy the string
| cout << buffer2; /I display string
+ delete [] buffer2; I/l release location
|}

4 Previous | | M et I*l
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1.2 Library Functions

Programs of any complexity make use of functions. A function is a collection of
declarations and statements that carries out a specific action and/or returns a value.
Functions are either defined by the user or have been previously defined and made
available to the user. Previously defined functions that have related functionality or are
commonly used (e.g., math or graphics routines) are stored in object code format in
library (archive) files. Object code format is a special file format that is generated as an
intermediate step when an executable program is produced. Like executable files,
object code files are also not displayed to the screen or printed. Functions stored in
library files are often called library functions or runtime library routines.

The standard location for library files in most UNIX systems is the directory /usr/lib.
Ancillary library files may also be found in the /usr/local/lib directory. Two basic types of
libraries are used in compilations—static libraries and shared object libraries. Static
libraries are collections of object files that are used during the linking phase of a
program. Referenced code is extracted from the library and incorporated in the
executable image. Shared libraries contain relocatable objects that can be shared by
more than one application. During compilation the object code from the library is not
incorporated in the executable code only a reference to the object is made. When the
executable that uses a shared object library is loaded into memory the appropriate
shared object library is loaded and attached to the image. If the shared object library is
already in memory this copy is referenced. As might be expected shared object
libraries are more complex than static libraries. In Linux, by default, shared object
libraries are used if present otherwise static libraries are used. Most, but not all,
compiler installations include both types of libraries. In the examples below we will
focus on the more ubiquitous static libraries.

By convention, the three-letter prefix for a library file is lib and the file extension for a
static library is .a. The UNIX archive utility ar, which creates, modifies, and extracts

members from an archive, can be used to examine library file contents.= For

example, the command



M The archive utility is one of the many exceptions to the rule that all
command-line options for system utilities begin with a hyphen (-).

linux$ ar t /usr/lib/libc.a | pr -4 -t

will pipe the table of contents (indicated by the t command-line option) of the standard
C library file (libc.a) to the pr utility, which will display the output to the screen in a
four-column format. The object code in this library is combined by default with all C
programs when they are compiled. Therefore, in a C program when a reference is
made to printf, the object code for the printf function is obtained from the /usr/lib/libc.a
library file. Similarly, the command

linux$ ar t /usr/lib/libstdc++-3-libc6.2-2-2.10.0.a | pr -4 -t

will display the table of contents of the C++ library file used by the gcc compiler.
Remember that the versions (and thus the names) of library files can change when
the compiler is updated.

Additional information can be extracted from library files using the nm utility. For
example, the command

linux$ nm -C /ust/lib/libstdc++-3-libc6.2-2-2.10.0.a | grep 'bool operator=="

will find all the C++ equality operators in the referenced library file. The -C
command-line option for nm demangles the compiler-generated C++ function names
and makes them a bit more readable.

The ar command can also be used to create a library. For example, say we have two
functions. The first function, called ascii, is stored in a file called ascii.cxx. This function
generates and returns an ASCII string when passed the starting and endpoint for the
string. The second function, called change_case (stored in the file change_case.cxx),

accepts a string and inverts the case of all alphabetic characters in the string. The
listing for the two programs is shown in Eigure 1.1|.
Figure 1.1 Source code for two functions to be stored in archive libomy_demo.a.

File : ascii.cxx
| char*
| ascii( int start, int finish ){
|  char *b = new char(finish-start+1);



|  for (inti=start; i <= finish; ++i)
+ b[i-start]=char( i );

|  returnb;

I

}

File : change_case.cxx
| #include <ctype.h>

I

| char*

| change_case( char *s ){

+ char *t = &s[0];

| while ( *t ){

| if (isalpha(*t) )

| *t += islower(*t) ? -32 : 32;
| ++;

10 }

| return s;

|}

Each file is compiled into object code, the archive liomy_demo.a generated, and the
object code added to the archive with the following command sequence:

linux$ g++ -c change_case.cxx
linux$ g++ -c ascii.cxx
linux$ ar cr libmy_demo.a ascii.o change_case.o

The prototypes for the functions in the my_demo library are placed in a corresponding
header file called my_demo.h. Preprocessor directives are used in this file to prevent it
from being inadvertently included more than once. A small C++ program, main.cxx, iS
created to exercise the functions. With the " notation for the include statement in
main.cxx, the compiler will look for the my_demo.h header file in the current directory.
The contents of the my_demo.h header file and the main.cxx program are shown in

Figure 1.2.

Figure 1.2 Header file and test program for libmy_demo.a.

File : my_demo.h
|
| Prototypes for my_demo library functions
|
| #ifndef MY_DEMO_H
+ #define MY_DEMO_H
I



| char *ascii(int, int);
| char*change_case( char *);
I

10 #endif

File : main.cxx
| #include <iostream>
|  #include "my_demo.h"
| using namespace std;
| int
+  main(){
| int start, stop;
| char b[20]; I/l temp string buffer
I
I

cout << "Enter start and stop value for string: ";
10 cin >> start >> stop;
| cout << "Created string : " << ascii(start, stop) << endl;
| cin.ignore(80,\n");
| cout << "Enter a string : ";
| cin.getline(b,20);
+ cout << "Converted string: " << change_case( b ) << endl;
| return O;
I

The compilation shown below uses the -L command-line option to indicate that when
the compiler searches for library files it should also include the current directory. The
name of the library is passed using the - command-line option. As source files are
processed sequentially by the compiler, it is usually best to put linker options at the
end of the command sequence to avoid the generation of any undefined reference
errors.

linux$ g++ -0 main main.cxx -L. -lmy_demo

A sample run of the main.cxx program is shown in Eigure 1.3.

Figure 1.3 Sample run testing the archived functions.

linux$ main <-- 1
Enter start and stop value for string: 56 68
Created string : 89:;<=>?@ABCD

Enter a string : This is a TEST!

Converted string: tHIS IS A test!




(2) If your distribution of Linux does not include "." as part of its login
path you will need to invoke the program as ./main.

If your system supports the apropos command, you may issue the following command
to obtain a single-line synopsis of the entire set of predefined library function calls
described in the manual pages on your system:

linux$ apropos '(3'

As shown, this command will search a set of system database files containing a brief
description of system commands returning those that contain the argument passed. In
this case, the '(3 indicates all commands in Section 3 of the manual should be
displayed. Section 3 (with its several subsections) contains the subroutine and library
function manual pages. The single quotes are used in the command sequence so the
shell will pass the parenthesis on to the apropos command. Without this, the shell
would attempt to interpret the parenthesis, which would then produce a syntax error.

Another handy utility that searches the same database used by the apropos command
IS the whatis command. The command

linux$ whatis exit

would produce a single-line listing of all manual entries for exit. If the database for
these commands is not present, the command /usr/ shin/makewhatis, providing you have
the proper access privileges, will generate it.

A more expansive overview of the library functions may be obtained by viewing the
intro manual page entry for Section 3. On most systems the command

linux$ man 3 intro

will return the contents of the intro manual page. In this invocation the 3 is used to
notify man of the appropriate section. For some versions of the man command, the
option -s3 would be needed to indicate Section 3 of the manual. Additional manual

age information addressing manual page organization and use can be found in
Eézendix A, "Using Linux Manual Pages."

In addition to manual pages, most GNU/Linux systems come with a handy utility



program called info. This utility displays documentation written in Info format as well as
standard manual page documents. The information displayed is text-based and
menu-driven. Info documents can support limited hypertext-like links that will bring the
viewer to a related document when selected. When present, Info documentation is
sometimes more complete than the related manual page. A few of the more
interesting Info documents are listed in .

Table 1.1. Partial Listing of Info Documents.

Topic Description

as The GNU assembler.
binutils - GNU binary utilities (such asar).
fileutils - GNU file manipulation utilities.

gee The gee (and g++) compiler. Look here for information on how to use the
compiler, special C++ extensions, etc.

gdb How to use the GNU symbolic debugger.

info How to use the info system. Look here for all the gory details on how to use
info and write Info type documentation.

ipc System V style interprocess communication constructs: message queues,
semaphores, and shared memory.

libc  The C library (as implemented by GNU). A good place to start for an
overview on topics such as signals, pipes, sockets, and threads.

The info utility should be invoked on the command line and passed the item (a general
topic or a specific command—system call, library function, etc.) to be looked up. If an
Info document exists, it is displayed by the info utility. If no Info document exists but
there is a manual page for the item, then it is displayed (at the top of the Info display
will be the string *manpages* to notify you of the source of the information. If neither an
Info document nor a manual page can be found, then info places the user in the info
utility at the topmost level. When in the info utility, use the letter q to quit or a ? to have
info list the commands it knows. Entering the letter h will directinfo to display a primer
on how to use the utility.
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1.3 System Calls

Some previously defined functions used by programs are actually system calls. While
resembling library functions in format, system calls request the operating system to
directly perform some work on behalf of the invoking process. The code that is
executed by the operating system lies within the kernel (the central controlling
program that is normally maintained permanently in memory). The system call acts as
a high/mid-level language interface to this code. To protect the integrity of the kernel,
the process executing the system call must temporarily switch from user mode (with
user privileges and access permissions) to system mode (with system/root privileges
and access permissions). This switch in context carries with it a certain amount of
overhead and may, in some cases, make a system call less efficient than a library
function that performs the same task. Keep in mind many library functions (especially
those dealing with input and output) are fully buffered and thus allow the system some
control as to when specific tasks are actually executed.

Section 2 of the manual contains the pages on system calls. Issuing an apropos
command similar to the one previously discussed but using the value 2 in place of 3
will generate synopsis information on all the system calls defined in the manual pages.
It is important to remember that some library functions have embedded system calls.
For example, << and >>, the C++ insertion and extraction operators, make use of the
underlying system calls read and write.

The relationship of library functions and system calls is shown in . The
arrows in the diagram indicate possible paths of communication, and the dark circles
indicate a context switch. As shown, executable programs may make use of system
calls directly to request the kernel to perform a specific function. On the other hand,
the executable programs may invoke a library function, which in turn may perform
system calls.

Figure 1.4, Hardware and software layers.
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1.4 Linking Object Code

Code from library files, predefined or user-defined, is combined with object code from
the source program at compile time on an as-needed basis. When programming in
C/C++, additional library files containing the object code for system calls and library
functions not contained in the standard library can be specified at compile time. This is
done by using the -I compiler option, followed by the library name without the lib prefix
and the .a extension. For example, the compilation command

linux$ gcc prgm.c -Im

indicates to the link-loader portion of the gcc compiler program that the math library
object code found in libm.a should be combined with the object code created from the
source program prgm.c. If a special library is needed that does not reside in the
standard location, the compiler can be notified of this. The GNU compilers use the -L
option, followed by the additional directory (or directories) to be searched. The
processing of files passed on the command line to the compiler are done sequentially.
Thus, linker options are usually placed at the end of the command sequence to avoid
any undefined (unresolved) reference errors.

Be aware that library functions often require the inclusion of additional header files in
the source program. The header files contain such information as the requisite
function prototypes, macro definitions, and defined constants. Without the inclusion of
the proper header files, the program will not compile correctly. Conversely, the
program will not compile correctly if you include the proper header file(s) and forget to
link in the associated library containing the object code! Such omissions are often the
source of cryptic compiler error messages. For example, attempting to compile a C
program with gcc that uses a math function (such as pow) without linking in the math
library generates the message

linux$ gcc m.c

/tmp/ccjKMi3A.o: In function 'main":
Itmp/ccjKMi3A.o(.text+0x15): undefined reference to ‘pow'
collect2: Id returned 1 exit status
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The synopsis section of the manual page (see Eééendix Al) lists the names of header
file(s) if they are required. When multiple inclusion files are indicated, the order in
which they are listed in the source program should match the order specified in the
manual pages. The order of the inclusion is important, as occasionally the inclusion of
a specific header file will depend upon the inclusion of the previously referenced
header file. This dependency relationship is most commonly seen as the need for
inclusion of the <sys/types.h> header file prior to the inclusion of other system header
files. The notation <sys/types.h> indicates that the header file types.h can be found in the
usual place (most often /usr/include on a UNIX-based system) in the subdirectory sys.

1-1 EXERCISE

Examine the contents of the standard C library (fusr/lib/libc.a). How many

printf-related functions are archived in the standard C library?

1-2 EXERCISE

Are there any library functions/system calls that occur in more than one
library? If so, name one and explain why this might be done.

1-3 EXERCISE

Add a reverse function to themy_demo library discussed infSection 1.2. This
function should reverse the contents of its character string argument.
Provide evidence that your function works correctly.

4 Previous | | Mt Irl
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1.5 Managing Failures

In most cases, if a system call or library function is unsuccessful, it returns a value of
-1 and assigns a value to an external (global) variable called errno to indicate what the
actual error is. The defined constants for all error codes can be found in the header file
<sys/errno.h> (Or in <asm/errno.h> on some systems). By convention, the defined
constants are in uppercase and start with the letter E. It is a good habit to have the
invoking program examine the return value from a system call or library function to
determine if it was successful. If the invocation fails, the program should take an
appropriate action. A common action is to display a short error message and exit
(terminate) the program. The library function perror can be used to produce an error
message.

2 This type of hedging is necessary, since system calls/library functions
that return an integer value usually return a -1 on failure, while those
that return a pointer return a NULL pointer. However, as these routines
are written by a disjointed set of programmers with differing ideas on
what should be done, a return value that does not meet this rule of
thumb is occasionally encountered.

For each system call and library function discussed in detail in the text, a summary
table is given. The summary table is a condensed version of manual page information.
The format of a typical summary table (in this case the one for perror) is shown in

igure 1.5.

Figure 1.5. Explanation of the summary table format.

The header filefs) that must be included when using the Manual section where the full description can be

library function'system call. These are the ANSI-C header found _":"':'m': library fun clions' system calls are
file{s), Mote some of these have an ANSI-C+—+ equrvalent tound in more than one section of the manual

Manual 3
Include Fileis) <stdio.h> Section

] a1 A merrar i coanat chaor g §or
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The summary table for perror indicates the header file <stdio.h> must be included if we
are to use perror. Notice that the header file <sys/errno.h>, which was mentioned
previously, is not referenced in the summary table. The <sys/errno.h> file is included
only if the defined constants for specific error codes are to be referenced. The perror
library function takes a single argument, which is a pointer to a character string
constant (i.e., const char *). In addition, the perror library function does not return a value
(as indicated by the data type void) and will not modify errno if it itself fails.

A program example using systems calls that provides some error checking by perror
and errno is shown in Program 1.2.

Program 1.2 Using errno and perror.

File : p1.2.cxx

|/

| Checking errno and using perror

|

| #include <iostream>

+  #include <cstdio> /I needed for perror
#include <cstdlib> /I needed for exit
#include <unistd.h> /I needed for read and write

using namespace std;
extern int errno;

10 int

| main(int argc, char *argv[ ]) {

| int n_char =0, /I # of chars read

| buffer[10]; /l temporary buffer

|

+ /Il Initially n_char is set to 0 and errno is 0 by default

| cout << "n_char =" << n_char << "\t errno = " << errno << end|;
I

/I Display a prompt to stdout
20



n_char = write(1, "Enter a word: ", 15);

/I Use the read system call to obtain 10 characters from stdin

I

I

I

I

+ n_char = read(0, buffer, 10);
| cout << "n_char =" << n_char << "\t errno = " << errno << endl;
I

I

I

if (n_char ==-1) { /I If the read has failed
perror(argv[0]);
30 exit(1);
|}
I
| n_char = write(1, buffer, n_char); // Display the characters read
| return O;
+ )

Notice that to use the errno variable it must first be declared as an external (extern)
integer at the top of the program. If this p'ozram is run, the initial output indicates that

both n_char and errno contain the value 0. Eigure 1.6 shows the output if the user enters
the word testing when prompted.

Figure 1.6 Initial run of }Pro;ram 1.£ with no errors.

linux$ p1.2

n char=0 errmno=0
Enter a word: testing

n char=8 ermno=0
testing

In this case the read system call did not fail and has instead, as defined in the manual
page, returned the number of characters read from standard input (the keyboard).
Note, as we have used read in the program, not cin, the newline will be one of the
characters that is read and counted. As there was no error, the value in errno was not
modified and remained at O. shows the output if we run the program again
and input more than 10 characters when prompted (in hopes of generating an error).

Figure 1.7 Second run of With additional keyboard input.

$pl.2

n char=0 ermo=0
Enter a word: testing further
n_char=10 errno=0



testing fu$rther
rther: Command not found.

This time the program reads exactly 10 characters and displays them. The remaining
characters are left in the input buffer and end up being processed by the operating
system after the program finishes execution. This produces the output of the strange
line testing fusrther followed by the line rther: Command not found. The characters testing fu
are displayed by the program. The Command not found message is generated by the
operating system when it attempts to execute the leftover input rther as a command. In
this case, providing more input values than needed (i.e., extra characters) does not
cause the read system call to fail, and as a result errno is not changed.

However, if we change the file number for the read system call to 3 (a file number that
has not been opened versus 0 [standard input] which is automatically opened for us by
the operating system when the program runs), the read system call will fail. When run,
the program output will be as shown in .

Figure 1.8 Third run of with an induced error.

linux$ p1.2

n char=0 ermo=0

Enter aword: n_char=-1 errno=9
pl.2: Bad file descriptor

As expected, this time the return value from the read system call is -1. The external
variable errno now contains the value 9 that is equivalent to the symbolic constant

EBADF defined in the <sys/errno.h> file.
message "Bad file descriptor" will be displayed (the error message the system

If we call perror with a NULL argument, ", the

associates with error code 9). As noted, perror does take one argument: a character
pointer. If passed a character pointer to a valid string, perror will display the referenced
string followed by a colon (:) and then append its predefined error message.
Programmers often use the argument to perror to qualify the error message (e.g., to
pass the name of the executing program, as was done in the prior example) or in the
case of file manipulation, pass the name of the current file. Unfortunately, perror issues
a new line following the error message it produces, thus preventing the user from
appending additional information to the perror display line. There are two ways around
this oversight.



3] Again, in some Linux environments you may find that this constant is
actually defined in the errno.h include file located in the directory
lusrfinclude/asm directory.

Associated with perror are two additional external variables. These variables are extern
const char *sys_errlist[ ] and extern int sys_nerr. The external variable sys_nerr contains a
value that is one greater than the largest error message number value, while sys_errlist
IS a pointer to an external character array of error messages. In place of calling perror
to return the specific error, we may (if we have provided the proper declarations) use
the value in errno to index the sys_errlist[ ] array to obtain the error message directly.

Another approach to error message generation is to use the library function strerror
Table 1.5).

(see

Table 1.2. Summary of the strerror Library Function.

Include File(s) <string.h> Manual Section 3
Summary char *strerror(int errnum);

Success Failure Sets errno
Return Reference to error message

The strerror function maps the integer errnum argument (which is usually the errno value)
to an error message and returns a reference to the message. The error message
generated by strerror should be the same as the message generated by perror. If
needed, additional text can be appended to the string returned by strerror.

Furthermore, Linux provides a command-line utility program called perror that returns
the error message associated with a specific error code. A sample call of this utility
follows:

linux$ perror 9
Error code 9: Bad file descriptor

Note that the system never clears the erro variable (even after a successful system

call). It will always contain the value assigned by the system for the last failed call.
, 'Einux Error Messaqe;," contains additional information on error




messages.

1-4 EXERCISE

Write a program to display all of the available system error messages in a

numbered two-columns-per-line format.

1-5 EXERCISE

The first argument to the read/write system call is an integer value indicating
the file descriptor. When a program executes, the operating system will
automatically open three file descriptors: stdin (standard input, which defaults
to the keyboard and is referenced by the value 0), stdout (standard output,
which defaults to the terminal [screen] and is referenced by the value 1), and
stderr (standard error, which defaults to the console device and is referenced
by the value 2). If the last write in Program 1.2 is written to 0 (standard

input—the keyboard), the program will still compile, run, produce output, and
not generate an error message. Why is this? One place to start to unravel
this mystery might be the command apropos stdin.

1-6 EXERCISE

Write your own error messaging function that is called when a file
manipulation failure occurs. The function should provide a more descriptive,
user-friendly interface thanperror. It might be helpful to examine the header
file <sys/erro.h> (as noted previously, an alternate location for this file is the
lusr/include/asm directory) and the manual page entry forintro in Section 2 (i.e.,

man 2 intro) prior to starting this assignment.
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1.6 Executable File Format

In a Linux environment, source files that have been compiled into an executable form
to be run by the system are put into a special format called ELF (Executable and
Linking Format). Files in ELF format contain a header entry (for specifying
hardware/program characteristics), program text, data, relocation information, and
symbol table and string table information. Files in ELF format are marked as
executable by the operating system and may be run by entering their name on the
command line. Older versions of UNIX stored executable files in a.out format
(Assembler OUtpuT Format). While this format is little used today, its name is still tied
to the compilation sequence. When C/C++ program files are compiled, the compiler,
by default, places the executable file in a file called a.out.

1-7 EXERCISE

The layout of the header entry of an ELF format file is defined by the
EIf32_Ehdr (or Elfé4_Ehdr) structure found in the header file<elf.h>. Write a short
C/C++ program that will read the name of a file passed on the command line
and determine if the file named is in ELF format and, if so, on what
architecture (hardware) type the file will run. You will need to include the
header file <libelf/libelf.n> to access predefinedELF header routines, such as
elf_begin (used to obtain theELF descriptor). You must also link theELF library
(i.e., -lelf)y when you compile your program. Note that the system utilityfile,
which identifies file types, uses the information in the file /usr/share/magic to
identify files. An alternate approach to this exercise is to use the
lusr/share/magic information to identify anELF file and the architecture on which
it will execute.
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4 Previous | | Mext Irl

1.7 System Memory

In UNIX, when an executable program is read into system memory by the kernel and
executed, it becomes a process. We can consider system memory to be divided into
two distinct regions or spaces. First is user space, which is where user processes run.
The system manages individual user processes within this space and prevents them
from interfering with one another. Processes in user space, termed user processes,
are said to be in user mode. Second is a region called kernel space, which is where
the kernel executes and provides its services. As noted previously, user processes
can only access kernel space through system calls. When the user process runs a
portion of the kernel code via a system call, the process is known temporarily as a
kernel process and is said to be in kernel mode. While in kernel mode, the process will
have special (root) privileges and access to key system data structures. This change
in mode, from user to kernel, is called a context switch.

In UNIX environments, kernels are reentrant, and thus several processes can be in
kernel mode at the same time. If the system has a single processor, then only one
process will be making progress at any given time while the others are blocked. The
operating system uses a bit, stored in the program status word (PSW), to keep track
of the current mode of the process.

4 Previous | | Mext Irl
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1.8 Process Memory

Each process runs in its own private address space. When residing in system memory, the user
process, like Gaul, is divided into three segments or regions: text, data, and stack.

® text segment— The text segment (sometimes called the instruction segment) contains the
executable program code and constant data. The text segment is marked by the operating
system as read-only and cannot be modified by the process. Multiple processes can share the
same text segment. Processes share the text segment if a second copy of the program is to be
executed concurrently. In this setting the system references the previously loaded text
segment rather than reloading a duplicate. If needed, shared text, which is the default when
using the C/C++ compiler, can be turned off by using the -N option on the compile line. In
, the executable code for the functions main and showit would be found in the text
segment.

® data segment— The data segment, which is contiguous (in a virtual sense) with the text
segment, can be subdivided into initialized data (e.g., in C/C++, varies that are declared as
4

i brogram 1.4 the

pointer variable cptr would be found in the initialized area and the variable bufferl in the

static or are static by virtue of their placement) and uninitialized data.

uninitialized area. During its execution lifetime, a process may request additional data segment
space. In the call to the library routine new in the showit function is a request for
additional data segment space. Library memory allocation routines (e.g., new, malloc, calloc,
etc.) in turn make use of the system calls brk and sbhrk to extend the size of the data segment.
The newly allocated space is added to the end of the current uninitialized data area. This area
of available memory is sometimes called the heap. In this region of memory is
labeled as unmapped.

[41 Some authors use the term BSS segment for the unitialized data segment.

Figure 1.9. System and process memory.
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® stack segment— The stack segment is used by the process for the storage of automatic
identifiers, register variables, and function call information. The identifier i in the function main,
buffer2 in the function showit, and stack frame information stored when the showit function is
called within the for loop would be found in the stack segment. As needed, the stack segment
grows toward the uninitialized data segment. The area beyond the stack contains the
command-line arguments and environment variables for the process. The actual physical
location of the stack is system-dependent.
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1.9 The u Area

In addition to the text, data, and stack segments, the operating system also maintains
for each process a region called the u area (user area). The u area contains
information specific to the process (e.g., open files, current directory, signal actions,

accounting information) and a system stack segment for process use. If the process
makes a system call (e.g., the system call to write in the function main in Proéram l.ﬂ),

the stack frame information for the system call is stored in the system stack segment.
Again, this information is kept by the operating system in an area that the process
does not normally have access to. Thus, if this information is needed, the process
must use special system calls to access it. Like the process itself, the contents of the u
area for the process are paged in and out by the operating system.

The conceptual relationship of system and process memory is illustrated in .
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1.10 Process Memory Addresses

The system keeps track of the virtual addresses associated with each user process

segment. This address information is available to the process and can be obtained by

referencing the external variables etext, edata, and end. The addresses (not the

contents) of these three variables correspond respectively to the first valid address

above the text, initialized data, and uninitialized data segments.
how this information can be obtained and displayed.

Program 1.3 shows

5] Logical addresses—calculated and used without concern as to their

actual physical location.
Program 1.3 Displaying segment address information.

File : p1.3.cxx

|/

| Displaying process segment addresses

|

| #include <iostream>

+ extern int etext, edata, end;

| using namespace std;

| int

| main( X
| cout << "Adr etext: " << hex << int(&etext) << "\t ";
10 cout << "Adr edata: " << hex << int(&edata) << "\t *;
| cout << "Adrend: " << hex<<int(&end ) <<"\n";
| return O;
I

}

If we add a few lines of code to our original Program 1.1, we can verify the virtual

address location of key identifiers in our program.
function, SHW_ADR(), to display the address of an identifier.

Program 1.4 Confirming address locations.

File : p1.4.cxx

Program 1.4 incorporates an inline



I
I
I
I
+
I
I
I
I
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I
I
I
I
+
I
I
I
I
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I
I
I
I
+
I
I
I
I
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I
I
I
I
+
I
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I
I
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I
I
I
I
+
I

/*

Program 1.1 modified to display identifier addresses
*/
#include <iostream>

#include <unistd.h> /I needed for write
#include <cstring> /I needed for strcpy
#include <cstdlib> /I needed for exit
using namespace std;
char *cptr = "Hello World\n"; // static by placement

char bufferl[25];

inline void SHW_ADR(char *ID, int address){
cout<<"Theid" << ID << "\tisat:"
<< hex << address << endl;

}

extern int etext, edata, end;

int main( {
void showit(char *); /I function prototype
int i=0; /I automatic variable

/l display addresses
cout << "Adr etext: " << hex << int(&etext) << "\t ";
cout << "Adr edata: " << hex << int(&edata) << "\t ";
cout << "Adrend: " << hex <<int(&end) << "\n";
SHW_ADR("main”, int(main)); I/l function addresses
SHW_ADR("showit", int(showit));
SHW_ADR("cptr”, int(&cptr)); /] static
SHW_ADR("bufferl”, int(&bufferl));
SHW_ADR("I", int(&i)); // automatic

strcpy(bufferl, "A demonstration\n™); // library function
write(1, bufferl, strlen(bufferl)+1); // system call
showit(cptr); /I function call

return O;

}

void showit( char *p ){
char *puffer2;
SHW_ADR("buffer2", int(&buffer2)); // display address

if ((buffer2= new char[ strlen(p)+1]) '= NULL){

strcpy(buffer2, p); /I copy the string

cout << buffer2; /I display string

delete [] bufferz; /I release location
}else {

cerr << "Allocation error.\n";
exit(1);



|}
|}

A run of this program produces output ) that verifies our assertions

concerning the range of addresses for identifiers of different storage types. Note the
actual addresses displayed by the program are system-dependent. Note that the

command-line nm utility program can also be used verify the addresses displayed by

Program 1.4.

Figure 1.10 Output of .

Adr etext: 8048bca Adr edata: 8049e18  Adr end: 8049ea8
The id main  is at : 8048890

The id showit is at : 8048a44

The id cptr  is at: 8049c74

The id bufferl is at: 8049e8c

Theidi is at : bffffc54

A demonstration

The id buffer2 is at : bffffc34

Hello World

The output of Proéram 1.;| is presented pictorially in .

Figure 1.11. Address locations in .

etext Text main
8048bca showit
edata Data Initialized cptr
g04%els — |

Uninitialized Data bufferil
end
804%eag Tk

Unmapped (Heap)
Stack bufferz
1

8048E90
8048a44

E0d48az/4

8049e8¢c

bffffcad
bffffc54

For those with a further interest in this topic, many versions of Linux have an objdump

utility that provides additional information for a specified object file.



1-8 EXERCISE

When in the Bourne shell, investigate the commands ulimit -a and size. How
does the information these commands report relate to the values of etext,

edata, and end?
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1.11 Creating a Process

It is apparent that there must be some mechanism by which the system can create a
new process. With the exception of some special initial processes generated by the

kernel during bootstrapping (e.qg., init), all processes in a Linux environment are
created by a fork system call, shown in . The initiating process is termed the

parent, and the newly generated process, the child.

Table 1.3. Summary of the fork System Call.
<sys/types.h>

Include File(s) <unistd.h> Manual Section 2
Summar pid_t fork ( void );
Success Failure Sets errno
Return
0 in child, child process ID in the parent -1 Yes

u The include file <sys/types.h> usually contains the definition of pid_t.
However, in some environments the actual definition will reside in
<bits/types.h>. Fortunately, in these environments the <sys/types.h>
contains an include statement for the alternate definition location, and
all remains transparent to the casual user. The include file <unistd.h>
contains the declaration for the fork system call.

The fork system call does not take an argument. If the fork system call fails, it returns a
-1 and sets the value in errno to indicate one of the error conditions shown in .



B

Table 1.4. fork Error Messages.

# Constant perror Message Explanation
11 EAGAIN Resource The operating system was unable to allocate
temporarily sufficient memory to copy the parent's page
unavailable table information and allocate a task structure for
the child.

12 ENOMEM Cannot allocate  Insufficient swap space available to generate
memory another process.

1t the library function/system call sets errno and can fail in multiple
ways, an error message table will follow the summary table. This table
will contain the error number (#), the equivalent defined constant, the
message generated by a call to perror, and a brief explanation of the
message in the current context.

Otherwise, when successful, fork returns the process ID (a unique integer value) of the
child process to the parent process, and it returns a 0 to the child process. By
checking the return value from fork, a process can easily determine if it is a parent or

child process. A parent process may generate multiple child processes, but each child
process has only one parent. shows a typical parent/child process
relationship.

Figure 1.12. The parent/child process relationship.



As shown, process P1 gives rise to three child processes: C1, C2, and C3. Child
process C1 in turn generates another child process (C4). As soon as a child process
generates a child process of its own, it becomes a parent process.

1-9 EXERCISE

When you check the process status table on a Linux system (see the
process status command ps), a number of processes with low process IDs
(1,2,3, etc.) will be present (for example, init, keventd, kswapd). A search of the
file system(s) will show that while there is a system program called init (most
often found as /sbin/init), there is no system program file for these other
processes. Why is this?

When a fork system call is made, the operating system generates a copy of the parent
process, which becomes the child process. The operating system passes to the child
process most of the parent's system information (e.g., open file descriptors,
environment information). However, some information is unique to the child process:

® The child has its own process ID (PID).
® The child will have a different parent process ID (PPID) than its parent.

® System-imposed process limits (amount of CPU time the process is allotted)
are reset.

® All record locks on files are reset.

® The action to be taken when receiving signals is different.

A program that uses the fork system call is shown in Pro;ram 1.&.

Program 1.5 Generating a child process.



File : p1.5.cxx
|/
| First example of a fork system call (no error check)
|
| #include <iostream>
+ #include <sys/types.h>
|  #include <unistd.h>
| using namespace std;
| int
| main() {
10 cout << "Hello\n";
| fork();
| cout << "bye\n";
| return O;
I

}

The output of the program is listed in .
Figure 1.13 Output of.

linux$ p1.5
Hello

bye

bye

Notice that the statement cout << "bye\n"; only occurs once in the program at line 12, but
the run of the program produces the word "bye" twice—once by the parent process
and once by the child process. Once the fork system call at line 11 is executed there
are two processes each of which executes the remaining program statements. A more

detailed description of the fork system call and its uses can be found in Chapter 3,
"Using Processes."
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1.12 Summary

Processes are instances of executable programs that are run and managed by the
operating system. Programs make use of predefined functions to implement their
tasks. Some of these predefined functions are actually system calls. System calls
request the kernel to directly perform a task for the process. Other predefined
functions are library functions. Library functions, which may indirectly contain system
calls, also perform tasks for the process, but in a less intrusive manner. The object
code for system calls and library functions is stored in object code format in library
files. The object code for system calls and library functions is included, on an
as-needed basis, when a program is compiled.

When a system call or library function fails, the external variable errno can be
examined to determine the reason for failure. The library functions perror or strerror can
be used to generate a descriptive error message.

Executing programs are placed in system memory. The executable code and constant
data for the program are placed in a region known as the text segment. The initialized
and uninitialized program data is placed in the data segment. The program stack
segment is used to handle automatic program variables and function call data. In
addition, the system will keep process-specific information and system call data in the
user area (u area) of memory.

Processes are generated by the fork system call. A newly generated process inherits
the majority of its state information from its parent.
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1.13 Key Terms and Concepts

a.out format
apropos command
ar command
child process
context switch
data segment
ELF format

errno variable
executable program
fork system call
function

heap

info command
kernel

kernel mode
kernel process

kernel space



library file

library function

man command
multiprocessing
multiprogramming
multitasking

nm command

object code

parent process

perror library function
process

program

runtime library routine
source program
stack segment
strerror library function
sys_errlist variable
sys_nerr variable
system call

system mode

text segment



u area

user mode

user process

user space

whatis command
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Chapter 2. Processing Environment
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2.1 Introduction

All processes have a processing environment (not to be confused with environment
variables that are, as we will see, just one part of the processing environment). The
processing environment consists of a unique set of information and conditions that is
determined by the current state of the system and by the parent of the process. A
process can access processing environment information and, in some cases, modify
it. This is accomplished either directly or by using the appropriate system calls or
library functions.

4 Previous | | Hext Pl

(0]


file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/eBook.Prentice_Hall_PTR-Interprocess_Communications_in_Linux.ShareReactor.chm/23021533.htm

4 Previous | | Mext Irl

2.2 Process ID

Associated with each process is a unique positive integer identification number called
a process ID (PID). As process IDs are allocated sequentially, when a system is
booted, a few system processes, which are initiated only once, will always be
assigned the same process ID. For example, on a Linux system process 0 (historically
known as swapper) is created from scratch during the startup process. This process
initializes kernel data structures and creates another process called init. The init

process, PID 1, creates a number of special kernel thread to handle system
management. These special threads typically have low PID numbers.

M Threads are covered in detail in Chaéter 13. Simplistically, a thread is
the flow of control through a process. Operating systems vary on how
they actually implement a thread. In Linux a thread is a special type of
process that shares address space and resources with its parent
process. A kernel thread, which runs only in kernel mode, is responsible
for a single kernel function, such as flushing buffers to disk or
reclaiming returned memory.

Other processes are assigned free PIDs of increasing value until the maximum
system value for a PID is reached. The maximum value for PIDs can be found as the
defined constant PID_MAX in the header file <linux/threads.h> (on older systems check
<linux/tasks.h>). When the highest PID has been assigned, the system wraps around
and begins to reuse lower PID numbers not currently in use.

The system call getpid can be used to obtain the PID ). The getpid system call
does not accept an argument. If it is successful, it will return the PID number. If the
calling process does not have the proper access permissions, the getpid call will fail,
returning a value of — 1 and setting errno to EPERM (1).
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Table 2.1. Summary of the getpid System Call.

Include File(s) <sys/types.h> Manual Section 5
<unistd.h>
Summary pid_t getpid( void );
Success Failure Sets errno
Return The process ID -1 Yes

A process can determine its own PID by use of the getpid system call, as shown in the
following code segment:

cout << "My process ID is " << getpid() << endl;

The getpid system call is of limited use. Usually the PID will be different on each
invocation of the program. The manual page entry for getpid notes that the most
common use for this system call is the generation of unique temporary file names.
However, for everyday use, the library function mkstemp is much better suited for the
production of unique temporary file names.
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2.3 Parent Process ID

Every process has an associated parent process ID (PPID). The parent process is the
process that forked (generated) the child process. The ID of the parent process can

be obtained by using the system call getppid (Table 2.2).

Table 2.2. Summary of the getppid System Call.

Include File(s) <sys/types.h> Manual Section 2
<unistd.h>
Summary Pid_t getppid( void );
Success Failure Sets errno
Return The parent process ID -1 -Yes

Like the getpid system call, getppid does not require an argument. If it is successful, it
will return the PID number of the parent process. The getppid call will fail, returning a
value of -1 and setting errno to EPERM (1) if the calling process does not have the
proper access permissions.

The following code segment displays the PPID:

cout << "My Parent Process ID is " << getppid() << endl;

Unfortunately, there is no system call that allows a parent process to determine the
PIDs of all its child processes. If such information is needed, the parent process
should save the returned child PID value from the fork system call as each child
process is created.

2-1 EXERCISE
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The manual page entry for the getppid system call does not specifically
indicate what is returned by getppid if the parent process is no longer present
when the getppid call is made. Write a program that displays the value
returned by getppid when such an event occurs (the parent predeceases the
child). How did you assure that the parent process was not present when the

child process made its getppid call?
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2.4 Process Group ID

Every process belongs to a process group that is identified by an integer process
group ID value. When a process generates child processes, the operating system
automatically creates a process group. The initial parent process is known as the

process leader. The process leader's PID will be the same as its process group ID.*=
Additional process group members generated by the process group leader inherit the
same process group ID. The operating system uses process group relationships to
distribute signals to groups of processes. For example, should a process group leader
receive a kill or hang-up signal causing it to terminate, then all processes in its group
will also be passed the same terminating signal. A process can find its process group
ID from the system call getpgid. In some versions of Linux you may find the getpgid
system call absent. In these versions the system call getpgrp (which requires no PID
argument) provides the same functionality as the getpgid system call. The getpgid
system call is defined in [Table 2.3.

2] Ah-ha—other than generating temporary file names, another use for
the getpid system call!

Table 2.3. Summary of the getpgid System Call.

Include File(s) <sys/types.h> Manual Section )
<unistd.h>
Summary pid_t getpgid( pid_t pid );
Success Failure Sets errno
Return The process group ID -1 -Yes

If successful, this call will return the process group ID for the pid that is passed. If the
value of pid is 0, the call is for the current process (eliminating the need for a separate

call to getpid). If the getpgid system call fails, a — 1 is returned and the value in errno is
set to one of the values in to indicate the source of the error.
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Table 2.4. getpgid Error Messages.

# Constant perror Message

Explanation

1 EPERM Not owner Invalid access permissions for the calling process.

3 ESRCH No such process No such process ID aspid.

A short program using the getpgid system call is shown in Pro;ram Zﬂ. Before looking
over the program, a brief explanation concerning the compilation of the program is in

order. As UNIX has evolved, developers have established a number of standards
such as ANSI C, POSIX. 1, POSIX. 2, BSD, SVID, X/Open, and others. On occasion,
system calls (such as getpgid) and library functions created under one standard (say,

BSD) are modified slightly to meet the requirements for another standard (such as

POSIX). When using the g++ compiler, defining the constant _GNU_SOURCE instructs
the compiler to use the POSIX definition if there is a conflict.

Program 2.1 Displaying process group IDs.

File : p2.1.cxx
|
| Displaying process group ID information
|
| #define _GNU_SOURCE
+ #include <iostream>
| #include <sys/types.h>
|  #include <unistd.h>
| using namespace std;
| int
10 main( ){
cout << "\n\nlnitial process \t PID " << getpid()
<< "\t PPID "<< getppid()
<< "\t GID " << getpgid(0)
<< endl << getpgid(pid_t(getppid())) << endl;

for (inti=0; i< 3; ++i)
if (fork() == 0) /I Generate some processes
cout << "New process \t PID " << getpid()
<< "\t PPID "<< getppid()
20 << "\t GID " << getpgid(0)
| << endl;

I
I
I
I
+
I
I
I
I



| return O;

|}

displays the output of the program.
Figure 2.1 output.

Initial process PID 3350 PPID 3260 GID 3350

New process PID 3351 PPID 3350 GID 3350
New process PID 3352 PPID 3351 GID 3350
New process PID 3353 PPID 3350 GID 3350
New process PID 3356 PPID 3353 GID 3350
New process PID 3355 PPID 3351 GID 3350
New process PID 3354 PPID 3352 GID 3350
New process PID 3357 PPID 3350 GID 3350

Note that the actual ID numbers change each time the program is run. The
relationship of the processes within the process group is shown in .

Figure 2.2. Process ID relationships.

Parent process
h‘-‘ﬂ @ Initial process

3 3%
Process group

3350 —_
3351 @ 3357
@ 3355 3356
3354
H“-q..,____._,_,

All of the processes generated by the program indicate that they belong to the same




process group: the process group of the initial process 3350. If the parent of a process

dies (terminates) before its child process(es), the process init (which is process ID 1)
will inherit the child process and become its foster parent. The process group ID for a
process does not change if this inheritance occurs.

Bl There seems to be no end to the anthropomorphic references for
parent/child processes, even when they border on the macabre!

A process may change its process group by using the system call setpgid, which sets
the process group ID (Table 2.5).

The setpgid system call sets the process group pid to that of pgid. If the value for pid is O,
the call refers to the current process. Otherwise, the call refers to the specified PID.
The value for pgid represents the group to which the process will belong. If the value
for pgid is 0, the pid referenced process will become the process leader. For this call to
be successful, the invoking process must have the correct permissions to institute the
requested change. The setpgid system call returns O if successful, or returns a =1 and
sets ermo if it fails. The value errno is assigned when setpgid fails is given in .

Table 2.5. Summary of the setpgid System Call.

Include File(s) <sys/types.h> Manual Section 2
<unistd.h>
Summary int setpgid(pid_t pid, pid_t pgid);
Success Failure Sets errno

Return 0 -1 Yes



Table 2.6. setpgid Error Messages.

# Constant perror Message Explanation

1 EPERM  Operation not
permitted ® Process pid already a session leader.

® Process pid is not in same session as
calling process.

® |nvalid process group specified.

3 ESRCH No such process No such process ID aspid.

22 EINVAL Invalid argument The pgid value is less than O or greater than
MAX_PID-1.

For those of us who talk fast or listen casually, it is easy to confuse the process group
ID with the process's group ID. A process's group ID is covered in .

In addition to process groups, UNIX also supports the concept of a session. A session
Is a collection of related and unrelated processes and process groups. As with
process grouping, there are a number of system calls (e.g., setsid, getsid) that can be
used to create and manipulate a session. The process calling setsid becomes the
session leader as well as the process group leader. In this arrangement, there is no
controlling tty (terminal device). Keep in mind a process inherits its controlling terminal
from its parent. Certain input sequences, such as a quit (CTRL+\) or an interrupt

(CTRL+C), received by a controlling terminal are automatically propagated to other
processes in the session.

2-2 EXERCISE

Modify Proéram sto that each new process becomes its own group leader
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2.5 Permissions

All UNIX files (executable and otherwise) have an associated set of owner permission
bits that are used by the operating system to determine access. The permission bits
are grouped into three sets of three bits each. Each bit within a set determines if a file
can be read, written to, or executed. The three sets correspond to three classes of
users: the file owner, those in the file owner's group and all other users. We can think
of the nine permission bits as representing a three-digit octal number, as shown in

igure 2.3. This permission set would indicate that the file owner has read, write, and
execute permission; group members have read and write permission; and all others
have execute-only permission. The permissions for a file are part of the information
stored by the operating system in an I-list (with one unique entry per file). When a file
IS accessed, its attributes are stored in a system inode table.

Figure 2.3. File permissions as octal values.
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At a system level, the permissions of a file are modified using the chmod command.
The permissions of a file can be listed with the Is command using the -I (long format)
flag. For example, in the Is command output shown in the file owner (root)
of the file (vi) has permission to read (r), write (w), and execute (x) the file. Members of
the file owner's group can read and execute the file, as can users classified as other.
In Linux, the group name for a file is shown by default when issuing the Is -l command.

In some forms of UNIX (such as true-blue BSD), the -g flag must be added to the
command (i.e., Is -lg) to obtain the group name.

Figure 2.4. File permissions displayed by Is.

£ 1ls -1 /Bin/vi



PErmMISS10ON =

-CWRI—-XIr—-X 1l root root 377404 Apr 2 2001 /ban/vi
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The interpretation of the permission bits for directories is slightly different than for files.
When the file is a directory, setting the read bit indicates the directory can be read or
displayed. Setting the write bit indicates files or links can be added or removed from
the directory, and setting execute permission indicates traversal permission is
granted. If traversal permission is not set, the directory name can only be used as part
of a path name but cannot be examined directly.

2-3 EXERCISE

Is the owner of a file also a member of the class "other"? If the file
protections on a file are set so that only those in the class "other" have
read/write/execute access, does the owner still have access to the file? Is
this reasonable? Why?

When generating files in UNIX, such as by I/O redirection or compiling a source
program into an executable, the operating system will assign permissions to the file.
The default permissions assigned to the file are determined by a bitwise operation on
two three-digit octal mask values. These mask values are the creation mask and the
umask. Unless otherwise specified (such as when creating or opening a file within a
program), the creation mask used by the system is 777 for executable and directory
files and 666 for text files. The default umask value is set by the system administrator
and is most commonly 022. If you want to change the value of umask and would like
the value available to all your processes, insert the command umask nnn (where nnn is
the new value for umask) in your startup .login (or .profile) file.

At a system level the current umask value may be displayed/modified by using the
umask command. An example using the umask command is shown in (notice
that leading Os are displayed on some systems).

Figure 2.5 Using the umask command.



linux$ umask

22

linux$ umask 011
linux$ umask

11

When a new file is created, the system will exclusive OR (XOR) the creation mask for
the file with the current umask value. The exclusive OR operation acts the same as a
subtract (without any borrow) of the umask value from the creation mask. The net

result determines the permissions for the new file. For exarnilej ?enerating a text file

called foo using command-line 1/0O redirection, as shown in Eigure 2.6.

Figure 2.6 Generating a plain text file using I/O redirection.

linux$ cat > foo
hello foo
d

This will set the permissions for the text file foo to 644 (666 minus 022). This is verified
by the output of the Is command using the —I option, as shown in Eigure 2.7

Figure 2.7 The default permissions of a plain text file.

linux$ Is -l foo
-rw-r--r--  1gray faculty 10 Jan 1 14:58 foo

If we generate a directory (or executable file such as a.out using the C/C++ compiler),
the default permissions, using the 022 umask, will be 755 (777 minus 022). See

Figure 2.§.

Figure 2.8 The default permission of a directory entry.

linux$ mkdir bar
linux$ Is -Id bar
drwxr-xr-x 2 gray faculty 4096 Jan 1 15:00 bar

The use of system calls chmod, stat (file status information" and umask that allow a
process access to this information is presented in .
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2.6 Real and Effective User and Group IDs

In UNIX, with the exception of a few special system processes, processes are
generated by users (root and otherwise) who have logged on to the system. During

the login process the system queries the password file= to obtain two identification
(ID) numbers. The numbers the system obtains are in the third and fourth fields of the
password entry for the user. These are, respectively, the real user ID (UID) and real
group ID (GID) for the user. For example, in the sample password file entry

1 older versions of Linux the complete password file (passwd) was
found in the /etc directory. In newer versions, for security reasons, the
password file, while still present, may have some of its pertinent
information stored elsewhere (such as in the file /etc/shadow). While the
letc/passwd file is readable by the ordinary user, supplemental password
files usually are not.

ggluck:x:1025:1001:Garrett Gluck:/home/student/ggluck:/bin/tcsh

the user login ggluck has a real user ID of 1025 and a group ID of 1001. The real user
ID should be (if the system administrator is on the ball) a unique integer value, while
the real group ID (also an integer value) may be common to several logins. Group ID

numbers should map to the group names stored in the file /etc/group. 2 | general, IDs
of less than 500 usually (but not always) indicate user logins with special status.

5] If, for some reason, there is no group name for the assigned group
number, the system displays the group number when you issue the Is-I
command.

For every process the system also keeps a second set of IDs called effective IDs, the
effective user ID (EUID) and effective group ID (EGID). The operating system uses the
real IDs to identify the real user for things such as process accounting or sending mail,
and the effective IDs to determine what additional permissions should be granted to
the process. Most of the time the real and effective IDs for a process are identical.
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However, there are occasions when nonprivileged users on a system must be allowed
to access/modify privileged files (such as the password file). To allow controlled
access to key files, Linux has an additional set of file permissions, known as
set-user-ID (SUID) and set-group-ID (SGID), that can be specified by the file's owner.
When indicated, these permissions tell the operating system that when the program is
run, the resulting process should have the privileges of the owner/group of the
program (versus the real user/group privileges associated with the process). In these
instances, the effective IDs for the process become those indicated for the file's
owner. A listing for an suid program follows.

-r-s--x--x 1root root 13536 Jul 12 2000 /usr/bin/passwd

As shown, this passwd program (the executable for the system-level command passwd)
has its owner permissions set to r-s. The letter s in the owner's category, found in place
of the letter x, indicates that when this program is run, the process should have the
privileges of the file owner (which is root). The set-user information is stored by the
system in a tenth permission bit and can be modified using the system level
command, chmod. The SUID setting for the passwd program allows the non-privileged
user running it to temporarily have root (superuser) privileges. In this case, the user
running the program will be able to modify the system password files, as the
permissions on the password files indicate that they are owned and can only be
modified by root. Needless to say, programs that have their SUID or SGID bit set
should be carefully thought out, especially if the programs are owned by the superuser
(root).

At a system level, the command id (as shown in displays the current user,
group ID, and group affiliation information. Note that while a file can belong to only one
group, a user can belong to many groups.

Figure 2.9 Typical id information.

linux$ id
uid=500(gray) gid=1000(faculty) groups=1000(faculty)

In a programming environment, the system calls that return the user/group real and
effective IDs for a process are given in .



Table 2.7. Summary of User/Group Real and Effective ID Calls System.

Include File(s) <sys/types.h> Manual Section 5
<unistd.h>
Summary uid_t getuid( void ); uid_t geteuid( void );
gid_t getgid( void ); gid_t getegid( void );
Success Failure Sets errno
Return The requested ID

There are corresponding system calls that can be passed ID values to set (change)
the user/group real and effective IDs. Additionally, Linux implements a file system user
ID used by the kernel to limit a user's access to a given file system. The file system ID

is set with the setfsuid system call. The use of setfsuid and the calls to set user/group
real and effective IDs are beyond the scope of this text.
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2.7 File System Information

In addition to process ID information, the process environment contains file system
information. Associated with each open file is an integer file descriptor value that the
operating system uses as an index to a 1,024-entry file descriptor table located in the
u (user) area for the process. The per-process file descriptor table references a
system file table, which is located in kernel space. In turn, the system file table maps
to a system inode table that contains a reference to a more complete internal
description of the file.

When a child process is generated, it receives a copy of its parent's file descriptor
table (this includes the three descriptors—stdin, stdout, and stderr) with the file pointer
offset associated with each open file. If a file is marked as shareable, the operating
system will need to save each file pointer_offset separately. The relationship of
process and system tables are shown in .

Figure 2.10. Process/system file table relationships.

Parent Process Child Process
text text
data data

stack stack US =er

Kernel

11 area
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2-4 EXERCISE

Write a program that verifies that a parent and child process share the same
file pointer and file pointer offset. The parent should open a text file andfork a
child process. The child process should read from the text file and display
what it has read. When the child terminates, the parent process should then
read from the same file and display what it has read. At this stage, you may
need to use the sleep system call to synchronize file access between the
parent and child processes.

2-5 EXERCISE

Write a program that determines by trial and error the number of files a
process can have simultaneously open (is it really 1,024, as mentioned?).
Be sure to remove (investigate the unlink system call) any files that you
generate.
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2.8 File Information

There are a number of system calls that a process can use to obtain file information.
Of these, the stat system calls (shown in ) provide the process with a
comprehensive set of file-related information somewhat analogous to the information
that can be obtained by using the system-level stat command found in Linux. For
example, the command

linux$ stat a.out
File: "a.out"
Size: 14932 Blocks: 32 Regular File
Access: (0755/-rwxr-xr-x) Uid: ( 500/ gray) Gid: (1000/ faculty)
Device: 815 Inode: 97541  Links: 1
Access: Tue Jan 1 16:05:58 2002
Modify: Tue Jan 1 16:05:57 2002
Change: Tue Jan 1 16:05:57 2002

displays information about the file a.out found in the current directory.

Table 2.8. Summary of the stat System Calls.

Include File(s) <sys/types.h> Manual Section
<sys/stat.h> 2
<unistd.h>

Summary

[View full Widthl

int stat(const char *file_name, struct stat *buf);
int Istat(const char *file_name, struct stat

= «buf);

int fstat(int filedes, struct stat *buf);

Success Failure Sets errno

Return 0 -1 Yes



As its first argument, the stat system call takes a character pointer to a string
containing the path for a file. The Istat system call is similar to stat except when the file
referenced is a symbolic link. In the case of a symbolic link, Istat returns information
about the link entry, while stat returns information about the actual file. The fstat system
call takes an integer file descriptor value of an open file as its first argument.

All three stat system calls return, via their second argument, a pointer to a stat
structure. The stat structure is defined in its entirety in the header file <sys/stat.n> and
the <bits/stat.h>. The <bits/stat.h> file is automatically included by <sys/stat.h> and should
not be directly included by the programmer. The stat structure normally contains
members for

dev_t st dev; /*device file resides on */

ino_t st ino;  /*this file's number */

u_short st mode; /* protection */

short st _nlink; /* number of hard links to the file */

short st uid;  /* user ID of owner */

short st gid;  /* group ID of owner */

dev_t st rdev; /*the device identifier(special files only)*/
off t st size; /*total size of file, in bytes */

time_t st atime; /*file data last access time */

time_t st_mtime; /*file data last modify time */

time_t st _ctime; /*file data last status change time */
long st blksize; /* preferred blocksize for file system 1/0*/
long st _blocks; /* actual number of blocks allocated */

The special data types (e.g., dev_t, ino_t) of individual structure members are mapped
to standard data types in the header file <sys/types.h>. If the stat system calls are
successful, they return a value of 0. Otherwise, they return a value of -1 and set errno.
As these system calls reference file information, there are numerous error situations
that may be encountered. The value that errno may be assigned and an explanation of
the associated perror message are shown in .

Table 2.9. stat Error Messages.

# Constant perror Message Explanation

2 ENOENT No such file or File does not exist (or is NULL).
directory




12

13

14

20

36

40

67

72

75

Constant perror Message
EINTR Interrupted system
call
EBADF Bad file number
ENOMEM Cannot allocate
memory
EACCES Permission denied
EFAULT Bad address
ENOTDIR Not a directory
ENAMETOOLONG File name too long
ELOOP Too many levels of
symbolic links
ENOLINK The link has been
severed
EMULTIHOP Multihop attempted
EOVERFLOW Value too large for

defined data type

Explanation

Signal was caught during the system
call.

The value in fildes is not a valid open
file descriptor.

Out of memory (i.e., kernel memory).

Search permission denied on part of
file path.

Path references an illegal address.

Part of the specified path is not a
directory.

The path value exceeds system
path/file name length.

The perror message says it all.

The path value references a remote
system that is no longer active.

The path value requires multiple hops
to remote systems, but file system
does not allow it.

A value for a member of the structure
referenced by buf is too large.

A program showing the use of the stat system call is shown in Proéram 2.2.

Program 2.2 Using the stat system call.

/*

Using the stat system call

*/
#include <iostream>



+ #include <cstdio>

| #include <sys/types.h>

| #include <sys/stat.h>

|  #include <unistd.h>

| using namespace std;

10 constintN_BITS = 3;

| int

| main(int argc, char *argv[ ]){

| unsigned int mask = 0700;

| struct stat  buff;

+ static char  *perm[] = {"---", "--x", "-w-", "-wx",
| "r-="tr-xt, rw=", rwix'y;

| if (argc > 1) {

| if ((stat(argv[1], &buff) 1= -1)) {

| cout << "Permissions for " << argv[1l] << " ";
20 for (int i=3; i;-i) {

| cout << perm[(buff.st_mode & mask) >> (i-1)*N_BITS];
| mask >>= N_BITS;

I }

| cout << endl;

+ }else {

| perror(argv[1]);

| return 1;

I }

| }else {

30 cerr << "Usage: " << argv[0] << "file_name\n";

| return 2;
|}

| return O;
I

}

When this program is run and passed its own name on the command line, the output
IS as shown in.

Figure 2.11 Output of .

linux$ p2.2 a.out
Permissions for a.out rwxr-xr-x

The system command sequence Is -| for the same file produces the same set of
permissions as shown in [Eiqure 2.12.

Figure 2.12 Verifying Proaram 2.2 output with the Is command.




linux$ Is -l a.out
-rwxr-xr-x 1gray faculty 15290 Jan 2 07:26 a.out

2-6 EXERCISE

Modify the example stat program so that its output is asclose as possible to
the Is -1 output on your system when passed a file or directory name on the
command line. Note, the stat call will not return the user's name (only the
UID). The UID can be passed to thegetpwuid library call. Thegetpwuid call will
return the user's name (along with additional password entry information). A
description of the getpwuid library call is found in Section 3 of the manual. If
needed, a second library call, getgrgid, can be used to map theGID value to
the actual group name.

In a programming environment, the access permissions of a file can be modified with

the chmod/fchmod system calls (Table 2.10).

Table 2.10. Summary of the chmod/fchmod System Calls.

Include File(s) <sys/types.h> Manual Section 5
<sys/stat.h>
Summary int chmod( const char *path, mode_t mode );
int fchmod( int fildes, mode_t mode );
Success Failure Sets errno
Return 0 -1 Yes

Both system calls accomplish the same action and differ only in the format of their first
argument. The chmod system call takes a character pointer reference to a file path as
its first argument, while fchmod takes an integer file descriptor value of an open file.
The second argument for both system calls is the mode. The mode can be specified
literally as an octal number (e.g., 0755) or by bitwise ORing together combinations of
defined permission constants found in the header file <sys/stat.h>. Unless the effective
user ID of the process is that of the superuser, the effective user ID and the owner of
the file whose permissions are to be changed must be the same. If either system call
Is successful, it returns a 0. Otherwise, the call returns a -1 and sets the value in errno.



As with the stat system calls, the number of error conditions is quite extensive (see
able 2.11)).

Table 2.11. chmod/fchmod Error Messages.

# Constant perror Message Explanation
1 EPERM Operation not Not owner or file or superuser.

permitted

2 ENOENT No such file or File does not exist (or is NULL).
directory

4 EINTR Interrupted system Signal was caught during the system
call call.

5 EIO I/O error I/O error while attempting read or write

to file system.

9 EBADF Bad file number The value in fildes is not a valid open
file descriptor.

12 ENOMEM Cannot allocate Out of memory (i.e., kernel memory).
memory
13 EACCES Permission denied Search permission denied on part of
file path.
14 EFAULT Bad address path references an illegal address.
20 ENOTDIR Not a directory Part of the specified path is not a
directory.
30 EROFS Read-only file File referenced by path is on read-only
system file system.

36 ENAMETOOLONG File name too long The path value exceeds system
path/file name length.

40 ELOOP Too many levels  The perror message says it all.
of symbolic links




# Constant perror Message Explanation

67 ENOLINK The link has been  The path value references a remote
severed system that is no longer active.

72 EMULTIHOP Multihop The path value requires multiple hops
attempted to remote systems but file system

does not allow it.

The umask value, which is inherited from the parent process, may be modified by a
process with the umask system call (Table 2.12).

Table 2.12. Summary of the umask System Call.

Include File(s) <sys/types.h> Manual Section

<sys/stat.h> 2
Summary mode_t umask(mode_t mask);
Success Failure Sets errno
Return The previous umask

When invoked, umask both changes the umask value to the octal integer value passed

and returns the old (previous) umask value.= If you use the umask system call to
determine the current umask setting, you should call umask a second time, passing it
the value returned from the first call, to restore the settings to their initial state. For
example,

1 This system call appears to have been written before such
techniques were frowned upon (i.e., both changing the state of the
umask and returning its current value).

mode_t cur_mask;

cur_mask = umask(0);

cout << "Current mask: " << setfill('0") << setw(4) << oct
<< cur_mask << endl;

umask(cur_mask);



2-7 EXERCISE

The umask system call will never generate an error or set the value irerrno.

What happens if you attempt to assign a mask value of -0117?

The library function getcwd is used to copy the absolute path of the current working
directory of a process to an allocated location. The function is defined as shown in
. It returns a pointer to the directory pathname. The function expects two
arguments. The first is a pointer to the location where the pathname should be stored.
If this argument is set to NULL, getcwd uses malloc to automatically allocate storage
space. The second argument is the length of the pathname to be returned (plus 1 for
the \0 to terminate the string). The include file <sys/param.h> contains the defined
constant MAXPATHLEN that can be used to assure a buffer of sufficient size (i.e.,
MAXPATHLEN+1). In the following code snippet the space allocated to hold the path
information will be just what is needed to store the absolute path (most likely less than
MAXPATHLEN+1).

Table 2.13. Summary of the getcwd Library Function.

Include File(s) <unistd.h> Manual Section 3
Summary char *getcwd(char *buf, size_t size);
Success Failure Sets errno
Return
A pointer to the current directory name  NULL Yes
char *path;

path = getcwd(NULL, MAXPATHLEN+1);
cout << path << endl;
cout << "Path length: " << strlen(path) << endl; // sufficient to hold path

If getcwd fails, it returns a NULL and sets errno (Table 2.14)). If malloc is used to
dynamically allocate storage, the space should be returned with free when it is no
longer needed.



Table 2.14. getcwd Error Messages.

# Constant perror Message Explanation

13 EACCES Permission denied Search permission denied on part of file path.
22 EINVAL Invalid argument The value forsize is less than or equal to O.

34 ERANGE Numerical resultout The value for size is greater than 0 but less
of range than the length of the path plus 1.

The system call chdir is used to change the current working directory (as is the cd
command at system level). See [Table 2.15.
[ The cd command, unlike many other system-level commands, is not

run as a child process, so its change will take effect for the current
process.

The chdir system call takes a character pointer reference to a valid pathname (the
process must have search permission for all directories referenced) as its argument.
The fchdir system call takes an open file descriptor of a directory as its argument. If

successful, the system call returns a 0, and the new working directory for the process
will be the one specified. If the call fails, a -1 is returned and errno is set (Table 2.16).

Table 2.15. Summary of the chdir/fchdir System Calls.

Include File(s) <unistd.h> Manual Section 2

Summary int chdir( const char *path );
int fchdir( int fildes );

Success Failure Sets errno

Return 0 -1 Yes



Table 2.16. chdir/fchdir Error Messages.

# Constant perror Message Explanation

2 ENOENT No such file or File does not exist (or is NULL).
directory

4 EINTR Interrupted system Signal was caught during the system
call call.

5 EIO I/O error I/O error while attempting read or write

to file system.

9 EBADF Bad file number The value in fildes is not a valid open
file descriptor.

12 ENOMEM Cannot allocate Out of memory (i.e., kernel memory).
memory
13 EACCES Permission denied Search permission denied on part of
file path.
14 EFAULT Bad address path references an illegal address.
20 ENOTDIR Not a directory Part of the specified path is not a
directory.

36 ENAMETOOLONG File name too long The path value exceeds system
path/file name length.

40 ELOOP Too many levels  The perror message says it all.
of symbolic links

67 ENOLINK The link has been  The path value references a remote
severed system that is no longer active.

72 EMULTIHOP Multihop The path value requires multiple hops
attempted to remote systems, but file system

does not allow it.

2-8 EXERCISE



Predict what will happen when a process forks a child process and the child
process issues a chdir system call—will the current directory for the parent be
changed as well? Write a program that substantiates your answer.
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2.9 Process Resource Limits

As system resources are finite, every process is restrained by certain operating
system-imposed limits. At the command line, the ulimit command (which is actually a
built-in command found in the Bourne shell [/bin/sh]) provides the user with a means to
display and modw current system limits available to the shell and the processes that

are started by it.

B The C shell (/bin/csh) provides a somewhat similar built-in command
called limit.

The command ulimit -Ha displays the hard limits for the system. The hard limits can be
increased onlf bf the superuser. An example showing the hard limits of a system is

shown in Figure 2.13.

Figure 2.13 Typical hard limits on a Linux system.

linux$ ulimit -Ha

core file size (blocks, -¢) unlimited

data seg size (kbytes, -d) unlimited

file size (blocks, -f) unlimited

max locked memory  (kbytes, -I) unlimited
max memory size (kbytes, -m) unlimited

open files (-n) 1024

pipe size (512 bytes, -p) 8

stack size (kbytes, -s) unlimited
cpu time (seconds, -t) unlimited
max user processes (-u) 4095
virtual memory (kbytes, -v) unlimited

A soft limit, displayed when ulimit is passed the -Sa (Soft, all) command-line option, is a
limit that can be set by the user. A soft limit is typically lower than the established hard
limit. Note that the limits_for the current process on this system are slightly less for

stack size, as shown in Figure 2.14l.
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Figure 2.14 Individual process resource limits.

linux$ ulimit -Sa
core file size
data seg size

(blocks, -c) unlimited
(kbytes, -d) unlimited

file size (blocks, -f) unlimited

max locked memory
max memory size

open files

(kbytes, -I) unlimited
(kbytes, -m) unlimited
(-n) 1024

pipe size (512 bytes, -p) 8

stack size

(kbytes, -s) 8192

cpu time (seconds, -t) unlimited

max user processes

virtual memory

(-u) 4095

(kbytes, -v) unlimited

Resource limit information for a process can be obtained in a programming

environment as well. Historically, the ulimit system call was used to obtain part of this

information. In more recent versions of the operating system the ulimit system call has

been superseded by the getrlimit/setrlimit calls described below. However, ulimit still
bears a cursory investigation, as it is sometimes found in legacy code (Table 2.17).

Include File(s)

Summary

Return

Table 2.17. Summary of the ulimit System Call.
<ulimit.h> Manual Section 3

long ulimit(int cmd /*,
long newlimit */);

Success Failure Sets errno

Nonnegative long integer -1 Yes

The argument cmd can take one of four different values:

1. Obtain file size limit for this process. The value returned is in units of 512-byte

blocks.

2. Set the file size limit to the value indicated by newlimit. Non-superusers only can

decrease the file size limit. This is the only command in which the argument

newlimit is used.

3. Obtain the maximum break value. This option is not supported by Linux.



4. Return the maximum number of files that the calling process can open.

If ulimit is successful, it returns a positive integer value; otherwise, it returns a -1 and
sets the value in ermo ([able 2.18).

Table 2.18. ulimit Error Messages.

# Constant perror Message Explanation
13 EPERM Permission denied Calling process is not superuser.
22 EINVAL Invalid argument The value forcmd is invalid.

The newer getrlimit/setrlimit System calls provide the process more complete access to
system resource limits (Table 2.19).

Table 2.19. Summary of the getrlimit/setrlimit System Calls.

Include File(s) <sys/time.h> Manual Section
<sys/resource.h> 2

<unistd.h>

Summary int getrlimit(int resource, struct rlimit
*rlim);
int setrlimit(int resource, const struct
rlimit *rlim);

Success Failure Sets errno

Return 0 -1 Yes

The rlimit structure:

struct rlimit {
rlimit_t rlim_cur; /* current (soft) limit */
rlimit_t rlim_max; /* hard limit */

along with a number of defined constants used by the two functions:

RLIMIT_CPU /* CPU time in seconds */
RLIMIT_FSIZE [* Maximum filesize */



RLIMIT_DATA /* max data size */

RLIMIT_STACK /* max stack size */

RLIMIT_CORE /* max core file size */

RLIMIT_RSS /* max resident set size */

RLIMIT_NPROC /* max number of processes */
RLIMIT_NOFILE /* max number of open files */
RLIMIT_MEMLOCK /* max locked-in-memory address space*/
RLIMIT_AS /* address space (virtual memory) limit */
RLIMIT_INFINITY  /* actual value for 'unlimited’ */

are found in the header file <sys/resource.h> and its associated include files. A program

using the getrlimit system call is shown in Program 2.3.

Program 2.3 Displaying resource limit information.

|

| Using getrlimt to display system resource limits
I

| #include <iostream>

+  #include <iomanip>

|  #include <sys/time.h>

| #include <sys/resource.h>

| using namespace std;

| int

10 main( {

| struct rlimit plimit;

| char *label[ |={"CPU time", "File size",

| "Data segment", "Stack segment”,

| "Core size","Resident set size",

+ "Number of processes", "Open files",
|

|

|

|

"Locked-in-memory", "Virtual memory",
0};

int constant[]= { RLIMIT_CPU , RLIMIT_FSIZE,
RLIMIT_DATA , RLIMIT_STACK,
20 RLIMIT_CORE , RLIMIT_RSS,
RLIMIT_NPROC , RLIMIT_NOFILE,
RLIMIT_MEMLOCK, RLIMIT_AS };

|

|

|

| for (int i = O; label[i]; ++i) {

+ getrlimit(constant][i], &plimit);

| cout << setw(20) << label[i] << "\t Current: "

| << setw(10) << plimit.rlim_cur << "\t Max: "
| << setw(10) << plimit.rlim_max << endl;

|

}
30 return O;



The output sequence from this program (Eigure 2.15) is comparable to the output of
the system-level ulimit command shown earlier.

Figure 2.15 output.

linux$ p2.3
CPU time Current; 4294967295 Max: 4294967295

File size  Current: 4294967295 Max: 4294967295
Data segment  Current: 4294967295 Max: 4294967295
Stack segment  Current: 8388608 Max: 4294967295
Core size  Current: 4294967295 Max: 4294967295
Resident set size  Current: 4294967295 Max: 4294967295
Number of processes Current; 16383 Max: 16383
Open files  Current: 1024 Max: 1024
Locked-in-memory  Current: 4294967295 Max: 4294967295
Virtual memory  Current; 4294967295 Max: 4294967295

The setrlimit system call, like the ulimit call, can be used only by the non-superuser to

decrease resource limits. If these system calls are successful, they return a O;
otherwise, they return a -1 and set the value in errmo (Table 2.20).

Table 2.20. getrlimit/setrlimit Error Messages.

# Constant perror Message Explanation

13 EPERM Permission denied Calling process is not superuser.
22 EINVAL Invalid argument The value forresource is invalid.
2-9 EXERCISE

In the Bourne (or BASH /bin/bash) shell issue the commandulimit -u 2 followed
by the command Is -I. Explain what happens. How did you correct the
situation? If in the C Shell (/bin/csh or /bin/tcsh), replace the ulimit command

with limit ma 2).




Additional process limit information can be obtained from the sysconf library function
(Table 2.2j).

Table 2.21. Summary of the sysconf Library Function.

Include File(s) <unistd.h> Manual Section 3
Summary long sysconf(int name);

Success Failure Sets ermo
Return Nonnegative long integer -1 No (?)

The sysconf function is passed an integer name value (usually in the form of a defined

constant) that indicates the limit requested. If successful, the function returns the long
integer value associated with the limit or a value of 0 or 1 if the limit is available or not.
If the sysconf function fails, it returns a -1 and does not set the value in errno. The limits

that sysconf knows about are defined as constants in the header file <unistd.h>.= In past
versions of the operating system, some of these limit values were found in the header
file <sys/param.h>. The constants for some of the more commonly queried limits are
listed below:

(9] Actually, this is a bit of a fudge. The include file <unistd.h> often
includes yet another file that has the constant definitions. There is logic
in the <unistd.h> file to include the proper file based on the standard
being met (POSIX.1, etc.). At present the actual definitions are found in
<bits/confname.h>—which is never to be included directly by the
programmer.

_SC_ARG_MAX /* space for argv & envp */

_SC_CHILD_MAX  /* max children per process */

_SC_CLK_TCK /* clock ticks / sec */

_SC_STREAM_MAX /* max # of data streams per process */
_SC_TZNAME_MAX [* max # of bytes in timezone name spec. */
_SC_OPEN_MAX  /* max open files per process */
_SC_JOB_CONTROL /*do we have job control? */
_SC_SAVED_IDS /*do we have saved uid/gids? */
_SC_VERSION /* POSIX version supported YYYYMML format*/

Proéram 2.;], which displays the values associated with the limits for a system, is



shown below.

Program 2.4 Displaying system limits.

File : p2.4.cxx

30
I

When run on a local system,

/*
Using sysconf to display system limits
*/
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <unistd.h>
using namespace std;
int
main( ){
char *limits[ ][={"Max size of argv + envp",
"Max # of child processes",
"Ticks / second",
"Max # of streams",
"Max # of bytes in a TZ name",
"Max # of open files",
"Job control supported?”,
"Saved IDs supported?”,
"Version of POSIX supported”,
0};

int constant[ ]={ _SC_ARG_MAX, _SC_CHILD_MAX,

_SC_CLK_TCK, _SC_STREAM_MAX,
_SC_TZNAME_MAX, _SC_OPEN_MAX,
_SC_JOB_CONTROL,_SC_SAVED_IDS,
_SC_VERSION };
for (int i=0; limits][i]; ++i) {
cout << setw(30) << limits[i] << "\t"
<< sysconf(constant[i]) << endl;

return O;

}

Figure 2.16 Output of .

linux$ p2.4

Max size of argv + envp 131072
Max # of child processes 999

Proéram 2.;] produced the output shown

in Eiqure 214



Ticks / second 100
Max # of streams 16
Max # of bytes in a TZ name 3
Max # of open files 1024
Job control supported? 1
Saved IDs supported? 1
Version of POSIX supported 199506

If the sysconf function fails due to an invalid name value, a -1 is returned. The manual
page indicates errno will not be set; however, some versions of Linux set errno to
ENIVAL, indicating an invalid argument.
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2.10 Signaling Processes

When events out of the ordinary occur, a process may receive a signal. Signals are
asynchronous and are generated when an event occurs that requires attention. They
can be thought of as a software version of a hardware interrupt and may be generated
by various sources:

® Hardware— Such as when a process attempts to access addresses outside its
own address space or divides by zero.

® Kernel— Notifying the process that an I/O device for which it has been waiting
(say, input from the terminal) is available.

® Other processes— A child process notifying its parent process that it has
terminated.

® User— Pressing keyboard sequences that generate a quit, interrupt, or stop
signal.

Signals are numbered and historically were defined in the header file <signal.h>. In
Linux signal definitions reside in <bits/signum.h>. This file is included automatically when
you include <signal.h>. The <bits/signum.h> should not be directly included in your
program. The process that receives a signal can take one of three courses of action:

1. Perform the system-specified default for the signal. For most signals the default
action (what will be done by the process if nothing else has been specified) is
to (a) notify the parent process that it is terminating, (b) generate a core file (a
file containing the current memory image of the process), and (c) terminate.

2. Ignore the signal. A process can do this with all but two special signals:
SIGSTORP (signal 23), a stop-processing signal that was not generated from
the terminal, and SIGKILL (signal 9), which indicates the process is to be killed
(terminated). The inability of a process to ignore these special signals ensures
the operating system the ability to remove errant processes.



3. Catch the signal. As with ignoring signals, this can be done for all signals
except the SIGSTOP and SIGKILL signals. When a process catches a signal, it
invokes a special signal handling routine. After executing the code in the signal
handling routine, the process, if appropriate, resumes where it was interrupted.

A child process inherits the actions associated with specific signals from its parent.
However, should the child process overlay its process space with another executable

image, such as with an exec system call (see Chapter 3, "Using Processes"), alll
signals that were associated with signal catching routines at specific addresses in the
process are reset to their default action in the new process. This resetting to the
default action is done by the system, as the address associated with the signal
catching routine is no longer valid in the new process image. In most cases (except
for I/O on slow devices such as the terminal) when a process is executing a system
call and a signal is received, the interrupted system call generates an error (usually
returning -1) and sets the global errno variable to the value EINTR. The process issuing
the system call is responsible for re-executing the interrupted system call. As the
responsibility for checking each system call for signal interrupts carries such a large
overhead, it is rare that once a signal is caught the process resumes normal
execution. More often than not, the process uses the signal catching routine to
perform housekeeping duties (such as closing files, etc.) before exiting on its own.
Signals sent to a process/session group leader are also passed to the members of the
group. Signals and signal catching routines are covered in considerable detail in
Chapter 4, "Primitive Communications."

2-10 EXERCISE

The system-specified defaults for signals 1 through 31 are given in the
general manual pages on signal (Section 7 of the manual). As a default
action, how many signals (a) produce core dumps, (b) cause the process to
stop (terminate), and (c) are discarded (ignored)?
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(0]


file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/eBook.Prentice_Hall_PTR-Interprocess_Communications_in_Linux.ShareReactor.chm/23021533.htm

4 Previous | | MNext Irl

2.11 Command-Line Values

Part of the processing environment of every process are the values passed to the
process in the function main. These values can be from the command line or may be
passed to a child process from the parent via an exec system call. These values are
stored in a ragged character array referenced by a character pointer array that, by
tradition, is called argv. The number of elements in the argv array is stored as an

integer value, which (again by tradition) is referenced by the identifier argc. Program
R.5, which displays command line values, takes advantage of the fact that in newer
ANSI standard versions of Linux, the last element of the argv array (i.e., argv[argc]) IS
guaranteed to be a NULL pointer. However, in most programming situations,
especially when backward compatibility is a concern, it is best to use the value in argc

as a limit when stepping through argv. If we run the program as p2.5 and place some
arbitrary values on the command line, we obtain the output shown in Fiéure 2.12.

Program 2.5 Displaying command line arguments.

File : p2.5.cxx
|
| Displaying the contents of argv[ ] (the command line)
|
| #include <iostream>
+ using namespace std;
| int
|  main(int argc, char *argv[ 1){
| for (; *argv; ++argv )
| cout << *argv << endl;
10 return O;

|}

Figure 2.17 Output of .

linux$ p2.5 This is a test.
p2.5
This



is
a
test.

We can envision the system as storing these command-line values in argc and argv as

shown in .

Figure 2.18. Storage of command line values.

argc argv
5 —1»[ > "e2.s"
——» "This"
—» "is"
S
TP "test."
0

In this situation (where the system fills the argv array), argc will always be greater than
0, and the first value referenced by argv will be the name of the program that is
executing. The system automatically terminates each string with a null character and
places a 0 as the last address in the argv array.

In programs, it is a common practice to scan the command line to ascertain its
contents (such as when looking for command-line options). At one time programmers
wishing to check the contents of the command line for options had to write their own
command-line parsing code. However, there is a general-purpose library function

called getopt that will do this. Ll The getopt library function is somewhat analogous to
the Swiss army knife—it can do many things, but to the uninitiated, upon first
exposure, it appears unduly complex (Table 2.22).

101 ¢ you do shell programming, you should find that your system

supports a shell version of this library function called getopt. The shell
version uses the library function version to do its parsing.



Table 2.22. Summary of the getopt Library Function.

Include File(s) <unistd.h> Manual Section 3

Summary int getopt( int argc, char * const argv[],
char *optstring );
extern char *optarg;
extern int optind, opterr, optopt;

Success Failure Sets errno

Return Next option letter -lor?

The getopt function requires three arguments. The first is an integer value argc (the
number of elements in the second argument). The second argument is a pointer to a
pointer to an array of characters strings. Usually this is the array of character strings
referenced by argv. The third argument is a pointer to a string of valid option letters
(characters) that getopt should recognize. As noted, in most settings the values for argc
and argv are the same as those for main's first and second arguments. However,
nothing prevents users from generating these two arguments to getopt on their own.

The format of optstring's content bears further explanation. If an option letter expects a
following argument, the option letter in optstring is followed by a colon. For example, if
the option letter s (which, say, stands for size) is to be followed by an integer size
value, the corresponding optstring entry would be s:. On the command line, the user
would enter -s 200 to indicate a size of 200. For a command-line option to be
processed properly by getopt, it must be preceded with a hyphen(-), while the
argument(s) to the option should have no leading hyphen and may or may not be
separated by whitespace from the option.

The getopt function returns, as an integer, one of three values:
® -1 indicating all options have been processed.

® 72 indicating an option letter has been processed that was not in the optstring or
an option argument was specified (with the : notation in the optstring) but none
was found when processing the command line. When a ? is returned, getopt
also displays an error message on standard error. The automatic display of the
error message can be disabled by changing the value stored in the external
identifier opterr to O (it is set to 1 by default). The offending character (stored as
an integer) is referenced by the optopt variable.



® The next option letter in argv that matches a letter in optstring. If the letter
matched in optstring is followed by a colon, then the external character pointer
optarg references the argument value. Remember that if the argument value is
to be treated as a numeric value (versus a string), it must be converted.

The external integer optind is initialized by the system to 1 before the first call to getopt.
It will contain the index of the next argument in argv that is not an option. By default
getopt processes the argument array in a manner that all non-options are placed at the
end of the list. A comparison of the value in optind to the value in argc can be used to
determine if all items on the command line have been processed. The getopt function
has a relative called getopt_long, which is similar in function to getopt but will process
long (those with two leading dashes) command-line arguments. Check the manual

page on this function for details. A program demonstrating the use of getopt is shown
in Proéram 2.&.

Program 2.6 Using the library function getopt.

File : p2.6.cxx
| F

| Command line using getopt

|

| #define _GNU_SOURCE

+  #include <iostream>

| #include <cstdlib>

| #include <unistd.h>

| using namespace std;

| externchar *optarg;

10 externint  optind, opterr, optopt;

int
main(int argc, char *argv[ [
int ¢

I
I
I
| char optstring[] = "abs:";

+ opterr =0; // turn off auto err mesg

| while ((c = getopt(argc, argv, optstring)) !=-1)
| switch (c) {

| case 'a’.

| cout << "Found option a\n";
20 break;

| case'b"

| cout << "Found option b\n";
| break;

| case's"



cout << "Found option s with an argument of: ";
cout << atoi(optarg) << endl; // convert to integer
break;
case '?"

- — — — +

cout << "Found an option that was not in optstring.\n";

30 cout << "The offending character was " << char(optopt) << end];
}

if (optind < argc){
cout << (argc—optind) << " arguments not processed.\n";
cout << "Left off at: " << argv[optind] << end];

}

return O;

—_— f = — — —

—

A run of the program with some sample command-line options is shown in[Eigure

bad
Figure 2.19 Output of .

g

linux$ p2.6 -abc -s 34 -b joe -a student
Found option a

Found option b

Found an option that was not in optstring.
The offending character was c

Found option s with an argument of: 34
Found option b

Found option a

2 arguments not processed.

Left off at: joe

As the output shows, getopt can process options in groups (e.g., -abc) or as singletons
(e.g., -b), and is not concerned with the alphabetic order of options. When processing
stops, optind can be checked to determine if any command-line options were not part of
the specified options.

2-11 EXERCISE

Modify Pro;ram 23 to accept command-line options that will be processed
with the library call getopt. Where appropriate, allow the user to specify

arguments to change values of specific limits (use the setrlimit system call).




Consider using getopt_long to support a--help option that would provide the
user with some minimal help about how to run the program.

4 Previous | | Mt Irl
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2.12 Environment Variables

Each process also has access to a list of environment variables. The environment
variables, like the command-line values, are stored as a ragged array of characters.

Environment variables, which are most commonly set at the shell level, = are passed
to a process by its parent when the process begins execution. Environment variables
can be accessed in a program by using an external pointer called environ, which is
defined as

(111t at the command-line level you enter the shell command env (or
printenv), the system should display a list of environment variables and
their contents.

extern char **environ;

In most older (and in some current) versions of Linux, the environment variables could
also be accessed by using a third argument in the function main called envp. When
used, the envp argument to main is defined as

main(int argc,char *argv[],char **envp /* OR as *envp[]*/)

As environ and envp can both be used to accomplish the same thing, and current
standards discourage the use of envp, only the use of the external pointer environ will
be discussed in detail.

The contents of the environment variables can be obtained in a manner similar to the

command-line arguments (Program 2.7).

A ?artial listing of the output of this program run on a local system is show in

Program 2.7 Displaying environment variables.

File : p2.7.cxx
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|

| Using the environ pointer to display the command line
|

| #include <iostream>

+ using hamespace std;

| extern char **environ;

| int

| main(){

| for ( ; *environ ;)

10 cout << *environ++ << endl;
| return O;

|}

Figure 2.20 Output of .

linux$ p2.7

PWD=/home/faculty/gray/revision/02

VENDOR=intel

REMOTEHOST=zeus.cs.hartford.edu

HOSTNAME=kahuna

LOGNAME=gray

SHLVL=2

GROUP=faculty

USER=gray
PATH=/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:.

The output shows that all environment variables are stored as strings in the format
name=value. Many of the environment variables shown here are common to all Linux
systems (e.g., USER, PATH, etc.), while others are system-dependent (e.g., VENDOR).
Note that by convention environment variables are normally spelled in uppercase. For
the more curious, the manual page on environ ($ man 5 environ) furnishes a detailed
description of the commonly found environment variables and their uses.

The two library calls shown in [Tables 2.23 and can be used to manipulate

environment variables.

The first library call, getenv, searches the environment list for the first occurrence of a
specified variable. The character string argument passed to getenv should be of the
format name, where name is the name of the environment variable to find without an
appended =. Note that name is case-sensitive (environment variables are often in
uppercase). If getenv is successful, it returns a pointer to the string assigned to the



environment variable specified; otherwise, it returns a NULL pointer. If getenv fails, it

returns a -1 and sets errno to ENOMEM (12—"Cannot allocate memory"). In Program
@ the output (shown in ) indicates that in this case the environment
variable TERM has been found and that its current value is vt220. Notice that only the

string to the right of the equals was returned by getenv.

Table 2.23. Summary of the getenv Library Function.

Include File(s) <unistd.h> Manual Section 3
Summary char *getenv( const char *name );

Success Failure Sets errno
Return

Pointer to the value in the environment NULL

Table 2.24. Summary of the putenv Library Function.

Include File(s) <stdlib.h> Manual Section 3
Summary Int putenv( const char *name );

Success Failure Sets errmo
Return 0 -1 Yes

Program 2.8 Using getenv.

File : p2.8.cxx
|
| Displaying the contents of the TERM variable
|
| #include <iostream>
+ #include <cstdlib>
| using namespace std;
| int
| main( X
| char *c_ptr;
10 c_ptr = getenv("TERM");
| cout << "The variable TERM is "
| << (c_ptr==NULL ? "NOT found" : c_ptr)
| << endl;



| return O;

+ 3

Figure 2.21 Checking the output of ‘Proéram Z.Q.

linux$ echo $TERM

vt220

linux$ p2.8

The variable TERM is vt220

Modifying or adding environment variable information, which is usually accomplished
with the library function putenv, is a little trickier. The environment variables, along with
the command-line values, are stored by the system in the area just beyond the stack
segment for the process (see thagter ;I |§ection 1.5). This area is accessible by the
process and can be modified by the process, but it cannot be expanded. When

environment variables are added or an existing environment variable is modified so it
is larger (storage-wise) than its initial setting, the system will move the environment
variable information from its stack location to the text segment of the process (the
putenv function uses malloc to allocate additional space). To further complicate the issue
in this situation, envp (if supported) will still point to the table on the stack when
referencing the original environment variables, but will point to the text segment for
the new environment variable. This is yet another reason to stay clear of envp!

One last caveat appears in the putenv manual page. The argument for putenv should
not be an automatic variable (such as a variable local to a function), as these
variables become undefined once the function in question is exited.

Pro;ram 2.; demonstrates the putenv function.

Program 2.9 Using putenv.

File : p2.9.cxx
| F

| Using putenv to modify the environment as seen by parent — child

|~

| #define GNU_SOURCE

+ #include <iostream>

| #include <cstdlib>

| #include <sys/types.h>

| #include <unistd.h>

| using namespace std;



10 extern char **environ;

| int show_env( char **);

| int

| main(){

| int numb;

+ cout << "Parent before any additions ****x+*kxx" << end|;
| show_env( environ );

| putenv("PARENT_ED=parent");

| cout << "Parent after one addition ****xxkkkxt << andl;

| show_env( environ );

20 if (fork()==0)} // In the CHILD now

| cout << "Child before any additions ********" << endl;
| show_env( environ );

| putenv("CHILD_ED=child");

| cout << "Child after one addition ********x" << andl;
+ show_env( environ );
I

I

I

I

return O;
} /I In the PARENT now
sleep( 10); /I Make sure child is done

cout << "Parent after child is done ******+rxxt << andl;
30 numb = show_env( environ );
| cout << "... and at address [" << hex << environ+numb
| <<"lis..."
| << (*(environ+numb) == NULL ? "Nothing!" : *(environ+numb))
| << endl;
+ return O;
|}
| F
| Display the contents of the passed list ... return number found
|
40 int show_env( char **cp X
| inti;
| for (i=0; *cp; ++cp, ++i)
| cout << '"[" << hex << cp << "] " << *cp << endl;
| return i;
+

}

The abridged output (some of the intervening lines of output were removed for clarity)
of this program, when run on a local system, is explained in Eigure 2.22.

Figure 2.22 Output of .

linux$ p2.9
Parent before any additions ***x#¥x+*
[OxbffffcOc] TERM=vt220 L



[Oxbffffd08] CA_DB=
Parent after one addition  ****#x¥xsx*
[0x8049ec8] TERM=vt220

[0x8049f34] CA_DB=

[0x8049f38] PARENT_ED=parent
Child before any additions **xx*#¥xx
[0x8049ec8] TERM=vt220 K-- 3

N\
1
I
N

[0x8049f34] CA_DB=
[0x8049f38] PARENT_ED=parent K-- 3
Child after one addition ***x#¥kxs*

[0x8049ec8] TERM=vt220

[0x8049f34] CA DB=

[0x8049f38] PARENT_ED=parent
[0x8049f3c] CHILD_ED=child <-- 4
Parent after child is done **x#¥¥tkx

[0x8049ec8] TERM=vt220

[Ox8049f34] CA_DB=
[0x8049f38] PARENT_ED=parent E
... and at address [0x8049f3c] is ... Nothing!

(1) The environment variables start their life in storage just beyond the
stack segment (notice the addresses).

(2) This environment variable is added by the parent process. All
variables have been moved to the text segment.

(3) Notice the addresses in the child are the same.

(4) This environment variable is added by the child process.



(5) When the child process is gone, so is the environment variable it
added.

There are several important concepts that can be gained by examining this program
and its output. First, it is clear that the addresses associated with the environment
variables are changed (from the stack segment to the text segment) when a new
environment variable is added. Second, the child process inherits a copy of the
environment variables from its parent. Third, as each process has its own address
space, it is not possible to pass information back to a parent process from a child

process.== Fourth, when adding an environment variable, the name=value format
should be adhered to. While it is not checked in the example program, putenv will
return a O if it is successful and a -1 if it fails to accomplish its mission.

(121 | am sure that many human children would say this is also true for
their parent/child relationship—everything (especially tasks) seems to
flow one way.

2-12 EXERCISE

Sam figures he has a way for a child process to communicate with its parent
via the environment. His solution is to have the child process modify (without
changing the storage size and without using putenv) an environment variable
that was initially found in the parent. He wrote the following program to test
his idea. Will his program work as he thought—why, or why not?

View full Widthl

File : sam.cxx
(A
| Sam's environment program
(I
| #define _GNU_SOURCE
+ #include <iostream>
|  #include <cstdlib>
|  #include <sysl/types.h>




|
10

I

I

I

I

+

I

I

I

I
-
20

I

I

I

I
-

+
-

#include <unistd.h>
using namespace std;

int
main( ){
int numb;
char *p;
putenv("DEMO=abcdefghijkimnop");
p = getenv("DEMO");
cout << "1. Parent environment has " << p << endl;
if (fork()==0){ /Il In the CHILD now
*(p +9) ="X; /I Change ref
location
p = getenv("DEMO");
cout << "2. Child environment has " << p << end|;
cout << "3. Exiting child." << endl;
return O;
} /I In the PARENT
now
sleep( 10 ); /l Make sure child
is done
cout << "4, Back in parent." << endl;
p = getenv("DEMQO");
cout << "5, Parent environment has " << p << endl;
return O;
}
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2.13 The /proc Filesystem

Linux implements a special virtual filesystem called /proc that stores information about
the kernel, kernel data structures, and the state of each process and associated
threads. Remember that in Linux a thread is implemented as a special type of
process. The /proc filesystem is stored in memory, not on disk. The majority of the
information provided is read-only and can vary greatly from one version of Linux to
another. Standard system calls (such as open, read, etc.) can be used by programs to
access /proc files.

Linux provides a procinfo command that generates a formatted display of /proc
information. shows the default output of this command. As would be
expected, there is a variety of command-line options for procinfo (check the manual
page $ man 8 procinfo for specifics). Additionally, while most of the files in /proc are in a

special format, many can be displayed by using the command-line cat utility.

™31 bo not be put off by the fact that the majority of the files in /proc show
0 bytes when a long listing is done—keep in mind this is a not a true
filesystem.

Figure 2.23 Typical procinfo output.

linux$ procinfo
Linux 2.4.3-12enterprise (root@porky) (gcc 2.96 20000731 ) #1 2CPU [linux]

Memory:  Total Used Free  Shared Buffers Cached
Mem: 512928 510436 2492 84 65996 265208
Swap: 1068284 544 1067740

Bootup: Thu Dec 27 12:31:23 2001 Load average: 0.00 0.00 0.00 <fr>>1/85 10791

user : 0:12:34.61 0.0% page in: 7194848
nice : 0:00:15.34 0.0% page out: 1714280
system: 0:16:18.81 0.0% swapin: 1

idle : 21d 20:49:43.68 99.9% swap out: 0
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uptime: 10d 22:39:26.21 context : 31669318

irq 0: 94556622 timer irq 8: 2 rtc

irg 1 2523 keyboard irg 12: 15009 PS/2 Mouse
irg 2 0 cascade [4] irg 26: 17046596 €100

irq 3: 4 irq 28: 30 aic7xxx

irg 4: 6223833 serial irq 29: 30 aic7xxx

irg 6 3 irg 30: 155995 aic7xxx

irq 7 3 irg 31: 918432 aic7xxx

In the /proc file system are a variety of data files and subdirectories. A typical /proc file
system is shown in [Eigure 2.24.

Figure 2.24 Directory listing of a /proc file system.

linux$ Is /proc

1 1083 20706 4 684 9228 dma loadavg stat
1025 1084 20719 494 7 9229 driver locks swaps
1030 1085 20796 499 704 9230 execdomains mdstat  sys

10457 1086 20797 5 718 9231 fb meminfo  sysvipc
10458 19947 20809 511 752 9232 filesystems misc tty
10459 2 3 526 758 9233 fs modules  uptime

1057 20268 32463 6 759 9234 ide mounts  version

10717 20547 32464 641 765 9235 interrupts mtrr
10720 20638 32466 653 778 9236 iomem net
10721 20652 32468 655 780 997 ioports  partitions
10725 20680 32469 656 795 bus irq pci

10726 20695 32471 657 807 cmdline kcore SCSi
10731 20696 32473 658 907 cpuinfo kmsg self
10736 20704 32474 669 9227 devices ksyms slabinfo

Numeric entries, such as 1 or 1025, are process subdirectories for existing processes
and contain information specific to the process. Nonnumeric entries, excluding the self
entry, have kernel-related information. At this point, a full presentation of the
kernel-related entries in /proc would be a bit premature, as many of them reflect
constructs (such as shared memory) that are covered in detail in later chapters of the
text. The remaining discussion focuses on the process-related entries in /proc.

The /proc/self file is a pointer (symbolic link) to the ID of the current process. Pro;ram|
M uses the system call readlink (see [Table 2.25) to obtain the current process ID
from /proc/self.



Program 2.10 Reading the /proc/self file.

File : p2.10.cxx
|~

Determining Process ID by reading the contents of
the symbolic link /proc/self

*

#include <iostream>

#include <cstdlib>

#include <sys/types.h>
#include <unistd.h>

10 using namespace std;
const int size = 20;

int
main( ){

I
I
I
+ #define_GNU_SOURCE
I
I
I
I

pid_t proc_PID, get_PID;

get_PID = getpid();
readlink("/proc/self", buffer, size);
proc_PID = atoi(buffer);

cout << "getpid

I
I
I
I
+ char buffer[size];
I
I
I
I

1" << get PID <<endl

20 cout << "/proc/self : " << proc_PID << endl;

| return O;

Include File(s)

Summary

Return

Table 2.25. Summary of the readlinkSystem Call.
<sys/types.h> Manual Section 2

int readlink(const char *path,
char *buf, size_t bufsiz);

Success Failure Sets errno

Number of characters read -1 Yes

The readlink system call reads the symbolic link referenced by path and stores this data

in the location referenced by buf. The bufsiz argument specifies the number of

characters to be processed and is most often set to be the size of the location

referenced by the buf argument. The readlink system call does not append a null

character to its input. If this system call fails, it returns a —1 and sets errno; otherwise, it

returns the number of characters read. In the case of error the values that errno can



take on are listed in [Table 2.26.

A wide array of data on each process is kept by the operating system. This data is
found in the /proc directory in a decimal number subdirectory named for the process's
ID. Each process subdirectory includes

® cmdline— A file that contains the command-line argument list that started the
process. Each field is separated by a null character.

® cpu— When present, this file contains CPU utilization information.
® cwd— A pointer (symbolic link) to the current working directory for the process.

® exe— A pointer (symbolic link) to the binary file that was the source of the

process.
Table 2.26. readlink Error Messages.
# Constant perror Message Explanation
2 ENOENT No such file or File does not exist.
directory
5 EIO I/O error I/O error while attempting
read or write to file
system.
12 ENOMEM Cannot allocate  Out of memory (i.e.,
memory kernel memory).
13 EACCES Permission Search permission
denied denied on part of file
path.
14 EFAULT Bad address Path references an illegal
address.
20 ENOTDIR Not a directory  Part of the specified path

is not a directory.




# Constant perror Message Explanation

22 EINVAL Invalid argument
O Invalid bufsiz

value.

O Fileis not a
symbolic link.

36 ENAMETOOLONG File name too The path value exceeds

long system path/ file name
length.
40 ELOOP Too many levels The perror message says

of symbolic links it all.

environ— A file that contains the environment variable for the process. Like the
cmdline file, each entry is separated by a null character.

fd— A subdirectory that contains one decimal number entry for each file the
process has open. Each number is a symbolic link to the device associated
with the file.

maps— A file that contains the virtual address maps for the process as well as
the access permissions to the mapped regions. The maps are for various
executables and library files associated with the process.

root— A pointer (symbolic link) to the root filesystem for the process. Most often
this is / but can (via the chroot system call) be set to another directory.

stat— A file that contains process status information (such as used by the ps
command).

statm— A file with status of the process's memory usage.

status— A file that contains much of the same information found in stat and statm
with additional process (current thread) status information. This file is stored in
a plain text format and is somewhat easier to decipher.



As noted, the cmdline file has the argument list for the process. This same data is
passed to the function main as argv. The data is stored as a single character string with
a null character \0 separating each entry. On the command line, the tr utility can be
used to translate the null characters into newlines to make the contents of the file
easier to read. For example, the command-line sequence

linux$ cat /proc/cmdline | tr 0" "\n"

would display the contents of the cmdline file with each argument placed on a separate
line. Pro;ram 2.1i| performs a somewhat similar function. It displays the contents of

the command line by accessing the data in the cmdline file of the executing process.

Program 2.11 Reading the cmdline file.

File : p2.11.cxx
| #include <iostream>
| #include <fstream>
| #include <sstream>
| #include <sys/types.h>
+ #include <unistd.h>
| using namespace std;
| constint size =512;
| int
| main(){

ostringstream oss (ostringstream::out);
0ss << "[proc/" << getpid() << "/cmdline";
cout << "Reading from file: " << oss.str() << endl;

ifstream i_file;
i_file.open(oss.str().c_str());  // open to read

I

I

I

I

+ static char buffer[size];
I

I

| i_file.getline(buffer, size, \n);
I

20 char *p = &buffer[0]; /I ref 1st char of seq
| do{

| cout << '"[" << p << "]" << endl;

| p += strlen(p)+1; /l move to next location
| } while (*p); /1 still ref a valid char

+ return O;

|}

In line 11 of the program, a new output stream descriptor for a string (oss) is declared.



In line 12 the name of the file (using a call to getpid to obtain the process ID) is

constructed and written to the string. The specified file is opened and read into buffer.

The contents of buffer is parsed and displayed. The processing loop uses the fact that

the command-line arguments are separated by a null character to divide the data into

its separate arguments. Figure 2.25 shows the output of the program when several

arguments are passed on the command line.

Figure 2.25 output.

linux$ p2.11 this is 1 test

Reading from file: /proc/12123/cmdline
[p2.11]

[this]

lis]

(1]

[test]

2-13 EXERCISE

The file environ stores the process's environment variables in a format similar
to the content of the cmdline file. Modify Program 2.1;| to read and display the

contents of the environ file.

2-14 EXERCISE

In most versions of Linux the statm file contains a series of integer values
separated by blanks. For Red Hat Linux there are seven values in the file. In
order, from left to right, these values are (a) program size in KB, (b) memory
portion of program in KB, (c) number of shared pages, (d) number of code
pages, (e) number of pages of data/stack, (f) number of pages of library, and
(g) number of dirty pages. In operating system parlance, a dirty page is one
that has been modified (and thus will need to be written back at some time
for updating). Write a program that performs an activity that causes a

verifiable increase in the number of dirty pages for the process.
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2.14 Summary

The framework in which a process carries on its activities is its processing
environment. The processing environment consists of a number of components. A
series of identification numbers—process ID, parent process ID, and process group
ID—are used to reference the individual process, its parent, and the group with which
the process is affiliated. In its environment a process has access to resources (i.e.,
files and devices). Access to these resources is determined by permissions that are
initially set when the resource is generated. When accessing files, a process can
obtain additional system information about the resource. All processes are
constrained by system-imposed resource limits. A process can obtain limit information
using the appropriate system call or library function. Processes may receive signals
that in turn may require a specific action. The values passed via the command line to
the process can be obtained. In addition, the process has access to, and may modify
(in some settings), environment variables. Linux also supports a /proc directory that
contains special files with information about the kernel, its data structures, and all
active processes.
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2.15 Key Terms and Concepts

Iproc filesystem
argc

argv
chdir system call

chmod system call

cmdline file

command-line values

cpu file

creation mask

cwd pointer

effective group ID (EGID)

effective user ID (EUID)

environ

environ command
environ file
environment variable

fchdir system call


file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/eBook.Prentice_Hall_PTR-Interprocess_Communications_in_Linux.ShareReactor.chm/23021533.htm

fchmod system call

fd subdirectory

file descriptor table
file permissions
getcewd library function
getenv library function
getgrgid system call
getopt library function
getpgid system call
getpid system call
getppid system call
getpwuid system call
getrlimit system call
init process

inode

Istat System call

maps file

process group
process group 1D (GID)
process ID (PID)

process leader



procinfo command
putenv library function
readlink system call
real group ID (GID)
real user ID (UID)
root pointer

session

set-group-ID (SGID)
setpgid system call
setrlimit system call
set-user-1D (SUID)
signal

stat file

stat system call

statm file

status file

sysconf library function
system file table
system inode table
ulimit command

ulimit system call



umask command

umask system call
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Chapter 3. Using Processes
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3.1 Introduction

Processes are at the very heart of the operating system. As we have seen, all but a
very few special processes are generated by the fork system call. If successful, the fork
system call produces a child process that continues its execution at the point of its
invocation in the parent process. In this chapter, we explore the generation and use of
child processes in detail. In , "Threads," the creation of threads will be
discussed.
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3.2 The fork System Call Revisited

The fork system call is unique in that while it is called once, it returns twice—to the
child and to the parent processes. As noted in , "Programs and Processes,"
if the fork system call is successful, it returns a value of 0 to the child process and the
process ID of the child to the parent process. If the fork system call fails, it returns a -1
and sets the global variable erro. The failure of the system to generate a new process
can be traced, by examination of the errno value, to either exceeding the limits on the
number of processes (systemwide or for the specific user) or to the lack of available
swap space for the new process. It is interesting to note that in theory the operating
system is always supposed to leave room in the process table for at least one
superuser process, which could be used to remove (kill) hung or runaway processes.
Unfortunately, on many systems it is still relatively easy to write a program (sometimes
euphemistically called a fork bomb) that will fill the system with dummy processes,
effectively locking out system access by anyone, including the superuser.

After the fork system call, both the parent and child processes are running and
continue their execution at the next statement after the fork. The return from the fork
system call can be examined, and the process can make a decision as to what code is
executed next. The process receiving a 0 from the fork system call knows it is the child,
as 0 is not valid as a PID. Conversely, the parent process will receive the PID of the

child. An example of a fork system call is shown inProgram 3.1].
Program 3.1 Generating a child process.

File : p3.1.cxx
|
| Generating a child process
|
| #include <iostream>
+  #include <sys/types.h>
| #include <unistd.h>
| using namespace std;
| int



| main( X

10 if (fork( ) ==0)
| cout << "In the CHILD process" << endl;

| else

| cout << "In the PARENT process" << endl;
| return O;
+

}

There is no guarantee as to the output sequence that will be generated by this
program. For example, if we issue the command-line sequence

linux$ p3.1 ; echo DONE ; p3.1 ; echo DONE ; p3.1

numerous times, sometimes the statement In the CHILD process Will be displayed before
the In the PARENT process, and other times it will not. The output sequence is dependent
upon the scheduling algorithm used by the kernel. Keep in mind that commands
separated by a semicolon on the command line are executed sequentially, with the
shell waiting for each command to terminate before executing the next. The effects of

process scheduling are further demonstrated by Program 3.;].

Program 3.2 Multiple activities parent/child processes.

File : p3.2.cxx
|

| Multiple activities PARENT -- CHILD processes

|

| #include <iostream>

+  #include <cstring>

| #include <sys/types.h>

| #include <unistd.h>

| using namespace std;

I

int
10 main(){
| static char buffer[10];
| if (fork( ) ==0) { /I In the child process
| strcpy(buffer, "CHILD...");
| }else { /I In the parent process
+ strcpy(buffer, "PARENT..");
|}
| for (inti=0; i < 3; ++i) { // Both processes do this
| sleep(1); /I 3 times each.
I

write(1, buffer, sizeof(buffer));
20 }



| return O;

|}

shows the output of this program when run twice on a local system.
Figure 3.1 Output of .

linux$ p3.2
PARENT..CHILD...CHILD...PARENT..PARENT..CHILD...linux$
linux$ p3.2

PARENT..CHILD...PARENT..CHILD...PARENT.. $ CHILD...

There are several interesting things to note about this program and its output. First,
the write (line 19) system call, not the cout object, was used in the program. The cout
object (an instance of the ostream class defined in <iostream>) is buffered and, if used,
would have resulted in the three-message output from each process being displayed
all at one time without any interleaving of messages. Second, the system call sleep
(sleep a specified number of seconds) was used to prevent the process from running
to completion within one time slice (which again would produce a homogenous output
sequence). Third, one process will always end before the other. If there is sufficient
intervening time before the second process ends, the system will redisplay the
prompt, thus producing the last line of output where the output from the child process
is appended to the prompt (i.e., linux$ CHILD...).

Keep in mind the system will flush an output stream (write its data to the physical
media) in a variety of circumstances. This synchronization occurs when (a) a file is
closed, (b) a buffer is full, (c) in C++ the flush or endl manipulators are placed in the
output stream, or (d) a call is made to the sync system call.

3-1 EXERCISE

When the following program is compiled and run,

File : funny.cxx
(I
A very funny program ...

I
(I
|  #include <iostream>



+  #include <sys/types.h>
| #include <unistd.h>
|  using namespace std;
| int
| main( ){

10  fork(); cout<<"hee " << endl;
| fork(); cout<<"ha" <<endl

| fork(); cout<<"ho" << endl;

| return O;

|

}

assuming all fork system calls are successful, how many lines of output will
be produced? Is it ever possible for a ho to be output before ahee? Why is
this? Would the number of hees, has and hos be different if the<< endl was left
out of each of the cout statements? Why?
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3.3 exec's Minions

Processes generate child processes for a number of reasons. In a Linux environment,
there are several long-lived processes, which run continuously in the background and
provide system services upon demand. These processes, called daemon processes,
frequently generate child processes to carry out the requested service. Some daemon
processes commonly found in a Linux environment are Ipd, the line printer daemon;
xinetd, the extended Internet services daemon; and syslogd, the system logging
daemon. Some problems (such as with databases) lend themselves to concurrent
type solutions that can be effected via multiple child processes executing the same
code. More commonly, such as when the shell processes a command, a process
procreates a child process because it would like to transform the child process by
changing the program code the child process is executing.

In Linux, any one of five library functions and one system call can be used to replace

the current process image with a new image. U The library functions act as a front end
to the system call. The library functions are discussed in the exec manual pages
(Section 3), while the system call (execve) warrants its own manual page entry in
Section 2. Any of these can be directly invoked by the programmer. For ease of
comparison, the library functions and the system call are discussed as a group. The
phrase exec call will reference this group.

™ 1n some versions of UNIX, such as Solaris, all the exec calls are
system calls and are grouped together as library functions and
discussed in one section of the manual. Linux has a more historic
approach to things.

It is important to remember that when a process issues any exec call, if the call is
successful, the existing process is overlaid with a new set of program code. The text,
data (initialized and uninitialized), and stack segment of the process are replaced and
only the u (user) area of the process remains the same. The new program code (if a
C/C++ binary) begins its execution at the function main. Since the system is now
executing a different set of code for the same process, some things, by necessity,



must change:

® Signals that were specified as being caught by the process (i.e., associated
with a signal-catching routine) are reset to their default action. This is
necessary, as the addresses for the signal-catching routines are no longer
valid.

® |n a similar vein, if the process was profiling (determining how much time is
spent in individual routines), the profiling will be turned off in the overlaid
process.

® |f the new program has its SUID bit set, the effective EUID and EGID are set
accordingly.

The program to be executed can be a script. In this case, the script should have its
execute bit set and start with the line #! interpreter [arg(s)], where interpreter is a valid
executable (but not another script). If successful, the exec calls do not return, as the
initial calling image is lost when overlaid with a new image.

Before we delve into these calls, we should take a quick look at what normally
transpires when a valid command is issued at the system (shell) level, as this process
will reflect the functionality available in a program. If the command issued is

linux$ cat file.txt > file2.txt

the shell parses the command line and divides it into valid tokens (e.g., cat, file.txt,
etc.). The shell (via a call to fork) then generates a child process. After the fork, the
shell closes standard output and opens the file file2.txt, mapping it to standard output in
the child process. Next, by calling execve, the shell overlays the current program code
with the program code for the command (in this case, the code for cat). When the

command is finished, the shell redisplays its prompt. Eigure 3.2 shows the process
creation and command execution sequence.

Figure 3.2. Process creation and command execution at the shell level.

Shell waits for the
command to finish

& command > 3 prompt returns
P command /
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While the command is executing, the shell, by default, waits in the background. As we
will see, there is a wait system call that allows the shell or any other process to wait.
Should the user place an & at the end of the command (to indicate to the shell that the
command be placed in background), the shell will not wait and will return immediately
with its prompt. When the command is finished, it may perform a call to exit or return
when in the function main. The integer value passed to these calls is made available to
the parent process via an argument to the wait system call. When on the command
line, the returned value is stored in the system variable named status. If in the Bourne
or BASH shell you issue the command

linux$ echo $?

the system will display the value returned by the last command executed. As the
mapping of standard output to the file file2.txt was done in the child process and not in
the shell, the 1/O redirection has no further impact on ensuing command sequences.

We should note that it is possible for a user at the command line to issue an exec call.
The syntax would be

linux$ exec command [arguments]

However, most users would not do this. The current process (the shell) would be
overlaid with the program code for the command. Once the command was finished,
the user would be logged out, as the original shell process would no longer exist!

In a programming environment, the exec calls can be used to execute another

program. The prototypes for the exec calls are listed in [Table 3.1l.



Table 3.1. The exec Call Prototypes.

View full Widthl

#include <unistd.h>
extern char **environ;

int execl (const char *path, const char *arg, ...);
int execv (const char *path, char *const argv[]);

int execle(const char *path, const char *arg , ...
™ char * const envpl[]);
int execve(const char *path, char *const argv[],
™ char * const envpl[]);

int execlp(const char *file, const char *arg, ...);
int execvp(const char *file, char *const argv[]);

The naming convention for these system calls reflects their functionality. Each call
starts with the letters exec. The next letter in the call name indicates if the call takes its
arguments in a list format (i.e., literally specified as a series of arguments) or as a
pointer to an array of arguments (analogous to the argv structure discussed earlier).
The presence of the letter | indicates a list arrangement (a variable argument list—see
the manual page on stdarg for details); v indicates the array or vector arrangement. The
next letter of the call name (if present) is either an e or ap. The presence of an e
indicates the programmers will construct (in the array/vector format) and pass their
own environment variable list. The passed environment variable list will become the
third argument to the function main (i.e., envp). As noted in the section on environment
variables, envp is of limited practical value. When the programmer is responsible for
the environment, the current environment variable list is not passed. The presence of
a p indicates the current environment PATH variable should be used when searching

for a file whose name does not contain a slash.*= In the four calls, where the PATH
string is not used (execl, execv, execle and execve), the path to the program to be
executed must be fully specified.

21 if the executable file is a script, the Bourne shell (/bin/sh) is invoked to
execute the script. The shell is then passed the specified argument
information.



The functionality of the exec system calls is best summarized by .

Table 3.2. exec Call Functionality.

Library Call Argument Pass Current Set of Search of PATH
Name Format Environment Variables? Automatic?

execl list yes no

execv array yes no

execle list no no

execve array no no

execlp list yes yes

execvp array yes yes

Of the six variations, execlp and execvp calls are used most frequently (as automatic
environment passing and path searching are usually desirable) and will be explained
in detail.

3.3.1 execlp

The execlp library function (II able 3.3) is used when the number of arguments to be
passed to the program to be executed is known in advance.

When using execlp, the initial argument, file, is a pointer to the file that contains the
program code to be executed. If this file reference begins with a /, it is assumed that
the reference is an absolute path to the file. In this circumstance, it would appear that
the p specification (execlp) is superfluous; however, the PATH string is still used if other
arguments are file names or if the code to be executed contains file references. If no /
Is found, each of the directories specified in the PATH variable will be, in turn,
preappended to the file name specified, and the first valid program reference found will
be the one executed. It is a good practice to fully specify the program to be executed
in all situations to prevent a program with the same name, found in a prior PATH string



directory, from being inadvertently executed. For the execlp call to be successful, the

file referenced must be found and be marked as executable. If the call fails, it returns

a -1 and sets errno to indicate the error. As the overlaying of one process image with

another is very complex, the possibilities for failure are numerous (as shown in

).

Include File(s)

Table 3.3. Summary of the execlp Library Function.

<unistd.h>
extern char **environ;

Manual Section 3

Summary int execlp(const char *file,const char *arg, . . .);
Success Failure Sets errno
Return Does not return -1 Yes
Table 3.4. exec Error Messages.
# Constant perror Message Explanation
1 EPERM Operation not
permitted ® The process is being traced, the
user is not the superuser, and
the file has an SUID or SGID bit
set.
® The file system is mounted
nosuid, the user is not the
superuser, and the file has an
SUID or SGID bit set.
2 ENOENT No such file or One or more parts of path to new
directory process file does not exist (or is NULL).
4 EINTR Interrupted Signal was caught during the system
system call call.
5 EIO Input/output error




11

12

13

14

20

21

22

24

26

Constant

E2BIG

ENOEXEC

EAGAIN

ENOMEM

EACCES

EFAULT

ENOTDIR

EISDIR

EINVAL

EMFILE

ETXTBSY

perror Message

Argument list too
long

Exec format error

Resource
temporarily
unavailable

Cannot allocate
memory

Permission
denied

Bad address

Not a directory

Is a directory

Invalid argument

Too many open
files

Text file busy

Explanation

New process argument list plus
exported shell variables exceed the
system limits.

New process file is not in a recognized
format.

Total system memory while reading
raw I/O is temporarily insufficient.

New process memory requirements
exceed system limits.

® Search permission denied on
part of file path.

® The new file to process is not an
ordinary file.

® No execute permission on the
new file to process.

path references an illegal address.

Part of the specified path is not a
directory.

An ELF interpreter was a directory.

An ELF executable had more than one
interpreter.

Process has exceeded the maximum
number of files open.

More than one process has the
executable open for writing.




# Constant perror Message Explanation

36 ENAMETOOLONG File name too The path value exceeds system path/file
long name length.

40 ELOOP Too many levels  The perror message says it all.
of symbolic links

67 ENOLINK Link has been The path value references a remote
severed system that is no longer active.
72 EMULTIHOP Multihop The path value requires multiple hops to
attempted remote systems, but file system does
not allow it.
80 ELIBBAD Accessing a An ELF interpreter was not in a

corrupted shared recognized format.
library

The ellipses in the execlp function prototype can be thought of as argument O (arg0)
through argument n (argn). These arguments are pointers to the null-terminated strings
that would be normally passed by the system to the program if it were invoked on the
command line. That is, argument 0, by convention, should be the name of the
program that is executing. This is usually the same as the value in file, although the
program referenced by file may include an absolute path, while the value in argument
0 most often would not. Argument 1 would be the first parameter to be passed to the
program (which, using argv notation, would be argv[1]), argument 2 would be the
second, and so on. The last argument to the execlp library call must be a NULL that is,

for portability reasons, cast to a character pointer. Program 3.3, which invokes the cat

utility program, demonstrates the use of the execlp library call.

Program 3.3 Using the execlp system call.

File : p3.3.cxx
|/
| Running the cat utility via an exec system call
|
| #include <iostream>
+  #include <cstdio>
|  #include <unistd.h>



| using namespace std;

| int

|  main(int argc, char *argv[ 1){

10 if (argc > 1) {
execlp("/bin/cat", "cat", argv[1], (char *) NULL);
perror(“exec failure ");
return 1;

I
I
I
|}

+ cerr << "Usage: " << *argv << " text_file" << endl;
| return 2;

I

}

When passed a text file name on the command line, this program displays the
contents of the file to the screen. The program accomplishes this by overlaying its own
process image with the program code for the cat utility program. The program passes
the cat utility program the name (referenced by argv[1]) of the file to display. If the execlp
system call fails, the call to perror is made and the program exits and returns the value
1 to the system. If the call is successful, the perror and return statements are never
reached, as they are replaced with the program code for the cat utility.

A sample run of the program is shown in Eigure 3.3.
Figure 3.3 Output of .

linux$ p3.3 test.txt
This is a sample text
file for the program to
display!



3-2 EXERCISE

Harley wondered what value is used by the system to generate a system
process table entry when the execlp call is issued. Is it the value referenced
by file or the value referenced byargo? Further, what happens ifargo is set to
NULL ("), or if argo is omitted entirely (e.g., thefile value is immediately
followed with (char ¥)NULL)? Is it possible, in a case like this, for the value of
argc to be 0? To test things she wrote, and compiled, theount.cxx program

below. She then modified Program 3.3 to call hercount executable by

changing "/bin/cat" in line 11 ofProgram 3.3 to "/count”. What did she find?

File : count.cxx
| #include <iostream>
|  #include <cstdlib>
|  #include <unistd.h>
| using namespace std,;
+ int
|  main(int argc, char *argv[]){
| cerr << "argc =" << argc << endl;
| cerr << "Processes running" << endl;
|

system("ps -f"); // issue a shell
ps cmd
10 if (argc>1){ [/l value passed?

int limit = atoi(argv[1]);  // convertto #
for(int i=limit; i ;--i){ /I count
cerr << i << endl;

|
|
I
| sleep(1);
+ }
| }else {
| cerr << "Nothing to count" << endl;
| return 2;
|}
20 return O;
|}

3.3.2 execvp

If the number of arguments for the program to be executed is dynamic, then the execvp
call can be used (Table 3.5). As with the execlp call, the initial argument to execvp is a



pointer to the file that contains the program code to be executed. However, unlike
execlp, there is only one additional argument that execvp requires. This second
argument, defined as

char *const argv| |

specifies that a reference to an array of pointers to character strings should be
passed. The format of this array parallels that of argv and, in many cases, is argv. If the
reference is not the argv values for the current program, the programmer is
responsible for constructing and initializing a new argv-like array. If this second
approach is taken, the last element of the new argv array should contain a NULL
address value. If execvp fails, it returns_a value of -1 and sets the value in errno to
indicate the source of the error (see ).

Table 3.5. Summary of the execvp System Call.

Include File(s) <unistd.h> Manual Section 3
<extern char **environ;
Summary Int execvp(const char *file, char *const argv(]);
Success Failure Sets errno
Return Does not return -1 Yes

Program 3.4 makes use of the argv values for the current program.

Program 3.4 Using execvp with argv values.

File : p3.4.cxx
|/
| Using execvp to execute the contents of argv
|
| #include <iostream>
+  #include <cstdio>
|  #include <unistd.h>
| using namespace std;
| int
| main(int argc, char *argv[]) {
10 if (argc>1){
| execvp(argv[l], &argv[1]);
| perror("exec failure");



return 1;

I
|}

+ cerr << "Usage: " << *argv << " exe [arg(s)]" << endl;
| return 2;

I

}

The program will execute, via execvp, the program passed to it on the command line.
The first argument to execvp, argv[1], is the reference to the program to execute.

The second argument, &argv[1], is the reference to the remainder of the command-line
argv array. Notice that both of these references began with the second element of argv
(that is, argv[1]), as argv[0] is the name of the current program (e.g., p3.4). The output in

Figure 3.4 shows that the program does work as expected.

Figure 3.4 Output of Eroéram 3.4 when passed the cat command.

linux$ p3.4 cat test.txt
This is a sample text
file for a program to
display!

If we place additional information on the command line when running Program 3.4}, we
find the program will pass the information on, as demonstrated in Eisure 3.5.

Figure 3.5 Output of Eroéram 3.4 when passed the cat command with the -n option.

linux$ p3.4 cat -n test.txt
1 This is a sample text
2 file for a program to
3 display!

If command-line argv values of the current program are not used with execvp, then the
programmer must construct a new argv to be passed. An example of how this can be

done is shown in Program 3.5.

Program 3.5 Using execvp with a programmer-generated argument list.

File : p3.5.cxx
|
| Generating our own argv type list for execvp
|



#include <iostream>

#include <unistd.h>

I

+ #include <cstdio>
I

| using namespace std;
I

I

int
main( ){
10 char *new_argv[] = {"cat",
"test.txt",
(char*) 0
2

execvp("/bin/cat", new_argv );

I

I

I

I

+ perror("exec failure ");
| return 1;

I

}

When compiled and run as p3.5, the output of this program will be the same as the

output from the first run of

Program 3.4|.
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3.4 Using fork and exec Together

In most programs, the fork and exec calls are used in conjunction with one another (in
some operating systems, the fork and exec calls are packaged as a single spawn system

call). The parent process generates a child process, which it then overlays by a call to
exec, as in Pro;ram 3.&.

Program 3.6 Using fork with execlp.

File : p3.6.cxx
|
Overlaying a child process via an exec
*/
#include <iostream>

#include <cstdio>
#include <unistd.h>
using namespace std;
int

10 main(){

| char *mesg[] = {"Fie", "Foh", "Fum"};

| int display_msg(char *);

| for (int i=0; i < 3; ++i)

| display_msg(mesqgl[i]);

+ return O;

I

I

I

I

I
I
I
+  #include <sstream>
I
I
I
I

}
int
display_msg(char *m){
ostringstream oss(ostringstream::out);
20 switch (fork()) {
| case O:
I sleep(1);
| execlp("/bin/echo"”, "echo", m, (char *) NULL);
| 0SS << m << " exec failure"; // build error msg string
+ perror(oss.str().c_str());
| return 1;
| case -1:
| perror("Fork failure™);



| return 2;
30 default:

| return O;
|}

|}

Proéram 3.& displays three messages (based on the contents of the array mesg). This
action is accomplished by calling the display_msg function three times. Once in the
display_msg function, the program forks a child process and then overlays the child
process code with the program code for the echo command. The output of the program
Is shown in Eigure 3.6.

Figure 3.6 Output of .

linux$ p3.6
Foh

Fie

Fum

Due to scheduling, the order of the messages may change when run multiple times.

It is interesting to observe what happens if the execlp call in display_msg fails (line 23). If
we purposely sabotage the execlp system call by changing it to

execlp("/bin/no_echo", "echo”, m, (char *) NULL );

and assuming there is not an executable file called no_echo to be found in /bin, the

outpu of the program becomes that shown in Ei;ure 3.7.

Bl The program uses a common programming trick to create a message

string on-the-fly to pass to the perror routine.

Figure 3.7 Output of when execlp fails.

linux$ p3.6

Foh exec failure: No such file or directory
Fie exec failure: No such file or directory
Fum exec failure: No such file or directory
Fum exec failure: No such file or directory
Foh exec failure: No such file or directory
Fum exec failure: No such file or directory



Fum exec failure: No such file or directory

Surprisingly, when the execlp call fails, we end up with a total of eight processes—the
initial process and its seven children. Most likely this was not the intent of the original
programmer. One way to correct this is within the display_msg function: In the case 0:

branch of the switch statement, replace the return statement in line 26 with a call to exit.

3-3 EXERCISE

In its current implementation, Program 3.6 does not make use of the value
returned by the display_msg function. Modify the program so that in line 14 the
returned value is used. Compare and contrast the output of this modification
to the suggested modification in the previous paragraph (replacing the return
statement in line 26 with a call to exit).

Combining what we have learned so far, we can produce, in relatively few lines of
code, a shell program that restricts the user to a few basic commands (in this

example, Is, ps, and df). The code for our shell program is shown in Pro;ram 3. il

I For reasons that become obvious when the program is run, this is
nicknamed the huh shell.

This program could be considered a very stripped-down version of a restricted shell.
The main thrust of the program is pedagogical, and improvements and expansions (of
which there can be many) will be addressed in ensuing sections of the text and in a
number of exercises.

5] Many UNIX environments come with a predefined restricted shell
(which is different from the remote shell /bin/rsh). A restricted shell is
sometimes specified as a login shell for users (such as ftp) that require a
more controlled environment. Linux does not come with a specific
restricted shell for users, but some of the standard shells (such as bash
and ksh) can be passed a command-line option (-r) that will run the shell
in restricted mode. Linux does come with a restricted shell for sendmail
(smrsh).



Program 3.7 The huh shell.

File : p3.7.cxx

/*
A _very_ limited shell program
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <unistd.h>
using namespace std;

const int MAX  =256;
const int CMD_MAX=10;
char *valid_cmds ="Is ps df";
int
main(
char line_input[MAX], the_cmd[CMD_MAX];
char *new_args[CMD_MAX], *cp;
int i;
while (1) {
cout << "cmd> ",
if (cin.getline(line_input, MAX, "\n") != NULL) {
cp = line_input;
i =0;
if ((new_argsli] = strtok(cp, " ")) = NULL) {
strepy(the_cmd, new_argsli]);
strcat(the_cmd, " ");
if ((strstr(valid_cmds, the_cmd)—valid_cmds) % 4 == 1) {
do{
cp = NULL,;
new_args[++i] = strtok(cp, " ");
} while (i < CMD_MAX && new_args]i] '= NULL);
new_args[i] = NULL;
switch (fork()) {
case 0:
execvp(new_args[0], new_args);
perror(“exec failure");
exit(1);
case -1:
perror(“fork failure™);
exit(2);
default:
I/ In the parent we should be waiting for
/I the child to finish



}
} else
cout << "huh?" << endl;

—_—— — 4 -

50

The commands the user is permitted to issue when running our shell are found in the
global character string called valid_cmds. In the valid_cmds string, each two-letter
command is preceded and followed by a space. By delimiting the commands in this
manner, a predefined C string searching function strstr can be used to determine if a
user has entered a valid command. While this technique is simplistic, it is effective
when a limited number of commands need to be checked. The program then issues a
shell-like prompt, cmd>, and uses the C++ input function getline to store user input in a
character array buffer called line_input. The getline function will read a line of input,
including intervening whitespace that is terminated by a newline. If the getline function
fails (such as when the user just presses return), the program loops back around and
reprompts the user for additional input. Upon entry of input, the program uses the C
string function strtok to obtain the first valid token from the line_input array. The strtok
function, which will divide a referenced character string into tokens, requires a pointer
to the array it is to parse and a list of delimiting characters that delimit tokens (in this
case only a blank " " has been indicated). The strtok function is a wonderful example of
the idiosyncratic nature of some functions in C/C++. When strtok is called successive
times and passed a reference to NULL, it will continue to parse the initial input line
starting each time where it left off previously. The strcat function is used to add a
trailing blank to this first token (assumed to the command), and the resulting
sequence is stored in a character array called the_cmd.

The next line of the program checks for the presence of the command in the valid_cmds
string at a modulus-4-based offset (see ).

Figure 3.8. Character offsets in the valid_cmds string.

valid_ cmds




If the command is found, a do-while loop is used to obtain the remaining tokens (up to
the limit CMD_MAX). These tokens are stored in successive elements of the previously
declared new_args array. Upon exiting the loop, we assure that the last element of the
new_args array contains the requisite NULL value. A switch statement, in concert with

Moduluas 4 offsets T

fork and execvp system calls, is used to execute the command.

3-4 EXERCISE

In Program 3.7
passed to the execvp system call?

, Why wasnew_args[0], rather than the referencethe_cmd,

example,

df -t

When running

3-5 EXERCISE

Proéram 3. il we can specify options to commands. For

will work just as if we were running the regular shell. However, if we indicate
that the output of a command is to be redirected to a file, say, df -t >
Itmp/ps_out, the command no longer works as expected. Why is this?

Restructure

3-6 EXERCISE

Program 3.7

into functional units. Add (as part of thevalid_cmds

string) the pwd (print working directory), lo (logout), andcd (change directory)
commands. Submit evidence that these new commands have been
implemented successfully.




4 Prewious | | Mext Il

(0]



4 Previous | | Mext Irl

3.5 Ending a Process

Eventually all things must come to an end. Now that we have generated processes,

we should take a closer look at how to end a process. Under its own power (assuming
the process does not receive a terminating signal and the system has not crashed) a

process normally terminates in one of three ways.= In order of preference, these are

(6] of course, the library function abort can also be used to end a
process, but its call will result in an abnormal termination of the process.

1. Itissues (at any point in its code) a call to either exit or _exit.
2. Itissues areturn in the function main.
3. Itfalls off the end of the function main ending implicitly.

Programmers routinely make use of the library function exit to terminate programs.
This function, which does not return a value, is defined as shown in |I able 3.6.

Table 3.6. Summary of the exit Library Function.

Include File(s) <stdlib.h> Manual Section
Summary void exit(int status);

Success Failure Sets errno
Return Does not return No return

In earlier versions of C the inclusion of a specific header file was not required when
using exit. More recent versions of C (and C++) require the inclusion of the file
<stdlib.h> (or <cstdlib> if going the full ANSI-C++ route) that contains the exit function

prototype. The exit function accepts a single parameter, an integer status value that will

be returned to the parent process. L By convention, a 0 value is returned if the
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program has terminated normally; other wise, a nonzero value is returned.I For those
who wish to standardize the value returned by exit when terminating, the header file
<stdlib.h> contains two defined constants, EXIT_SUCCESS and EXIT_FAILURE, which can
be used to indicate program success and failure respectively. If we somehow are able
to slip by the compiler a call to exit without passing an exit status value (i.e., exit();) or
Issue a return; in main without specifying a value, then what is returned to the parent
process is technically undefined.

Uy know, | know—what if the parent is no longer around? Remember
that init inherits processes whose parents are gone. The handling of
status values is discussed further in .

(8] Only the low-order eight bits are returned, thus values range from 0
to 255. (Hmm, | wonder ... would exit(-1) actually return a 2557?)

Upon invocation, the exit function performs several actions. shows the
relationship of the actions taken.

Figure 3.9. Actions taken by library function exit.

exit( ) <
atexit function Yes Execute the
registered? > function
No
exit( )

First, exit will call, in reverse order, all functions that have been registered using the
atexit library function. The atexit function is relatively new. Some older BSD-based
versions of C (as well as some version of GNU) supported a library function called
on_exit that offered a similar functionality. As future support for on_exit looks to be a bit
sketchy; it might be best to stay clear of it. The atexit function should provide similar
functionality.



A brief description of the atexit function is in order. The definition of atexit, shown in
able 3.7, indicates that functions to be called (when the process terminates

normally) 2 are registered by passing the atexit function the address of the function.
The registered functions should not have any parameters. If atexit is successful in

registering the function, atexit returns a 0; otherwise, it returns a -1 but will not set

10
errno.=—

1 A normal termination is considered a call to exit or a return in main. On
our system, atexit registered functions will be called even if the program
ends implicitly (without a return in main).

(19 This is one of the rare cases where no explanation of errno values is
provided by system designers.

Program 3.8 demonstrates the use of atexit.

When run, the output of the program shows that the registered functions are called in
inverse order (Fiéure 3.1&).

In older versions of C, once all atexit functions were called, the standard 1/O library
function _cleanup would be called. Newer versions of GNU C/C++ do not support the
_cleanup function. Now when all atexit functions have been processed, exit calls the
system call _exit (passing on to it the value of status). Programmers may call _exit
directly if they wish to circumvent the invocation of atexit registered functions and the
flushing of 1/O buffers. See [Table 3.8.

Table 3.7. Summary of the atexit Library Function.

Include File(s) <stdlib.h> Manual Section 3
Summary int atexit(void (*function)(void));

Success Failure Sets errmo
Return 0 -1 No

Program 3.8 Using the atexit library function.



File : p3.8.cxx
| #include <iostream>
| #include <cstdlib>
| using namespace std;
| int
+  main( §
| void f1(), f2(), f3();
| atexit(fl);
| atexit(f2);
| atexit(f3);

10 cout << "Getting ready to exit" << endl;

| exit(0);

|}

| void

| 10

+ cout << "Doing F1" << endl;
|}

| void

| f2(0{

| cout << "Doing F2" << endl;
20 }

| void
| f3(){
I

I

cout << "Doing F3" << end];

Figure 3.10 Output of .

linux$ p3.8

Getting ready to exit
Doing F3

Doing F2

Doing F1

3-7 EXERCISE

handled correctly?

Explore the atexit function. What happens if one of the functions registered
with atexit contains a call toexit? What if the registered function (with theexit
call) is called directly rather than having the program exit in main—are things




Table 3.8. Summary of the _exit System Call.

Include File(s) <unistd.h> Manual Section 2
Summary void _exit(int status);

Success Failure Sets errno
Return Does not return Does not return

The _exit system call, like its relative, exit, does not return. This call also accepts an
integer status value, which will be made available to the parent process. When
terminating a process, the system performs a number of housekeeping operations:

® All open file descriptors are closed.

® The parent of the process is notified (via a SIGCHLD signal) that the process is
terminating.

® Status information is returned to the parent process (if it is waiting for it). If the
parent process is not waiting, the system stores the status information until a
wait by the parent process is affected.

® All child processes of the terminating process have their parent process ID
(PPID) set to 1—they are inherited by init.

® |f the process was a group leader, process group members will be sent
SIGHUP/ SIGCONT signals.

® Shared memory segments and semaphore references are readjusted.

® |f the process was running accounting, the accounting record is written out to
the accounting file.

4 Previous | | Hexdt Pl
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3.6 Waiting on Processes

They also serve who only stand and wait.
—John Milton 1608-1674 On His Blindness [1652]

More often than not, a parent process needs to synchronize its actions by waiting until
a child process has either stopped or terminated its actions. The wait system call
allows the parent process to suspend its activity until one of these actions has

occurred (Table 3.9).

Table 3.9. Summary of the wait System Call.
<sys/types.h>

Include File(s) <sys/wait.h> Manual Section 2
Summary pid_t wait(int *status);

Success Failure Sets errno
Return Child process ID or 0 -1 Yes

The activities of wait are summarized in Figure 3.11.

Figure 3.11. Summary of wait activities.

wait( )

l No

."Chlld process g Return -1 and set

present? errno.

Yes i

Wait for child—

™1 1



Dlock -4 process terminated?

Yes

Return status u'uhw
and child PI1D.

The wait system call accepts a single argument, which is a pointer to an integer, and
returns a value defined as type pid_t. Data type pid_t is found in the header file
<sys/types.h> and is most commonly a long int. If the calling process does not have any
child processes associated with it, wait will return immediately with a value of -1 and
erro Will be set to ECHILD (10). However, if any child processes are still active, the
calling process will block (suspend its activity) until a child process terminates. When a
waited-for child process terminates, the status information for the child and its process
ID (PID) are returned to the parent. The status information is stored as an integer
value at the location referenced by the pointer status. The low-order 16 bits of the
location contain the actual status information, and the high-order bits (assuming a
32-bit machine) are set to zero. The low-order bit information can be further
subdivided into a low- and high-order byte. This information is interpreted in one of
two ways:

1. If the child process terminated normally, the low-order byte will be 0 and the
high-order byte will contain the exit code (0—255):

byte 3 byte 2 byte 1 byte 0

exit code 0

2. If the child process terminated due to an uncaught signal, the low-order byte
will contain the signal number and the high-order byte will be O:

byte 3 byte 2 byte 1 byte O

0 signal #

In this second situation, if a core file has been produced, the leftmost bit of byte O will
be a 1. If a NULL argument is specified for wait, the child status information is not
returned to the parent process, the parent is only notified of the child's termination.



Here are two programs, a parent (Program 3.9) and child (Program 3.1d), that

demonstrate the use of wait.

Program 3.9 The parent process.

File : p3.9.cxx
|/

A parent process that waits for a child to finish

I
|
| #include <iostream>
+ #include <cstdlib>
| #include <iomanip>
| #include <unistd.h>
| #include <sys/types.h>
| #include <sys/wait.h>
10 using namespace std;
int
main(int argc, char *argv[] ){
pid_t pid, w;
int status;

cerr << "Usage " << *argv << " value_1 value_2 value_3\n";

return 1;

I

I

I

I

+ if (argc<4){
I

I

|}

I

for (inti=1;i<4; ++i) /I generate 3 child processes

20 if ((pid = fork()) == 0)
execl("./child", "child", argv][i], (char *) 0);

else /[ assuming no failures here

I

|

| cout << "Forked child " << pid << endl;
|/

+ Wait for the children
|

| while ((w=wait(&status)) && w !=-1)
|

I

cout << "Wait on PID: " << dec << w<<"

<< setw(4) << setfill('0") << hex

returns status of "

30 << setiosflags(ios::uppercase) << status << endl;

| return O;

|}

The parent program forks three child processes. Each child process is overlaid with

the executable code for the child (found in

Program 3.lgi). The parent process passes

to each child, from the parent's command line, a numeric value. As each child process

Is produced, the parent process displays the child process ID. After all three

processes have been generated; the parent process initiates a loop to wait for the



child processes to finish their execution. As each child process terminates, the value
returned to the parent process is displayed.

Program 3.10 The child process.

File : p3.10.cxx
|/
| The child process
|
| #define _GNU_SOURCE
+ #include <iostream>
| #include <cstdlib>
| #include <iomanip>
| #include <sys/types.h>
| #include <unistd.h>
10 #include <signal.h>
| using namespace std;
| int
| main(int argc, char *argv[ ]){
| pid_t pid = getpid();
+ int ret_value;
| srand((unsigned) pid);
| ret_value = int(rand() % 256); // generate a return value
| sleep(rand() % 3); I/ sleep a bit
| if (atoi(*(argv + 1)) % 2) { [/l assuming argv[1] exists!
20 cout << "Child " << pid << " is terminating with signal 0009" << endl;
| kill(pid, 9); /[l commit hara-Kiri
| } else {
| cout << "Child " << pid << " is terminating with exit("
| << setw(4) << setfill('0") << setiosflags(ios::uppercase)
+ << hex <<ret_value <<")" << endl;
| exit(ret_value);
|}
|3

In the child program, the child process obtains its own PID using the getpid call. The
PID value is used as a seed value to initialize the srand function. A call to rand is used
to generate a unique value to be returned when the process exits. The child process
then sleeps a random number of seconds (0-3). After sleeping, if the argument
passed to the child process on the command line is odd (i.e., not evenly divisible by
2), the child process Kkills itself by sending a signal 9 (SIGKILL) to its own PID. If the
argument on the command line is even, the child process exits normally, returning the
previously calculated return value. In both cases, the child process displays a



message indicating what it will do before it actually executes the statements.

The source programs are compiled and the executables named parent and child
respectively. They are run by calling the parent program. Two sample output
sequences are shown in .

Figure 3.12 Two runs of Erograms 3.§ and M

linux$ parent 21 2 Q
Forked child 8975

Forked child 8976

Child 8976 is terminating with signal 0009
Forked child 8977

Wait on PID: 8976 returns status of 0009
Child 8977 is terminating with exit(0O08F)
Wait on PID: 8977 returns status of 8F00
Child 8975 is terminating with exit(0062)
Wait on PID: 8975 returns status of 6200

linux$ parent2 2 1 <-- 2
Forked child 8980

Forked child 8981

Forked child 8982

Child 8982 is terminating with signal 0009
Wait on PID: 8982 returns status of 0009
Child 8980 is terminating with exit(00B0)
Wait on PID: 8980 returns status of BO0OO
Child 8981 is terminating with exit(00D3)
Wait on PID: 8981 returns status of D300

(1) Two even values and one odd

(2) Two even values and one odd but in a different order.

There are several things of interest to note in this output. In the first output sequence,
one child processes (PID 8976) has terminated before the parent has finished its
process generation. Processes that have terminated but have not been waited upon by
their parent process are called zombie processes. Zombie processes occupy a slot in



the process table, consume no other system resources, and will be marked with the
letter Z when a process status command is issued (e.g., ps -alx or ps -el). A zombie

process cannot be killed== even with the standard Teflon bullet (e.g., at a system
level: kill -9 process_id_number). Zombies are put to rest when their parent process
performs a wait to obtain their process status information. When this occurs, any
remaining system resources allocated for the process are recovered by the kernel.
Should the child process become an orphan before its parent issues the wait, the
process will be inherited by init, which, by design, will issue a wait for the process. On
some very rare occasions, even this will not cause the zombie process to "die." In
these cases, a system reboot may be needed to clear the process table of the entry.

14 This miraculous ability is the source of the name zombie.

Both sets of output clearly show that when the child process terminates normally, the
exit value returned by the child is stored in the second byte of the integer value
referenced by argument to the wait call in the parent process. Likewise, if the child
terminates due to an uncaught signal, the signal value is stored in the first byte of the
same referenced location. It is also apparent that wait will return with the information
for the first child process that terminates, which may or may not be the first child
process generated.

3-8 EXERCISE

Add the wait system call to thehuh shell program Ero;ram 3.7).

3-9 EXERCISE

Write a program that produces three zombie processes. Submit evidence,
via the output of the ps command, that these processes are truly generated

and are eventually destroyed.

3-10 EXERCISE



In Program 3.1d if the child process uses a signal 8 (versus 9) to terminate,
what is returned to the parent as the signal value? Why?

It is easy to see that the interpretation of the status information can be cumbersome,
to say the least. At one time, programmers wrote their own macros to interrogate the
contents of status. Now most use one of the predefined status macros. These macros

are shown in .

Table 3.10. The wstat Macros.

Macro Description

WIFEXITED(status) Returns a true if the child process exited normally.

WEXITSTATUS(status) Returns the exit code or return value frommain. Should be called
only if WIFEXITED(status)has returned a true.

WIFSIGNALED(status) Returns a true if the child exited due to uncaught signal.

WTERMSIG(status) Returns the signal that terminated the child. Should be called
only if WIFSIGNALED(status) has returned a true.

WIFSTOPPED(status)  Returns a true if the child process is stopped.

WSTOPSIG(status) Returns the signal that stopped the child. Should be called only
if WIFSTOPPED(status)has returned a true.

The argument to each of these macros is the integer status value (not the pointer to
the value) that is returned to the wait call. The macros are most often used in pairs.
The WIF macros are used as a test for a given condition. If the condition is true, the
second macro of the pair is used to return the specified value. As shown below, these

macros could be incorporated in the wait loop in the parent Program 3.9 to obtain the
child status information:

while ((w = wait(&status)) && w !=-1)
if (WIFEXITED(status)) /I test with macro
cout << "Wait on PID: " << dec << w << " returns a value of "
<< hex << WEXITSTATUS(status) << endl; // obtain value
else if (WIFSIGNALED(status)) /I test with macro



cout << "Wait on PID: " << dec << w << " returns a signal of "
<< hex << WTERMSIG(status) << endl; /l obtain value

3-11 EXERCISE

Some systems support a WCOREDUMP macro. This macro is only called if
the WIFSIGNALED macro returns a true. WCOREDUMP returns a true if the
offending signal generates a core dump. Write your own version of the
WCOREDUMP macro (inline function). You may need to check the signal
manual page (Section 7) to determine what signals generate a core dump or
do a bit of bit manipulation (see earlier discussion). Show that your macro
works when a process receives a terminating signal that generates or does

not generate a core image file.

While the wait system call is helpful, it does have some limitations. It will always return
the status of the first child process that terminates or stops. Thus, if the status
information returned by wait is not from the child process we want, the information may
need to be stored on a temporary basis for possible future reference and additional
calls to wait made. Another limitation of wait is that it will always block if status
information is not available. Fortunately, another system call, waitpid, which is more
flexible (and thus more complex), addresses these shortcomings. In most invocations,
the waitpid call will block the calling process until one of the specified child processes
changes state. The waitpid system call summary is shown in m.

Table 3.11. Summary of the waitpid System Call.

Include File(s) <sys/types.h> Manual Section

<sys/wait.h> 2
Summary pid_t waitpid(pid_t pid, int *status, int options),
Success Failure Sets errno
Return Child PID or O -1 Yes

The first argument of the waitpid system call, pid, is used to stipulate the set of child
process identification numbers that should be waited for (Table 3.12).



Table 3.12. Interpretation of pid Values by waitpid.

pid Wait for
Value

<-1 Any child process whose process group ID equals the absolute value of

pid.
L Any child process—in a manner similar towait.
0 Any child process whose process group ID equals the caller's process
group ID.
>0 The child process with this process ID.

The second argument, *status, as with the wait call, references an integer status
location where the status information of the child process will be stored if the waitpid
call is successful. This location can be examined directly or with the previously
presented wstat macros.

The third argument, options, may be 0 (don't care), or it can be formed by a bitwise OR
of one or more of the flags listed in (these flags are usually defined in the
<sys/wait.n> header file). The flags are applicable to the specified child process set
discussed previously.

Table 3.13. Flag Values for waitpid.

FLAG Value Specifies

WNOHANG Return immediately if no child has exited—do not block if the status
cannot be obtained; return a value of O, not the PID.

WUNTRACED Return immediately if child is blocked.

If the value given for pid is -1 and the option flag is set to 0, the waitpid and wait system

call act in a similar fashion. If waitpid fails, it returns a value of —1 and sets errno to
indicate the source of the error (Table 3.14)).



Table 3.14. waitpid Error Messages.

# Constant perror Message Explanation

4 EINTR Interrupted system  Signal was caught during the system call.
call

10 ECHILD No child process Process specified by pid does not exist, or

child process has set action of SIGCHILD to
be SIG_IGN (ignore signal).

22 EINVAL Invalid argument Invalid value for options.

85 ERESTART Interrupted system  WNOHANG not specified, and unblocked
call should be signal or SIGCHILD was caught.
restarted

We can modify a few lines in our current version of the parent process (Program 3.9)

to save the generated child PIDs in an array. This information can be used with the
waitpid system call to coerce the parent process into displaying status information from
child processes in the order of child process generation instead of their termination

order. Program 3.1;] shows how this can be done.

Program 3.11 A parent program using waitpid.

File : p3.11.cxx
| #include <iostream>
| #include <cstdlib>
|  #include <iomanip>
| #include <unistd.h>
+ #include <sys/types.h>
| #include <sys/wait.h>
| using namespace std;
| int
|  main(int argc, char *argv[] ){
10 pid_t pid[3], w;
| int status;
| if (argc<4){
| cerr << "Usage " << *argv << " value_1 value_2 value_3\n";
| return 1;
+

}



for (inti=1; i < 4; ++i) /I generate 3 child processes
if ((pid[i-1] = fork()) == 0)
execl("./child", "child", argv][i], (char *) 0);
else /[ assuming no failures here
20 cout << "Forked child " << pid[i-1] << endl;
/*
Wait for the children
*/
for (int i=0;(w=waitpid(pid[i], &status,0)) && w !=-1; ++i){

if (WIFEXITED(status)) // test with macro
cout << " a value of " << setw(4) << setfill('0) << hex

<< setiosflags(ios::uppercase) << WEXITSTATUS(status) << endl;
else if (WIFSIGNALED(status)) /I test with macro

I
I
I
I
+ cout << "Wait on PID " << dec << w << " returns ";
I
I
I
I

30 cout << " a signal of " << setw(4) << setfill('0") << hex
<< setiosflags(ios::uppercase) << WTERMSIG(statu
else
cout << " unexpectedly!" << endl;

}

return O;

—_ Y = — — —

s) << endl;

A run of this program (using the same child process—

Program 3.1d) confirms that the

status information returned to the parent is indeed ordered based on the sequence of

child processes generation, not the order in which the

processes terminated. Also,

note that the status macros are used to evaluate the return from waitpid system call

Eiqure 3.13).

Figure 3.13 Output of .

linux$p3.11 2 2 1

Forked child 9772

Forked child 9773 Q
Child 9773 is terminating with exit(008B)
Forked child 9774

Child 9772 is terminating with exit(00CD)
Wait on PID 9772 returns a value of 00CD K-- 3
Wait on PID 9773 returns a value of 008B

Child 9774 is terminating with signal 0009

Wait on PID 9774 returns a signal of 0009

A
1
|
N

(1) Order of creation:



(2) Order of termination:

(3) Order of wait:

3-12 EXERCISE

The discussion in the text centers on a parent process waiting for a child
process to terminate or stop. We already have the tools necessary for a
child process to determine if its parent process has terminated. Show how
this can be done. What are the advantages and disadvantages of your

implementation?

On some occasions, the information returned from wait or waitpid may be insufficient.
Additional information on resource usage by a child process may be sought. There are

two BSD compatibility library functions, wait3 and wait4, L2l that can be used to provide
this information ([Table 3.15).

(121 |t is not clear if these functions will be supported in subsequent
versions of the GNU compiler, and they may limit the portability of
programs that incorporate them. As these are BSD-based functions,
_USE_BSD must be defined in the program code or defined on the
command line when the source code is compiled.



Table 3.15. Summary of the wait3/wait4 Library Functions.

Include File(s) #define _USE_BSD Manual Section
#include <sys/types.h> 3
#include <sys/resource.h>
#include <sys/wait.h>
Summary pid_t wait3(int *status, int options,
struct rusage *rusage);
pid_t wait4(pid_t pid, int *status,
int options, struct rusage *rusage);
Success Failure Sets errno

Return Child PID or O -1 Yes

The wait3 and wait4 functions parallel the wait and waitpid functions respectively. The
wait3 function waits for the first child process to terminate or stop. The wait4 function
walits for the specified PID (pid). In addition, should the pid value passed to the wait4
function be set to 0, wait4 will wait on the first child process in a manner similar to wait3.
Both functions accept option flags to indicate whether or not they should block and/or
report on stopped child processes. These option flags are shown in[Table 3.16.

Table 3.16. Option Flag Values for wait3/wait4.

FLAG Value Specifies

WNOHANG Return immediately if no child has exited—do not block if the status
cannot be obtained; return a value of O not the PID.

WUNTRACED Return immediately if child is blocked.

Both functions contain an argument that is a reference to a rusage structure. This

structure is defined in the header file <sys/resource.h>.

131 on some systems, you may need the header file <sys/rusage.h>
instead of <sys/resource.h>, and you may need to explicitly link in the BSD
library that contains the object code for the wait3/wait4 functions.

struct rusage {
struct timeval ru_utime; /* user time used */
struct timeval ru_stime; /* system time used */



long ru_maxrss; /* maximum resident set size */

long ru_ixrss; * integral shared memory size */
long ru_idrss; [* integral unshared data size */
long ru_isrss; /* integral unshared stack size */
long ru_minflt; [* page reclaims */

long ru_majflt; [* page faults */

long ru_nswap; [* swaps */

long ru_inblock; /* block input operations */

long ru_oublock; * block output operations */
long ru_msgsnd; [* messages sent */

long ru_msgrev; /* messages received */

long ru_nsignals; [* signals received */

long ru_nvcsw; /* voluntary context switches */
long ru_nivesw; /* involuntary context switches */

If the rusage argument is non-null, the system populates the rusage structure with the

current information from the specified child process. See the getrusage system call in

Section 2 of the manual pages for additional information. The status macros (see

previous section on wait and waitpid) can be used with the status information returned

by wait3 and wait4. See [Table 3.17.

Table 3.17. wait3/wait4 Error Messages.

# Constant perror Message

Explanation

4 EINTR Interrupted system
call

10 ECHILD No child process

22 EINVAL Invalid argument

85 ERESTART Interrupted system
call should be
restarted

Signal was caught during the system call.

Process specified by pid does not exist, or
child process has set action of SIGCHILD to
be SIG_IGN (ignore signal).

Invalid value for options.

WNOHANG not specified, and unblocked
signal or SIGCHILD was caught.




3-13 EXERCISE

Modify Program 3.1;] to use thewait4 library function. After each child
terminates, have the parent process display the number of page faults the
child process incurred. A page fault occurs when a program requests data
that is not currently in memory. To satisfy the request the operating system
must locate the data and load it into memory. As loading data from a device
takes time and slows down processing the fewer page faults generated the
better.
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3.7 Summary

Processes are generated by the fork system call. The process that issues the fork
system call is known as the parent, and the new process as the child. Child processes
may have their executable code overlaid with other executable code via an exec
system call. When a process finishes executing its code, performs a return in the
function main, or makes an exit system call, the process terminates. Parent processes
may wait for their child processes to terminate. Terminating child processes return
status information that can be examined by the parent process.
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3.8 Key Terms and Concepts

_exit system call
atexit system call
daemon

exec

execl library function
execle function call
execlp library function
execv library function
execve System call
execvp library function
exit code

exit library function
flush

rand library function
restricted shell
rusage structure

srand library function


file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/eBook.Prentice_Hall_PTR-Interprocess_Communications_in_Linux.ShareReactor.chm/23021533.htm

status information

strstr library function

strtok library function

wait system call

wait3 library function

wait4 library function

waitpid system call

WEXITSTATUS macro

WIFEXITED macro

WIFSIGNALED macro

WIFSTOPPED macro

wstat macros

WSTOPSIG macro

WTERMSIG macro

zombie
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Chapter 4. Primitive Communications
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4.1 Introduction

Now that we have covered the basics of process structure and generation, we can
begin to address the topic of interprocess communications. It is common for
processes to need to coordinate their activities (e.g., such as when accessing a
non-shareable system resource). Conceptually, this coordination is implemented via
some form of passive or active communication between processes. As we will see,
there are a number of ways in which interprocess communications can be carried out.
The remaining chapters address a variety of interprocess communication techniques.
As the techniques become more sophisticated, they become more complex, and
hopefully more flexible and reliable. We begin by discussing primitive communication
techniques that, while they get the job done, have certain limitations.
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4.2 Lock Files

A lock file (which should not be confused with file/record locking, an 1/0O technique
covered in) can be used by processes as a way to communicate with one
another. The processes involved may be different programs or multiple instances of
the same program. The use of lock files has a long history in UNIX. Early versions of
UNIX (as well as some current versions) use lock files as a means of communication.
Lock files are sometimes found in line printer and uucp implementations. In some
systems the coordination of access to password and mail files also rely on lock files
and/or the locking of a specific file.

The theory behind the use of a lock file as an interprocess communication technique
is rudimentary. In brief, by using an agreed-upon file-naming convention, a process
examines a prearranged location for the presence or absence of a lock file. Often the
location is a temporary directory (e.g., /tmp) where the files are automatically cleared
when the system reboots (or by periodic housecleaning by the system administrator)
and where all users normally have read/write/execute permission. In its most basic
form, if the file is present, the process takes one set of actions, and if the file is
missing, it takes another. For example, suppose we have two processes,
Process_One and Process_Two, that seek access to a single non-shareable resource
(e.g., a printer or disk). A lock file-based communication convention for the two
processes could be as shown in .

Figure 4.1. Using a lock file for communication with two processes.

Process_One checks for the presence of the lock file. 1 no lock file is found,
Process_Omne creates the lock file using the agreed-upon naming conven-
tion. Process_ One then uses the resource. When Process_ One is done with
ll'llf" IesOnree, il |'I'Il:"1|,.":-'[":";- lh["' Feson ree :;i.l“] remones t.l"“" I[H'I\: ﬁli'. I{!l'l.'.'l"".'["ll., ir
upon inspection the lock file was present (indicating, in this case, that Pro-
cess_Two has access to the resource), Process_One would repeatedly wait a
specified amount of time and then check again for the presence of the lock
file, and so on. Process Two would act in a manner similar to Process One.




It is clear that communication implemented in this manner only conveys a minimal
amount of information from one process to another. In essence, the processes are
using the presence or absence of the lock file as a binary semaphore. The file's
presence or absence communicates, from one process to another, the availability of a
resource.

Such a communication technique is fraught with problems. The most apparent
problem is that the processes must agree upon the naming convention for the lock file.
However, additional, perhaps unforeseen, problems may arise as well. For example,

1. What if one of the processes fails to remove the lock file when it is finished with
the resource?

2. Polling (the constant checking to determine if a certain event has occurred) is
expensive (CPU-wise) and is to be avoided. How does the process that does
not obtain access to the resource wait for the resource to become free?

3. Race conditions whereby both processes find the lock file absent at the same
time and, thus, both attempt to simultaneously create it should not happen. Can
we make the generation of the lock file atomic (non-divisible, i.e.,
non-interruptible)?

As we will see, we will be able to address some of these concerns and others we will
only be able to limit in scope. A program that implements communications using a lock

file is presented below. The code for the main portion of the program is shown in
Proéram 4.ﬂ.

Program 4.1 Using a lock file—the main program.

File : p4.1.cxx
|/
| Using a lock file as a process communication technique.
I
| #include <iostream>
+  #include <unistd.h>
I
I
I
I

#include "lock_file.h" Q
using namespace std;

int
10 main(int argc, char *argv[ ]){



| int numb_tries, i = 5;

| int sleep_time;

| char *fname;

|

+ Assign values from the command line

|

| set_defaults(argc, argv, &numb _tries, &sleep_time, &fname);
|~

| Attempt to obtain lock file

20 */
if (acquire(numb_tries, sleep_time, fname)) {
while (i--) { I/l simulate resource use

cout << getpid( )<< " " <<i<< endl;
sleep(sleep_time);

I
I
I
I
+ }
I
I
I
I

release(fname); /I remove lock file
return O;
} else
cerr << getpid( ) << " unable to obtain lock file after "
30 << numb_tries << " tries." << endl;
| return 1;
|}

(1) This header resides locally.

At line 7 of the program, the local header file lock_file.h is included. This file )
contains the prototypes for the three functions set_defaults, acquire, and release, that are
used to manipulate the lock file. Preprocessor statements are used in the header file
to prevent the file from being inadvertently included more than once.

In line 17 of the main program the set_defaults function is called to establish the default
values. Once these values have been assigned, the program attempts to obtain the

lock file by calling the function acquire (line 21). If the program is successful in creatin
the lock file, it then accesses the non-shareable resource. In the case of Pro;ram 4.j

the resource involved is the screen. When access to the screen is acquired, the
program displays a series of integer values. Once the program is finished with the
resource (all values have been displayed), the lock file is removed using the release
function.

Figure 4.2 The lock_file.h header file.



File : lock_file.h
| #ifndef LOCK_FILE_H
| #define LOCK_FILE_H
|
| Lock file function prototypes
+ %/
| void set defaults(int, char *[], int *, int *, char **);
| bool acquire(int, int, char *);
| bool release(char *);
| #endif

The set_defaults function accepts five arguments. The first two arguments (an integer

and an array of character pointers) are the argc and argv values passed to the main
program (Proéram 4.ﬂ). As written, the program will allow the user to change some or

all of the default values by passing alternate values on the command line when the
program is invoked. The remaining three arguments for set_defaults are the number of
tries to be made when attempting to generate the lock file, the amount of time to wait
In seconds between attempts, and a reference to the name of the lock file.

The acquire function takes three arguments. The first is the number of times to attempt
to create the lock file, the second the sleep interval between tries, and the third a
reference to the lock file name. The acquire function returns a boolean value indicating
its success.

The function release removes the lock file. This function is passed a reference to the
lock file and returns a boolean value indicating whether or not it was successful. The
code for these functions, which are stored in a separate file, is shown in .

Figure 4.3 Source code for the set_defaults, acquire, and release functions.

File : lock_file.cxx
|
| Source code for using lock file. Compile using -c and
| -D_GNU_SOURCE options. Link object code as needed.
|
+  #include <iostream>
| #include <cstring>
| #include <cstdlib>
| #include <cerrno>
| #include <limits.h>
10 #include <fcntl.h>
| #include <unistd.h>
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const int NTRIES =5; /I default values
constint SLEEP =5;
const char *LFILE = "tmp/TEST.LCK";

using namespace std;

void
set_defaults(int ac, char *av[ ],

int *n_tries, int *s_time, char **f_name){
static char full_name[PATH_MAX];
*n_tries = NTRIES; /I Start with defaults
*s_time = SLEEP;
strepy(full_name, LFILE);
switch (ac) {

case 4. I/l File name was specified
full_name[0] = "\0"; /[ "clear" the string
strepy(full_name, av[3]); /I Add the passed in file
case 3:

if ((*s_time = atoi(av[2])) <=0) // Seconds of sleep time
*s time = SLEEP;
case 2:
if ((*n_tries = atoi(av[1])) <= 0) // Number of times to try
*n_tries = NTRIES;
case 1: /I Use the defaults
break;
default:
cerr << "Usage: " << av[0] <<
" [[tries][sleep][lockfile]]" << endl;
exit(1);
}

*f_name = full_name;

bool
acquire(int numb_tries, int sleep_time, char *file_name){

}

r

int fd, count = 0;

while ((fd = creat(file_name, 0)) == -1 && errno == EACCES)

if (++count < numb_tries) /I If still more tries
sleep(sleep_time); I sleep for a while
else
return (false); /' Unable to generate
close(fd); /I Close (0 byte in size)
return (bool(fd != -1)); // OK if actually done
bool

elease(char *file_name){
return bool(unlink(file_name) == 0);



At the top of the lock_file.cxx file, the default values are assigned. The set_defaults
function examines the number of arguments passed on the command line (which has
been passed to it as the variable ac). A cascading switch statement is used to
determine if changes in the default assignments should be made. The set_defaults
function assumes the command-line arguments, if present, are arranged as

linux$ program_name numb_of_tries sec_to_sleep Ick_file_name

The value for numb_of_tries and the sec_to_sleep should be nonzero. The Ick_file_name is
the name to be used for the lock file. As written, the set_defaults function does not
validate the passed-in lock file location/name but does attempt to disallow values of
zero or less for the number of tries and the sleep interval.

The function acquire relies on the system call creat (note there is no trailing e) to

generate the lock file ().

Table 4.1. Summary of the creat System Call.

Include File(s) <sys/types.h> Manual Section
<sys/stat.h> 2
<fcentl.h>

Summary int creat(const char *pathname,mode_t mode);

Success Failure Sets errno

Return
Lowest available integer file descriptor -1 Yes

By definition, creat is used to create a new file or rewrite a file that already exists (first
truncating it to O bytes). The creat system call will open a file for writing only.

creat requires two arguments. The first argument, pathname, is a character pointer to the
file to be created, and the second argument, mode, is a value of type mode_t (in most
cases defined as type int in the <sys/types.h> file), which specifies the mode (access
permissions) for the created file. The header file <fcntl.h> contains a number of
predefined constants that may be bitwise ORed to specify the mode for the file. The
creat system call in the program function acquire creates a file whose access mode is O.
If creat is successful, the file generated will not have read, write, or execute permission



for any user groups (this excludes the superuser root).

M As the superuser has special privileges, the lock file implementation
shown here would not work for the superuser.

An alternate approach to creating the file would be to use the open system call. The
equivalent statement using open would be:

2 At one time the open system call did not support the O_CREAT (create)
option.

open( path, O_WRONLY | O_CREAT | O_TRUNC, 0);

If the creat call is successful, it will return an integer value that is the lowest available
file descriptor. If creat falls, it returns/sets a -1 and sets errno. contains the
errors that may be encountered when using the creat system call.

As shown, a number of things can cause creat to fail, including too many files open, an
incorrectly specified file and/or path name, and so on. The failure we test for in the

while loop of the acquire function is EACCES. 3l The failure of creat and the setting of
ermo to EACCES indicates the file to be created already exists and write permission to
the file is denied (remember, the file was generated with a mode of 0).

Bl EACCES is a defined constant found in the <sys/errno.h> header file.

Table 4.2. creat Error Messages.

# Constant perror Message Explanation

2 ENOENT No such file or One or more parts of the path to new file
directory do not exist (or is NULL).

6 ENXIO No such device O _NONBLOCK | O_WRONLY is set, the
or address named file is a pipe, and no process has

the file open for reading.

12 ENOMEM Cannot allocate  Insufficient kernel memory was
memory available.




#

13

14

17

19

20

21

23

24

26

28

30

Constant

EACCES

EFAULT

EEXIST

ENODEV

ENOTDIR

EISDIR

ENFILE

EMFILE

ETXTBSY

ENOSPC

EROFS

perror Message

Permission
denied

Bad address

File exists

No such device

Not a directory

Is a directory

Too many open
files in system

Too many open
files

Text file busy

No space left on
device

Read-only file
system

Explanation

® The requested access to the file
is not allowed.

® Search permission denied on
part of file path.

® File does not exist.

pathname references an illegal address
space.

pathname (file) already exists and
O_CREAT and O_EXCL were specified.

pathname refers to a device special file,
and no corresponding device exists.

Part of the specified path is not a
directory.

pathname refers to a directory, and the
access requested involved writing.

System limit on open files has been
reached.

The process has exceeded the
maximum number of files open.

More than one process has the
executable open for writing.

Device for pathname has no space for
new file (it is out of inodes).

The pathname refers to a file on a
read-only filesystem, and write access
was requested.




# Constant perror Message Explanation

36 ENAMETOOLONG File name too The pathname value exceeds system
long path/file name length.

40 ELOOP Too many levels The perror message says it all.
of symbolic links

As noted, the while loop in the acquire function tests to determine if a file can be
created. If the file can be created, the loop is exited and the file descriptor is closed
(leaving the file present and 0 bytes in length). When the file cannot be created and
the error code in errno is EACCES, the if statement in the body of the loop is executed.
In the if statement the value for count is tested against the designated number of tries
for creating the file. If insufficient tries have been made, a call to sleep, to suspend
processing, is made.

sleep is a library function that suspends the invoking process for the number of

seconds indicated by its argument seconds. See . If sleep is interrupted
(such as by a signal), the number of unslept seconds is returned. If the amount of time
slept is equal to the argument value passed, sleep will return a 0. Using sleep in the
polling loop to have the process wait is a compromise. It is not an elegant way to
reduce CPU-intensive code but, at this point, is better than no built-in wait or running
some sort of throwaway calculation loop. In later chapters, we discuss alternate
solutions to this problem.

1 it smaller intervals are needed, there is a usleep (unsigned sleep)
library function that suspends execution of the calling process for a
specified number of microseconds.

Table 4.3. Summary of the sleep Library Function.
Include Files(s) <unistd.h> Manual Section 3
Summary unsigned int sleep(unsigned int seconds);

Success Failure Sets errno

Return Amount of time left to sleep.



If, in the program function acquire, the number of tries has been exceeded, a FALSE
value, indicating a failure, is returned. A boolean TRUE type value is returned if the

while loop is exited because the creat call was successful. Additionally, if the creat fails
for any other reason, a FALSE type value is returned.

The release function attempts to remove the file using the system call unlink (II able 4.4).
This call deletes a file from the filesystem if the reference is the last link to the file and
the file not currently in use. If the reference is a symbolic link, the link is removed. In
the program the release function is coded to return the success or failure of unlink's
ability to accomplish its task. As written, the main program discards the value returned
by the release function.

Table 4.4. Summary of the unlink System Call.

Include Files(s) <unistd.h> Manual Section 2
Summary int unlink(const char *pathname);

Success Failure Sets errno
Return 0 -1 Yes

If the unlink s%stem call fails it returns a value of -1 and sets errno to one of the values

found in [Table 4.5. If unlink is successful, it returns a value of O.

Table 4.5. unlink error messages.

# Constant perror Message Explanation
1 EPERM Operation not
permitted ® Not owner of file or not
superuser.

® The filesystem (in Linux) does
not allow the unlinking of files.

2 ENOENT No such file or One or more parts of pathname to the file
directory to process does not exist (or is NULL).




12

13

14

16

20

21

26

30

36

40

67

Constant

EINTR

EIO

ENOMEM

EACCES

EFAULT

EBUSY

ENOTDIR

EISDIR

ETXTBSY

EROFS

ENAMETOOLONG

ELOOP

ENOLINK

perror Message

Interrupted
system call

I/O error

Cannot allocate
memory

Permission
denied

Bad address

Device or
resource busy

Not a directory

Is a directory

Text file busy

Read-only file
system

File name too
long

Too many levels
of symbolic links

The link has been

Explanation

A signal was caught during the system
call.

An 1/O error has occurred.

Insufficient kernel memory was
available.

® Search permission denied on
part of file path.

® The requested access to the file
is not allowed for this processes
EUID.

pathname references an illegal address
space.

The referenced file is busy.

Part of the specified path is not a
directory.

pathname refers to a directory (not a file).

More than one process has the
executable open for writing.

pathname refers to a file that resides on
a read-only filesystem.
pathname IS too long.

The perror message says it all.

The path value references a remote




# Constant perror Message Explanation

severed system that is no longer available.
72 EMULTIHOP Multihop The path value requires multiple hops
attempted to remote systems, but file system

does not allow it.

A sample compilation run of the program is shown in Eigure 4.4

Figure 4.4 Output of }Pro;ram 4.3.

linux$ g++ p4.1.cxx lock_file.o -0 p4.1 Q

linux$ p4.115&p4.122&

24347 4 Q

[1] 24347

[2] 24348

linux$ 24348 unable to obtain lock file after 2 tries.
24347 3
24347 2
24347 1
24347 0
[2] + Exit1 p4.122 <-- 3
[1] + Done p4.115

(1) Compile the program linking in the lock_file object code.

(2) Run the program twice, placing each in the background.

(3) Second instance of the program failed, returning a value of 1. The
first instance completed normally.

The program p4.1 is invoked twice. To allow the two processes to execute
concurrently, the program invocations are placed in the background (via the trailing &).
The first process creates the lock file and gains access to the screen. This process is



responsible for generating the five values (4, 3, 2, 1, 0) that are displayed on the
screen. The second process, after two tries with a two-second interval between tries,
exits and produces the message Unable to obtain lock file after 2 tries. When each process
finishes, the operating system displays the exit/return value. The process that was
unable to gain access to the resource exits with a value of 1. It is informative to run
the program several times using varying settings. When doing so, you should be able
to ascertain whether the lock file really does allow rudimentary communication
between the processes involved.

Our example uses the creat system call as the base for its atomic file locking.
Unfortunately, creat may generate race conditions on NFS filesystem (network
mounted filesystem). The Linux manual page for creat recommends using the link
system call as the atomic file locking operation (which it indicates should not cause
race conditions in an NFS setting). The link system call is used to generate a hard link
to the lock file, giving it new name. With a hard link, the link and the file being linked
must reside on the same filesystem. If the stat system call for the file returns a link
count of two, then the lock has been successfully implemented (acquired). See

xercise 4-1 for more on using link versus creat.

4-1 EXERCISE

Hillary wrote the following program code for an acquire function that uses the
link and stat system calls.

File : hillary.cxx

| #include <cstdio>
|  bool <-- 1]
| acquire(int numb_tries, int sleep_time, char *file_name){
+ char  my_link[512];
I
I
|
I

N

sprintf( my_link, "%s.%d", file_name, getpid());
int count = 0;

struct stat buf;

while ( ++count < numb_tries) {

.

50 creat(my_link,0);

| link( my_link, file_name); -3

| if (Istat(my_link, &buf) && buf.st_nlink == 2){
| unlink(my_link); <-- 4

| return true;

+ }



sleep(sleep_time);

return false;

|
|}
I
|

}

(1) Needed for sprintf call.
(2) Generate a unique link file name.
(3) Generate a hard link.

(4) If the file has two links, then this process has control.

Does her function work correctly? Why or why not? Provide output that
supports your answer.

4-2 EXERCISE

Write a program where a parent proc ess forks three child processes. The
child processes are to be similar to the example program just given
(p4.1.cxx). Each child process should be passed the name of a text file to
display on the screen. Show output whereby all processes eventually gain
access to the file, and show output when at least one of the processes fails.
The parent process should remove any leftover lock files that may have
existed from previous invocations before forking the child processes.

4-3 EXERCISE




A classic operating system problem is that of coordinating a producer and
consumer process. The producer produces a value and stores the value
(such as in a common buffer or file) that can hold only one of the items
produced. The consumer obtains (in a nondestructive manner) the value
from the storage location and consumes it. The producer and consumer
work at different rates. To guarantee integrity, each value produced must be
consumed (not lost via overwriting by a speedy producer with a slow
consumer), and no value should be consumed twice (such as when the
consumer is faster than the producer). Write a producer/consumer process
pair that uses a lock file communication technique to coordinate their
activities. To ensure that no data is lost or duplicated, the producer process
should produce its values by reading them one-by-one from an input file and
in turn storing them in the common location. The consumer should append
the values it consumes (reads from the common location) to an output file.
After processing, say, 100, unique values, both the input file for the producer
and the output file for the consumer should be identical. Use the sleep library
call with small random values to simulate the producer and consumer
working at different rates.

One way to solve the problem is to use two lock files. When using two lock
files, one file would indicate whether or not the number has been produced,
and the second file would indicate if the number has been consumed. The
activities of the two processes to be coordinated can be summarized as
follows:

Producer
do
sleep random amount
read a number from input file
if # has been consumed
write number to common buffer
indicate new # produced
until 200 numbers produced

Consumer
do
sleep random amount
if a new # produced
read number from common buffer




indicate # was consumed
append number read to output file
until 100 numbers produced

Hint: When using lock files, we test whether or not we can create a lock file.
Thus, we could use the successful creation of the lock file as an indication of
access and the inability to create the lock file as a prohibition of access.
Using this approach initially, the lock file indicating a number has been
consumed would be absent, and the lock file indicating a new number has
been produced would be present.
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4.3 Locking Files

A second basic communication technique, similar in spirit to using lock files, can be
implemented by using some of the standard file protection routines found in UNIX.
UNIX allows the locking of records. As there is no real record structure imposed on a
file, a record (which is sometimes called a segment or section) is considered to be a
specified number of contiguous bytes of storage starting at an indicated location. If the
starting location for the record is the beginning of a file, and the number of bytes
equals the number found in the file, then the entire file is considered to be the record
in question. Locking routines can be used to impose advisory or mandatory locking. In
advisory locking the operating system keeps track of which processes have locked
files. The processes that are using these files cooperate and access the record/file
only when they determine the lock is in the appropriate state. When advisory locking is
used, outlaw processes can still ignore the lock, and if permissions permit, modify the
record/file. In mandatory locking the operating system will check lock information with
every read and write call. The operating system will ensure that the proper lock protocol
Is being followed. While mandatory locking offers added security, it is at the expense
of additional system overhead. Locks become mandatory if the file being locked is a
plain file (not executable) and the set-group-ID is on and the group execution bit is off.

At a system level the chmod command can be used to specify a file support mandatory

locking. For example, in Eigure 4.5, the permissions on the data file x.dat are set to

support mandatory file locking. The Is command will display the letter s in the group
execution bit field of a file that supports a mandatory lock. Notice that in the example
absolute mode was used with the chmod command to establish locking. The first digit
of the mode value should be a 2 and the third digit a 6, 4, 2, or O (but not a 1).

Figure 4.5 Specifying mandatory locking with chmod.

linux$ echo hello > x.dat <-- 1]

linux$ Is -I x.dat
-rw-r--r-- 1lgray faculty 6 Jan 30 12:06 x.dat

N\
1
I
N
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linux$ chmod 2644 x.dat E
$ls -I x.dat
-rw-r-Sr-- 1 gray faculty 6 Jan 30 12:06 x.dat

(1) Create a small text file.

(2) Default protections.

(3) Set the execution bit for the group.

The topic of record locking is expansive. We focus on one small aspect of it. We use
file locking routines to place and remove an advisory lock on an entire file as a
communication technique with cooperating processes.

There are several ways to set a lock. The two most common approaches are

resented: the fcntl system call and the lockf library function. We begin with fentl (Table
4.6)).

Table 4.6. Summary of the fcntl System Call.

Include <unistd.h> Manual
File(s) <fend.h> Section
Summary int fentl(int fd, int cmd /*, struct
flock *lock */);
Success Failure Sets errno
Return Value returned depends upon the cmd -1 Yes

argument passed.

As its first argument the fentl system call is passed a valid integer file descriptor of an
open file. The second argument, cmd, is an integer command value that specifies the
action that fcntl should take. The command values for locking are specified as defined



constants in the header file <bits/fentl.h> that is included by the <fentl.h> header file. The
lock specific constants are shown in |I able 4.7

Table 4.7. Lock-Specific Defined Constants Used with the fcntl System Call.

Defined Action Taken by fcntl
Constant
F SETLK Set or remove a lock. Specific action is based on the contents of

the flock structure that is passed as a third argument tdcntl.

F _SETLKW Same as F_SETLK, but block (walit) if the indicated record/segment
is not available—the default is not to block.

F_GETLK Return lock status information via the flock structure that is passed
as the third argument to fent.

The third argument for fentl is optional for some invocations (as indicated by it being
gcommented out in the function prototype). However, when working with locks, the
third argument is specified and references a flock structure, which is defined as

struct flock {
short int |_type; /* Type of lock: F_RDLCK, F_WRLCK, or F_UNLCK. */

short int |_whence; /* Where '|_start' is relative to. */
#ifndef _ USE_FILE_OFFSET64

__off t| _start; /* Offset where the lock begins. */
__off tl _len; /*Size of the locked area; (0 == EOF). */
#else

__offed_t|_start; /* For systems with 64 bit offset. */
__offé4_t1_len;

#endif

__pid_tl_pid;  /* PID of process holding the lock. */

The flock structure is used to pass information to and return information from the fentl

call. The type of lock, I_type, is indicated by using one of the defined constants shown
in |I able 4.8

The I_whence, |_start, and |_len flock members are used to indicate the starting location
(O, the beginning of the file; 1, the current location; and 2, the end of the file), relative



offset, and size of the record (segment). If these values are set to 0, the entire file will
be operated upon. The I_pid member is used to return the PID of the process that
placed the lock.

Table 4.8. Defined Constants Used in the flock |_type Member.

Defined Constant Lock Specification
F_RDLCK Read lock
F_WRLCK Write lock
F_UNLCK Remove lock

When dealing with locks, if fentl fails to carry out an indicated command, it will return a
value of -1 and set erro. Error messages associated with locking are shown in
4.9,




Table 4.9. fcntl Error Messages Relating to Locking.

# Constant

perror Message

Explanation

A signal was caught during the system call.

fd does not reference a valid open file descriptor.

Lock operation is prohibited, as the file has been
memory mapped by another process.

Lock operation prohibited by a lock held by

*lock references an illegal address space.

® cmd iSF_GETLK or F_SETLK and *lock or data
referenced by *lock is invalid.

® fd does not support locking.

cmd is F_SETLKW and requested lock is blocked by
a lock from another process. If fentl blocks the
calling process waiting for lock to be free,

System has reached the maximum number of

4 EINTR Interrupted

system call
9 EBADF Bad file number
11 EAGAIN Resource

temporarily

unavailable
13 EACCES Permission

denied another process.
14 EFAULT Bad address
22 EINVAL Invalid
35 EDEADLK Resource

deadlock

avoided

deadlock would occur.

37 ENOLCK No locks

available record locks.

Proéram 4.2 demonstrates the use of file locking.

Program 4.2 Using fcntl to lock afile.

File : p4.2.cxx
| /* Locking a file with fcntl
|
| #include <iostream>



+ #include <cstdio>

| #include <cerrno>

| #include <fcntl.h>

|  #include <unistd.h>

| using namespace std;
| constint MAX = 5;

while (fentl(f_des, F_SETLK, &lock) < 0) {
switch (errno) {
30 case EAGAIN:
case EACCES:
if (++pass < MAX)

10 int

| main(int argc, char *argv[ ]) {

| int f_des, pass =0;

| pid_t pid = getpid();

| struct flock lock; /I for fentl info

+ if (argc < 2) { // name of file to lock missing
| cerr << "Usage " << *argv << " lock_file_name" << endl;
| return 1;

|}

| sleep(1); // don't start immediately

20 if (f_des = open(argv[1l], O_RDWR)) < 0){

| perror(argv[1]); // could not access file

| return 2;

|}

| lock.l_type =F_WRLCK; I set a write lock

+ lock.l_whence = 0; /I start at beginning

| lock.l_start = 0; // with a 0 offset

| lock.l_len =0; /I whole file

I

I

sleep(1);
else { {// run out of tries

cerr << "Process " << pid << " found file "
<< argv[l] << " locked by " << lock.l_pid << endl;
return 3;

}

40 continue;

}

perror(“fcntl™);
return 4;

}

I
I
I
I
+ cerr << endl << "Process " << pid << " has the file" << endl;
I
I
I
I

I
I
I
I
+ fentl(f_des, F_GETLK, &lock);
I
I
I
I

sleep(3); /I fake processing
cerr << "Process " << pid << " is done with the file" << endl;
return O;

}



In this program the name of the file to be locked is passed on the command line. A call
to sleep is placed at the start of the program to slow down the processing (for
demonstration purposes only). The designated file is opened for reading and writing.
In lines 24 through 27 the lock structure is assigned values that indicate a write lock is
to be applied to the entire file. In the while loop that follows, a call to fcntl requests the
lock be placed. If fentl fails and erro is set to either EAGAIN or EACCES (values that
indicate the lock could not be applied), the process will sleep for one second and try to
apply the lock again. To be safe, the EACCES constant is grouped with EAGAIN, as
in some versions of UNIX this is the value that is returned when a lock cannot be
applied. If the MAX number of tries (passes) has been exceeded, another call to fentl
(line 35) is made to obtain information about the process that has locked the file. In
this call the address of the lock structure is passed to fentl. The PID of the locking
process is displayed, and the program exits. If an error other than EAGAIN or
EACCES is encountered when attempting to set the lock, perror is called, a message is
displayed, and the program exits. If the process successfully obtains the lock, the
process prints an informational message, sleeps three seconds (to simulate some sort
of processing), and prints a second message as it terminates. When the process
terminates, the system automatically removes the lock on the file. If the process were
not to terminate, the process would need to set the I_type member to F_UNLCK and
reissue the fentl call to clear the lock.

If we run three copies of Proéram 4.2 in rapid succession, using the file x.dat as the
lock file, their output will be similar to that shown in .

Figure 4.6 Running multiple copies of —Iocking afile.

linux$ p4.2 x.dat & p4.2 x.dat & p4.2 x.dat & <-- 1|
[1] 28392

[2] 28393

[3] 28394

$

Process 28392 has the file

Process 28392 is done with the file

Process 28393 has the file

Process 28394 found file x.dat locked by 28393
Process 28393 is done with the file

[8] —Exit3 p4.2 x.dat
[2] — Done p4.2 x.dat
[1] + Done p4.2 x.dat



(1) All three processes will use the same file:

Notice that the last process, PID 28394 in this example, is unable to place a lock on
the file and returns the process ID of the process that currently has the lock on the file.
The second process, PID 28393, through repeated retries (with intervening calls to
sleep) is able to lock the file once the first process is finished with it.

4-4 EXERCISE

Change the F_SETLK constant in Program 4.2to F_ SETLKW. Recompile
the program and rerun it as shown in . What sequence of

messages are produced now? Why?

The lockf library function may also be used to apply, test, or remove a lock on an open
file. Beneath the covers this library function is an alternate interface for the fcntl system
call. The lockf library function is summarized in[Table 4.10.

Table 4.10. Summary of the lockf Library Call

Include File(s) <sys/file.h> Manual Section 3
<unistd.h>
Summary int lockf(int fd, int cmd, off_t len);
Success Failure Sets errno
Return 0 -1 Yes

The fd argument is a file descriptor of a file that has been opened for either writing
(O_WRONLY) or for reading and writing (O_RDWR). The cmd argument for lockf is
similar to the cmd argument used with fentl. The cmd value indicates the action to be
taken. The action that lockf will take for each cmd value (as specified in the include file

<unistd.h>) is summarized in [Table 4.11.



Table 4.11. Defined cmd Constants.

Defined Lock Specification
Constant

F_ULOCK Unlock a previously locked file.

F LOCK Lock a file (or a section of a file) for exclusive use if it is available. If
unavailable, the lockf function will block.

F TLOCK Test and, if successful, lock a file (or section of a file) for exclusive
use. An error is returned if no lock can be applied; with this option the
lockf function will not block if the lock cannot be applied.

F TEST Test a file for the presence of a lock. A 0 is returned if the file is
unlocked or locked by the current process. If locked by another
process, -1 is returned and erro is set to EACCES.

The len argument of lockf indicates the number of contiguous bytes to lock or unlock. A
value of zero indicates the section should be from the present location to the end of
the file.

If the lockf call is successful, it returns a value of 0. If the call fails, it sets errno and
returns the value -1 (Table 4.12).



Table 4.12. lockf error messages.

# Constant perror Message Explanation

9 EBADF Bad file number fd is not a valid open file descriptor.

11 EAGAIN Resource

temporarily ® The cmdis F_TLOCK or F_TEST, and
unavailable the specified section is already
locked.

® File is memory mapped by another
process.

13 EACCES Permission denied Lock operation prohibited by a lock held by
another process.

22 EINVAL Invalid argument Invalid operation specified for fd.

35 EDEADLK File locking deadlock Requested lock operation would cause a
deadlock.

37 ENLOCK No locks available Maximum number of system locks has been
reached.

Of the two techniques, lockf is simpler but less flexible than using fentl. Note that when
using the lockf call, the user must issue a separate Iseek system call to position the file
pointer to the proper location in the file prior to the call. Also, when generating
parent/child process pairs, each shares the same file pointer. If locks are to be used in
both processes, it is sometimes best to close and reopen the file in question so that
each process has its own separate file pointer.

A final note—Linux supports a shlock command that can be used in shell scripts. The
shlock command creates a lock file that contains an identifying PID.

4-5 EXERCISE

Write using the lockf system call. Verify that your solution works.
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4.4 More About Signals

A second primitive interprocess communication technique involves the use of signals.
As previously indicated, signals occur asynchronously (with no specified timing or
sequencing). Signals, which can be sent by processes or by the kernel, serve as
notification that an event has occurred. Signals are generated when the event first
occurs and are considered to be delivered when the process takes action on the
signal. The delivery of most signals can be blocked so the signal can be acted upon
later. Blocked signals, and those sent to processes in a non-running state are
commonly called pending signals.

The symbolic name for each signal can be found in several places. Usually, the
manual pages for signal ( try man 7 signal) or the header file <asm/signal.n> will contain a
list of each signal name. Signals, as described in Section 7 of the manual, are shown
in . The definition of a signal (its symbolic name, the associated integer
value, and the event signaled) has evolved over time. Signals defined by the POSIX 1
standard have the letter P in the Def column; those defined by SUS v2 (Single UNIX
Specification, version 2) have a letter S. The letter O indicates signals not defined by
either of these standards. Furthermore, keep in mind that some signals are
architecture-dependent. To denote this if three numbers are listed in the Value column
for a signal, the first number is the signal for alpha and sparc platforms; the middle
number is for i386 and ppc platforms; while the last number is for mips platforms. A
dash (-) indicates the signal is missing for the platform. A single value indicates all
platforms use the same signal number. The default action associated with the signal is
defined by one or more letters in the Action column of the table. The letter A indicates
the recipient process will terminate; B, the process will ignore the signal; C, the
process will terminate and produce a core file; and D, the process will stop (suspend)
execution. Additionally, the letter E indicates the signal cannot be caught (trapped),
and the letter F, that the signal cannot be ignored.



Table 4.13. Signal Definitions.

Symbolic
Name Def Value Action Description

SIGABRT P 6 C  Abort signal fromabort.

SIGALRM P y A Timer signal fromalarm.

SIGBUS S 10,710 C Bus error (bad memory access).

SIGCHLD P 20,1718 B Sent to parent when child is stopped or
terminated.

SIGCLD o --18 B A synonym for SIGCHLD.

SIGCONT P 19,1825 B Resume if process is stopped.

SIGEMT o 7,-7 C Emulation trap.

SIGFPE P 8 C Floating-point exception.

SIGHUP P 1 A A hangup was detected on the controlling
terminal or the controlling process has died.

SIGILL P 4 C lllegal instruction.

SIGINFO o  29-- A synonym for SIGPWR.

SIGINT P 2 A Interrupt from keyboard.

SIGIO O 232922 A I/0O now possible.

SIGIOT o 6 C |OT trap—equivalent to SIGABRT.

SIGKILL P 9 AEF  Kill signal—force process termination.

SIGLOST © A File lock lost.

SIGPIPE P 12 A Broken pipe; write to pipe with no readers.

SIGPOLL S ’ A A pollable event has occurred—synonymous
with SIGIO (also 23).

SIGPROF S 272729 A Profiling timer expired.

SIGPWR O 29,30,19 A Power supply failure.




SIGQUIT

SIGSEGV

SIGSTKFLT

SIGSTOP

SIGSYS

SIGTERM

SIGTRAP

SIGTSTP

SIGTTIN

SIGTTOU

SIGUNUSED

SIGURG

SIGUSR1

SIGUSR2

SIGVTALRM

SIGWINCH

SIGXCPU

SIGXFSZ

O

11

-16,-

17,19,23

12,-,12

15

18,20,24

21,21,26

22,22,27

-31,-

16,23,21

30,10,16

31,12,17

26,26,28

28,28,20

24,24,30

25,25,31

D.,E,F

Quit from keyboard.

Invalid memory reference (segmentation
violation).

Coprocessor stack error.
Stop process—not from tty.
Bad argument to system call.

Termination signal fromill.

Trace/breakpoint trap for debugging.
Stop typed at a tty.

Background process needs input.
Background process needs to output.
Unused signal (will be SIGSYS).
Urgent condition on I/O channel (socket).
User-defined signal 1.

User-defined signal 2.

Virtual alarm clock.

Window resize signal.

CPU time limit exceeded.

File size limit exceeded.

Some additional caveats to consider include the following:

® For some S signals (SUS v2), the default action is listed as A (terminate) but by

their actual action should be C (terminate the process and generate a core

file).

® Signal 29 is SIGINFO/SIGPWR on an alpha platform but SIGLOST on a sparc

platform.



Note that all signals begin with the prefix SIG and end with a semimnemonic suffix.

For the sake of portability when referencing signals, it is usually best to use their
symbolic names rather than their assigned integer values. The defined constants
SIGRTMIN and SIGRTMAX are also found in <asm/signal.h> and allow the generation of
additional real-time signals. Real-time signals, usually the values 32 to 63, can be
gueued. The queuing of signals ensures that when multiple signals are sent to a
process, they will not be lost. At present, the Linux kernel does not make use of
real-time signals.

For each signal, a process may take one of the following three actions:

1. Perform the default action. This is the action that will be taken unless otherwise
specified. The default action for each signal is listed in the previous table.
Specifically these actions are

O Terminate (Abort)— Perform all the activities associated with the exit
system call.

O Core (Dump)— Produce a core image (file) and then perform
termination activities.

O Stop— Suspend processing.
O Ignore— Disregard the signal.

2. Ignore the signal. If the signal to be ignored is currently blocked, it is discarded.
The SIGKILL and SIGSTOP signals cannot be ignored.

3. Catch the signal. In this case, the process supplies the address of a function
(often called a signal catcher) that is to be executed when the signal is
received. In most circumstances, the signal catching function will have a single
integer parameter. The parameter value, which is assigned by the system, will
be the numeric value of the signal caught. When the signal catcher function
finishes, the interrupted process will, unless otherwise specified, resume its
execution where it left off.

A discussion of the implementation details for ignoring and catching signals are
covered in [Section 4.3.




Signals are generated in a number of ways:

1. Bythe

o

2. Bythe

kernel, indicating

Hardware conditions, the most common of which are SIGSEGV, when
there has been an addressing violation by the process, and SIGFPE,
indicating a division by zero.

Software conditions, such as SIGIO, indicating I/O is possible on a file
descriptor or the expiration of a timer.

user at a terminal:

Keyboard— The user produces keyboard sequences that will interrupt
or terminate the currently executing process. For example, the interrupt
signal, SIGINT, is usually mapped to the key sequence CTRL+C and
the terminate signal, SIGQUIT, to the key sequence CTRL+\. The
command stty -a will display the current mappings of keystrokes for the
interrupt and quit signals.

kil command— By using the kil command, the user, at the command
line, can generate any of the previously listed signals for any process
that has the same effective ID. The syntax for the kill command is

$ kill [ -signal ] pid . . .

When issued, the kill command will send the specified signal to the
indicated PID. The signal can be an integer value or one of the symbolic
signal names with the SIG prefix removed. If no signal number is given,
the default is SIGTERM (terminate). The PID(s) (multiple PIDs are
separated with whitespace) are the IDs of the processes that will be
sent the signal. If needed, the ps command can be used to obtain
current PIDs for the user.

It is possible for the pid value to be less than 1 and/or for the signal
value to be 0. In these cases, the kill command will carry out the same
actions as specified for the kill system call described in the following
section. As would be expected, the kil command is just a command-line
interface to the kill system call.



3. By other processes:

O By the kill system call (Table 4.14)). The kill system call is used to send a
signal to a process or a group of processes.

Notice that the argument sequence for the kill system call is the reverse of that of the
kil command. The value specified for the pid argument indicates which process or
process group will be sent the signal. [Table 4.15 summarizes how to specify a

process or process group.

Table 4.14. Summary of the kill System Call.

Include File(s) <sys/types.h> Manual Section 5
<signal.h>
Summary int kill( pid_t pid, int sig );
Success Failure Sets errno
Return 0 -1 Yes

Table 4.15. Interpretation of pid values by the kill System Call.

pid Process(es) Receiving the Signal

0 The process whose process ID is the same aspid
>

0 All the processes in the same process group as the sender

Not superuser: All processes whose real ID is the same as the effective ID of
the sender

Superuser: All processes excluding special processes

<-1 All the processes whose process group is absolute_value {pid)

The value for sig can be any of the symbolic signal names (or the equivalent integer
value) found in the signal header file. If the value of sig is set to 0, the kill system call
will perform an error check of the specified PID, but will not send the process a signal.



Sending a signal of 0 to a PID and checking the return value of the kill system call is
sometimes used as a way of determining if a given PID is present. This technique is
not foolproof, as the process may terminate on its own immediately after the call to
check on it has been made. Remember that UNIX will reuse PID values once the
maximum PID has been assigned. The statement

kill(getpid(),sig);

can be used by a process to send itself the signal specified by Sig.

BI ANSI C also defines a raise library function that can be used by a
process to send itself a signal.

If the kill system call is successful, it returns a O; otherwise, it returns a value of -1 and

sets errno as indicated in[Table 4.16. In Linux, for security reasons, it not possible to

send a signal to process one—init. Signals are passed to init via telinit.

Table 4.16. kill Error Messages.

# Constant perror Message Explanation

1 EPERM Operation not
permitted ® Calling process does not have permission

to send signal to specified process(es).

® Process is not superuser and its effective
ID does not match real or saved user ID.

3 ESRCH Nosuch NoO such process or process group aspid.
process

22 EINVAL Invalid Invalid signal number specified.
argument

4-6 EXERCISE



The kil command also accepts the option-I (the letter L in lowercase), which
lists the defined signals that kill knows about. At the system level, issue the
command

$ kill -1

Find the (a) integer value, (b) default action, and (c) the event signaled for at

least two signals that are known by the kill command but were not described
in the previous signal table ([Table 4.13).

4-7 EXERCISE

Write a parent program that forks several child processes that eachsleep a
random number of seconds. The parent process should then wait for the
child processes to terminate. Once a child process has terminated, the
parent process should terminate the remaining children by issuing a
SIGTERM signal to each. Be sure to verify (via the wait system call) that

each child process terminated received the SIGTERM signal.

® By the alarm system call (Table 4.17).

The alarm system call sets a timer for the issuing process and generates a SIGALRM

signal when the specified number of real-time seconds have passed.

Table 4.17. Summary of the alarm System Call.

Include File(s) <unistd.h> Manual Section 2
Summary unsigned int alarm(unsigned int seconds);

Success Failure Sets errno
Return Amount of time remaining

If the value passed to alarm is O, the timer is reset. Processes generated by a fork have
their alarm values set to 0, while processes created by an exec inherit the alarm with its



remaining time. alarm calls cannot be stacked—multiple calls will reset the alarm value.
A call to alarm returns the amount of time remaining on the alarm clock. A "sleep" type
arrangement can be implemented for a process using alarm. However, mixing calls to
alarm and sleep is not a good idea.

Proéram 4.3 demonstrates the use of an alarm system call.

Program 4.3 Setting an alarm.

File : p4.3.cxx

| #include <iostream>
| #include <iomanip>
| #include <cstdlib>
| #include <sys/types.h>
+  #include <sys/wait.h>
| #include <unistd.h>
| using namespace std;
I
I

int
main(int argc, char *argv[] ) {
10 int w, status;
if (argc<4){
cerr << "Usage: " << *argv << " value_1 value_2 value_3"
<< endl;
return 1;

for(int i=1; i <= 3; ++i)

if (fork()==0){

int t = atoi(argvl[i]);

cout << "Child " << getpid( ) << " waiting to die in "

I
I
I
I
+ )
I
I
I
I

20 <<t <<"seconds." << endl;
alarm(t);
pause();
cout << getpid( ) << " is done." << endl;
}

cout << "Wait on PID: " << dec << w << " returns status of "
<< setw(4) << setfill(48) << hex
<< setiosflags(ios::uppercase) << status << endl;
return O;
30 }

I
I
I
I
+ while (( w=wait(&status)) && w !=-1)
I
I
I
I

When the program is invoked, three integer values are passed to the program. The
parent process generates three child processes using the command-line values to set



the alarm in process. In line 22 the pause library function is called. This function causes
the child process to wait for the receipt of a signal. In the example, this will be the
receipt of the SIGALRM signal. When the signal is received, the child process takes
the default action for the signal. The default for SIGALRM is for the process to exit and
return the value of the signal to its waiting parent. The parent process waits for all of
the child processes to finish. As each finishes, the parent displays the child PID and
its return status information. It is important to note that the cout statement in line 23 is
never executed, as the child process exits before reaching this statement. This can be

verified by the output shown in Eigure 4.7.

Figure 4.7 Setting an alarm in multiple child processes.

linux$p4.3 315

Child 17243 waiting to die in 3 seconds.

Child 17244 waiting to die in 1 seconds.

Child 17245 waiting to die in 5 seconds.

Wait on PID: 17244 returns status of 000E

Wait on PID: 17243 returns status of 000E

Wait on PID: 17245 returns status of 000E <-- 1

(1) The child processes end in the order specified by their alarm times.
Each passes back the SIGALRM value (14 an E in hexadecimal).

A call to pause suspends a process (causing it to sleep) until it receives a signal that
has not been ignored ([Table 4.18).

Table 4.18. Summary of the pause Library Function.EI
Include <unistd.h> Manual
File(s) Section
Summary int pause ( void ),
Success Failure Sets errno
Return If the signal does not cause termination ~ Does not Yes

then -1 returned return



8T While in Section 2 of the manual, the manual page indicates this is a
library function.

pause returns a -1 if the signal received while pausing does not cause process
termination. The value in errno will be EINTR (4). If the received signal causes
termination, pause will not return (which is to be expected!).
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4.5 Signal and Signal Management Calls

In the previous section we noted that a process can handle a signal by doing nothing
(thus allowing the default action to occur), ignoring the signal, or catching the signal.
Both the ignoring and catching of a signal entail the association of a signal-catching
routine with a signal. In brief, when this is done the process automatically invokes the
signal-catching routine when the stipulated signal is received. There are two basic
system calls that can be used to modify what a process will do when a signal has
been received: signal and sigaction. The signal system call has been present in all
versions_of UNIX and is now categorized as the ANSI C version signal-handling
routine (Table 4.19). The sigaction system call ) IS somewhat more recent
and is one of a group of POSIX signal management calls.

Table 4.19. Summary of the signal System Call.

Include Manual
File(s) <signal.h> Section
Summary void (*signal(int signum,

void (*sighandler)(int)))(int);

Success Failure Sets errno
Return Signal's previous SIG_ERR (defined as Yes
disposition -1)

Table 4.20. Summary of the sigaction System Call.
Include File(s) <signal.h> Manual Section 2

Summary int sigaction(int signum, const
struct sigaction *act,
struct sigaction *oldact);

Return Success Failure Sets errno



0 -1 Yes

The most difficult part of using signal is deciphering its prototype. In essence, the
prototype declares signal to be a function that accepts two arguments—an integer
signum value and a pointer to a function—which are called when the signal is received.
If the invocation of signal is successful, it returns a pointer to a function that returns
nothing (void). This is the previous disposition for the signal. The mysterious (int), found
at the far right of the prototype, indicates the referenced function has an integer
argument. This argument is automatically filled by the system and contains the signal
number. Either system call fails and returns the value -1, setting the value in errno to
EINTR (4), if itis interrupted or to EINVAL (22) if the value given for signum is not valid
or is set to SIGKILL or SIGSTOP. Further, sigaction returns EFAULT (14) if the act or
oldact arguments reference an invalid address space.

While both signal and sigaction deal with signal handling, the functionality of each is
slightly different. Let's begin with the signal system call.

The first argument to the signal system call is the signal that we intend to associate
with a new action. The signal value can be an integer or a symbolic signal name. This
value cannot be SIGKILL or SIGSTOP. The second argument to signal is the address
of the signal-catching function. The signal-catching function can be a user-defined
function or one of the defined constants SIG_DFL or SIG_IGN. Specifying SIG_DFL
for a signal resets the action to be taken to its default action when the signal is
received. Indicating SIG_IGN for a signal means the process will ignore the receipt of
the indicated signal.

An examination of the signal header files shows that SIG_DFL and SIG_IGN are

defined as integer values that have been appropriately cast to address locations that

are invalid (such as -1, etc.). The declaration most commonly found for SIG_DFL and

SIG_IGN is shown below. With these definitions is another defined constant that can

be used—SIG_ERR. This constant is the value that is returned by signal if it fails. See
iqure 4.8,

Figure 4.8 Defined constants used by signal and sigset.

[* Fake signal functions. */

#define SIG_ERR ((__sighandler_t) -1)  /* Error return. */



#define SIG_DFL ((__sighandler_t) 0)  /* Default action. */
#define SIG_IGN ((__sighandler_t) 1)  /*Ignore signal. */

Program 4.4 uses the signal system call to demonstrate how a signal can be ignored.

Program 4.4 Pseudo nohup—ignoring a signal.

File : p4.4.cxx
| /* Using the signal system call to ignore a hangup signal
|
| #include <iostream>
+ #include <cstdio>
| #include <cstdlib>
| #include <signal.h>
| #include <fcntl.h>
| #include <unistd.h>
| using namespace std;
10 const char *file_out = "nohup.out";
| int
|  main(int argc, char *argv[]){
| int new_stdout;
| if (argc < 2) {
+ cerr << "Usage: " << *argv << " command [arguments]" << end];
| return 1;
|}
| if (isatty( 1)) {
| cerr << "Sending output to " << file_out << end];
20 close(1);
| if ((new_stdout = open(file_out, O_WRONLY | O_CREAT |
| O_APPEND, 0644)) == -1) {
| perror(file_out);
| return 2;
+ }
|}
| if (signal(SIGHUP, SIG_IGN) == SIG_ERR) {
| perror("SIGHUP");
| return 3;
30 }
| ++argy;
| execvp(*argv, argv);
| perror(*argv); // Should not get here unless
| return 4; /I the exec call fails.
+

}

Program 4.4 is a limited version of the /usr/bin/nohup command found on most



UNIX-based systems. The nohup command can be used to run commands so they will
be immune to the receipt of SIGHUP signals. If the standard output for the current
process is associated with a terminal, the output from nohup will be sent to the file
nohup.out. The nohup command is often used with the command-line background
specifier & to allow a command to continue its execution in the background even after
the user has logged out.

Like the real nohup, our pseudo nohup program (Program 4.4)) will execute the
command (with optional arguments) that is passed to it on the command line. After
checking the number of command-line arguments, the file descriptor associated with
stdout is evaluated. The assumption here is that the file descriptor associated with
stdout is 1. However, if needed, there is a standard I/O function named fileno that can
be used to find the integer file descriptor for a given argument stream. The library
function isatty is used to determine if the descriptor is associated with a

terminal device.

Table 4.21. Summary of the isatty Library Function.

Include File(s) <unistd.h> Manual Section 3
Summary Int isatty( int desc );

Success Failure Sets errno
Return 1 0

The isattty library function takes a single integer desc argument. If desc is associated
with a terminal device, isatty returns a 1; otherwise, it returns a 0. In the program, if the
isatty function returns a 1, an informational message is displayed to standard error to
tell the user where the output from the command passed to the pseudo nohup program
can be found. Next, the file descriptor for stdout is closed. The open statement that
follows the close returns the first free file descriptor. As we have just closed stdout, the
descriptor returned by the open will be that of stdout. Once this reassignment has been
done, any information written to stdout (cout) by the program will in turn be appended to
the file nohup.out. Notice that the call to signal to ignore the SIGHUP signal is done
within an if statement. Should the signal system call fail (return a SIG_ERR), a
message would be displayed to standard error and the program would exit. If the signal
call is successful, the argv pointer is incremented to step past the name of the current



program. The remainder of the command line is then passed to the execvp system call.
Should the execvp call fail, perror will be invoked and a message displayed. If execvp is
successful, the current process will be overlaid by the program/command passed from
the command line.

The output in Ei;ure 4.9 shows what happens when the pseudo nohup program is run
on a local system and passed a command that takes a long time to execute. In the
example the long-running command is a small Korn shell script called count that counts
from 1 to 100, sleeping one second after the display of each value. As written, the
output from the script would normally be displayed on the screen.

Figure 4.9 Output of Ero;ram 4.4 when passed a command that takes a long time to execute.

linux$ cat count
#! /bin/ksh
c=1
while (( $c <= 100))
do
echo "$c"
sleep 1
((c=c+1))
done

L]

linux$ ./p4.4 ./count & <-- 2
Sending output to nohup.out
[1] 19481

linux$ jobs -3
[1] + Running p4.4 count
linux$ kill -HUP %1 <--
linux$ jobs

[1] + Running p4.4 count
linux$ kill -KILL %21

linux$

[1] Killed p4.4 count

linux$ jobs

linux$

D

(1) The script count from 1 to 100, sleeping one second in between the
display of each number. If run on the command line, it will take
approximately 100 seconds to count from 1 to 100.



(2) Pass the count script to our pseudo nohup program—place it in the
background.

(3) The operating system returns the PID of the background process.

(4) Sending a hangup signal to the process does not cause it to
terminate.

When the program was placed in the background, the system reported the job number
(in this case [1]) and the PID (19481). The jobs command confirms that the process is
still running. As can be seen, the kill -HUP %1 command (which sends a hangup signal
to the first job in the background) did not cause the program to terminate. This is not
unexpected, as the SIGHUP signal was being ignored. The command kill —-KILL %1 was
used to terminate the process by sending it a SIGKILL signal.

4-8 EXERCISE

If a find command (e.qg., find / -name \* -print ) iS run byProgram 4.4, the error
messages from find (such as it not having permission to read certain
directories), which are written to stderr, are still displayed. ModifyProgram 4.4
so that error messages from the program being run are discarded (written to

/dev/null). What are the pros and cons of such a modification?

As noted, if a signal-catching function name is supplied to the signal system call, the
process will automatically call this function when the process receives the signal.
However, prior to calling the function, if the signal is not SIG KILL, SIGPWR, or
SIGTRAP, the system will reset the signal's disposition to its default. This means that
if two of the same signals are received successively, it is entirely possible that before
the signal-catching routine is executed, the second signal may cause the process to
terminate (if that is the default action for the signal). This behavior reduces the
reliability of using signals as a communication device. It is possible to reduce, but not



entirely eliminate, this window of opportunity for failure by resetting the disposition for

the signal in the catching routine. Program 4.5 catches signals and attempts to reduce

this window of opportunity.

Program 4.5 Catching SIGINT and SIGQUIT signals.

File : p4.5.cxx
| /* Catching a signal
|

| #include <iostream>

+ #include <cstdlib>

| #include <cstdio>

| #include <signal.h>

| #include <unistd.h>

| using namespace std;

| int

10 main(){

| void signal_catcher(int);

| if (signal(SIGINT , signal_catcher) == SIG_ERR) {
| perror("SIGINT");

| return 1;

+ )

| if (signal(SIGQUIT , signal_catcher) == SIG_ERR) {
| perror("SIGQUIT");

| return 2;

|}

20 for (inti=0; ; ++i) { /I Forever ...

| cout << i << endl; /I display a number

| sleep(2);

|}

| return O;

+ )

| void

| signal_catcher(int the_sig){

| signal(the_sig, signal_catcher); // reset immediately

| cout << endl << "Signal " << the_sig << " received." << endl;
30 if (the_sig == SIGQUIT)

| exit(3);

|}

In an attempt to avoid taking the default action (which in this case is to terminate) for
either of the two caught signals, the first statement (line 28) in the program function
signal_catcher is a call to signal. This call reestablishes the association between the



signal being caught and the signal-catching routine.

igure 4.10 shows the output of the program when run on a local system.
Figure 4.10 Output of.

linux$ p4.5

0

1

2

o

Signal 2 received.
3

4

0

Signal 2 received.
5

0

Signal 2 received.
6

0

Signal 3 received.
linux$

N
1
1
=

L] [E]

(1) The user types CTRL+C. The terminal program displays a funny
graphics character, 0.

(2) Here the signals are generated in rapid succession.

From this output we can see that each time CTRL+C was pressed, it was echoed
back to the terminal as o. If CTRL+C was struck twice in quick succession, the
program responded with the Signal 2 received message for each keyboard sequence.
On this system it appears as if some of the signals were queued if they were received
in rapid succession. However, this is somewhat misleading, as the mechanics of
terminal 1/0O come into play. Say we were (via a background process) to deliver to the
process, in very rapid succession, multiple copies of the same signal. In this setting
we would find most often that only one copy of the signal would be delivered to the



process, while the others are discarded. Most systems do not queue the signals 1
through 31. When a SIGQUIT signal was generated, a message was displayed and
the program exited.

4-9 EXERCISE

Lad wrote the program below in an attempt to determine what keystrokes
generate a signal that can be caught.

View full width

File : lad.cxx
| /*Lad's signal catching program
(I

|  #include <iostream>

+  #include <cstdlib>

|  #include <cstdio>

|  #include <signal.h>

| #include <unistd.h>

|  using namespace std;

| int

10 main() {
| void signal_catcher(int);
| char a_num[5]; Q

| for (inti=1; i < _NSIG; ++i)

| switch( i

+ case SIGKILL: case SIGSTOP:

| break;

I

|

|

default: @

if (signal(i , signal_catcher) == SIG_ERR) {
sprintf( a_num, "%d", i );

20 perror(a_num);

| return 1;

| }

|}

| for (inti=0; ; ++i) { [/l Forever ...
+ cout << i<<endl /I display a
** number

| sleep(1);

(I

| return O;



|}
30 void

|  signal_catcher(int the_sig){
| signal(the_sig, signal_catcher); // reset
| cout << endl << "Signal " << the_sig << " received."

= << end;

| if (the_sig == SIGQUIT)
+ exit(3);

|}

(1) The constant _NSIG is the upper bound for signal
numbers. On some systems, this constant does not have the
leading underscore.

(2) Catch all signals that can be caught—map each to the
signal-catching function.

When running his program, how many signals did Lad find he could
generate from the keyboard? What are they? Describe what happens (and
why) when the following keystrokes are entered? CTRL+S, CTRL+Q, and
CTRL+R.

4-10 EXERCISE

Remove the statement

if (the_sig == SIGQUIT)
exit(3);

from Program 4.5. Recompile the program and run it in the background (i.e.,
p4.5 &). How did you stop the program from displaying numbers on the

screen?




4-11 EXERCISE

Write a program that forks a child process. The parent and child processes
should generate and send random signals to each other. In each process,
display the signal being sent and the signal that is caught. Be sure both
processes exit gracefully and that neither remains active if the other has
terminated due to the receipt of a SIGKILL signal. Hint: Remember that you
can, with kill, determine if a process is present.

The sigaction system call, like the signal system call, can be used to associate an
alternate action with the receipt of a signal. This system call has three arguments. The
first is an integer value that specifies the signal. As with the signal system call, this
argument can be any valid signal except SIGKILL or SIGSTOP. The second and third
arguments are references to a sigaction structure. Respectively these structures store
the new and previous action for the signal. The full definition of the sigaction structure is
found in the file sigaction.h. This file is automatically included by signal.h. Basically, the
sigaction structure is

struct sigaction {

void (*sa_handler)(int); N1

void (*sa_sigaction)(int, siginfo_t *, void *); // 2
sigset_t sa_mask; /I3

int sa_flags; INa

void (*sa_restorer)(void); /15

Both sa_handler and sa_sigaction can be used to reference a signal handling function.
Only one of these should be specified at any given time, as on most systems this data
Is often stored in a union within the sigaction structure. By definition, a union can hold
only one of its members at a time. Our discussion centers on using the sa_handler
member. The sa_mask member specifies the signals, which should be blocked when
the signal handler is executing. Each signal is represented by a bit. If the bit in the
mask is on, the signal is blocked. By default the signal that triggered the handler is
blocked. The sa_flags member is used to set flags that modify the behavior of the
signal-handling process. Flag constants, shown in , can be combined using

a bitwise OR.



Table 4.22. sa_flags Constants.

Flag Action
SA_NOCLDSTOP If the signal is SIGCHILD, then the calling process will
not receive a SIGCHILD signal when its child processes
exit.
SA_ONESHOT or Restore the default action after the signal handler has
SA_RESETHAND been called once (similar to the default of the signal call).
SA RESTART Use BSD signal semantics (certain interrupted system

calls are restarted after the signal has been caught).

SA NOMASK or Undo the default whereby the signal triggering the
SA_NODEFER handler is automatically blocked.
SA_SIGINFO The signal handler has three arguments—use

sa_sigaction, NOt sa_handler.

The remaining structure member, sa_restorer, is obsolete and should not be used.

Unlike signal, a sigaction installed signal-catching routine remains installed even after it

has been invoked. Program 4.6, which is similar to Program 4.5, shows the use of the
sigaction system call.

Again, notice that in the program function signal_catcher, it is no longer necessary to
reset the association for the signal caught to the signal-catching routine.

Program 4.6 Using the sigaction system call.

File : p4.6.cxx
| /* Catching a signal using sigaction
|

| #define_GNU_SOURCE

+ #include <iostream>

| #include <cstdlib>

| #include <cstdio>

| #include <signal.h>

| #include <unistd.h>

| using namespace std;

10 int

| main(){



void signal_catcher(int);

I

| struct sigaction new_action; Q

| new_action.sa_handler = signal_catcher;

+ new_action.sa_flags =0; <-- 2

I

| if (sigaction(SIGINT, &new_action, NULL) ==-1) {
| perror("SIGINT"); E-3

| return 1;

20 } <-- 3

| if (sigaction(SIGQUIT, &newﬁon, NULL) ==-1) {

| perror("SIGQUIT");

| return 2;

|}

+ for (inti=0; ; ++i) { I/l Forever ...

| cout << j << endl; /I display a number

| sleep();

|}

| return O;

30 }

| void

| signal_catcher(int the_sig){

| cout << endl << "Signal " << the_sig << " received." << endl;
| if (the_sig == SIGQUIT)
+ exit(3);
|}

(1) A sigaction structure is allocated.

(2) The signal catching function is assigned and the sa_flags member set
to O.

(3) A new action is associated with each signal.

Three other POSIX signal-related system calls that can be used for signal
management are shown in [Table 4.23.



Table 4.23. Summary of the sigprocmask, sigpending, and sigsuspend System Call.

Include File(s) <unistd.h> Manual Section

Summary int sigprocmask (int how, const sigset_t *set,
sigset_t *oldset);
int sigpending(sigset_t *set);
int sigsuspend(const sigset_t *mask);;

Success Failure Sets errno

Return 0 -1 Yes

Each function returns a O if it is successful; otherwise, it returns a -1 and sets the
value in errno (Table 4.24)).

Table 4.24. sigprocmask, sigpending, and sigsuspend Error Messages.

# Constant perror Message Explanation
4 EINTR Interrupted system A signal was caught during the system call.
call
14 EFAULT Bad address set Or oldset references an invalid address
space.

The process's signal mask can be manipulated with the sigprocmask system call. The
first argument, how, indicates how the list of signals (referenced by the second
argument, set) should be treated. The action that sigprocmask will take, based on the
value of how, is summarized in .

Table 4.25. Defined how Constants.

Signal Action

SIG_BLOCK Block the signals specified by the union of the current set of
signals with those specified by the set argument.

SIG_UNBLOCK Unblock the signals specified by theset argument.

SIG_SETMASK Block just those signals specified by theset argument.




If the third argument, oldset, is non-null, the previous value of the signal mask is stored
in the location referenced by oldset.

The use of the sigprocmask system call is shown in Program 4.7].

Program 4.7 Using sigprocmask.

File : p4.7.cxx
| /* Demonstration of the sigprocmask call */

| #define_GNU_SOURCE

| #include <iostream>

| #include <cstdio>

+  #include <signal.h>

| #include <unistd.h>

| using namespace std;

| sigset t new_signals;

| int

10 main(){
void signal_catcher(int); K-
struct sigaction new_action; <--

I

I

I

| sigemptyset(&new_signals);

+ sigaddset(&new_signals,SIGUSR1);
I

I

I

I

sigprocmask(SIG_BLOCK, &new_signals, NULL);
new_action.sa_handler = signal_catcher;
new_action.sa_flags =0;

20 if (sigaction(SIGUSR2, &new_action, NULL) ==-1) {

| perror("SIGUSR2";

| return 1;

|}

| cout << "Waiting for signal" << endl;

+ pause();

| cout << "Done" << endl;

| return O;

I

I

void
30 signal_catcher(intn) {
| cout << "Received signal " << n << " will release SIGUSR1" << endl;
| sigprocmask(SIG_UNBLOCK, &new_signals, NULL);
| cout << "SIGUSR1 released!" << endl;
I



(1) Empty (clear) the set of signals.

(2) Add the SIGUSR1 signal to this set.

The example makes use of the SIGUSR1 and SIGUSR2 signals. These are two
user-defined signals whose default action is termination of the process. In lines 14 and
15 of the example are two signal-mask manipulation library functions (sigemptyset and
sigaddset) that are used to clear and then add a signal to the new signal mask. A signal
mask is essentially a string of bits—each set bit represents a signal. The signal-mask
manipulation library functions are covered in detail in Chaéter lz, "Threads." In

Program 4.7, the sigprocmask system call in line 17 holds (blocks) incoming SIGUSR1
signals. The sigaction system call (line 20) is used to associate the receipt of SIGUSR2
with the signal-catching routine. Following this, an informational message is displayed,
and a call to pause is made. In the program function signal_catcher, the sigprocmask
system call is used to release the pending SIGUSR1 signal. Notice that a cout
statement was placed before and after the sigprocmask call. A sample of this program
run locally is shown in .

When run, the program is placed in background so the user can continue to issue
commands from the keyboard. The system displays the job number for the process
and the PID. The program begins by displaying the waiting for signal message. The
user, via the kil command, sends the process a SIGUSRL1 signal. This signal, while
received by the process, is not acted upon, as the process has been directed to block
this signal. When the SIGUSR2 signal is sent to the process, the process catches the
signal, and the program function signal_catcher is called. The initial cout statement in the
signal-catching routine is executed, and its message about receiving signals is
displayed. The following sigprocmask call then unblocks the pending SIGUSR1 signal
that was issued earlier. As the default action for SIGUSRL1 is termination, the process
terminates and the system produces the trailing information indicating the process
was terminated via user signal 1. As the process terminates abnormally, the second
cout Statement in the signal-catching routine and the cout in the main of the program
are not executed.

Figure 4.11 Output of Ero;ram 4.1

linux$ ./p4.7 &




Waiting for signal
[1] 21895

linux$ kill -USR1 21895 <--
linux$ kill -USR2 21895 <-- 2
Received signal 12 will release SIGUSR1
linux$

[1] Usersignal 1 Ipa.7

(1) SIGUSR1 would normally cause the process to exit—but it has been
blocked.

(2) SIGUSR2 has been mapped to the signal-catching routine. In this
routine, SIGUSR1 is unblocked; consequently, the process exits without
executing the second cout statement in the signal catcher.

The sigsuspend system call is used to pause (suspend) a process. It replaces the
current signal mask with the one passed as an argument. The process suspends until
a signal is delivered whose action is to execute a signal-catching function or terminate

the process. Program 4.8 demonstrates the use of the sigsuspend system call.

Program 4.8 Using sigsuspend.

File : p4.8.cxx
| /* Pausing with sigsuspend */
| #define_GNU_SOURCE
| #include <iostream>
| #include <cstdio>
+  #include <signal.h>
| #include <unistd.h>
| using namespace std;
| int
| main(){
10 void  signal_catcher(int);
struct sigaction new_action;
sigset_t no_sigs, blocked_sigs, all_sigs;

I
I
I
| sigfillset ( &all_sigs ); // turn all bits on

+ sigemptyset( &no_sigs  ); // turn all bits off
| sigemptyset( &blocked_sigs );



| /I Associate with catcher
| new_action.sa_handler = signal_catcher;
| new_action.sa_mask = all_sigs;
20 new_action.sa_flags =0;
| if (sigaction(SIGUSR1, &new_action, NULL) ==-1) {
| perror("SIGUSR1";
| return 1;
|}
+ sigaddset( &blocked_sigs, SIGUSR1 );
| sigprocmask( SIG_SETMASK, &blocked_sigs, NULL);
I
I
I

while (1) {
cout << "Waiting for SIGUSRL1 signal" << endl;
sigsuspend( &no_sigs ); /I Wait
30 }
cout << "Done." << endl;
return O;
}
void

cout << "Beginning important stuff" << endl;
sleep(10); /I Simulate work ....
cout << "Ending important stuff" << endl;

}

I
I
I
I
+ signal_catcher(int n){
I
I
I
I

In main, the signal-catching function is established. Lines 14 to 16 create three signal
masks. The sigfillset call turns all bits on, while the sigemptyset turns all bits off. The filled
set (all bits on, denoting all signals) becomes the signal mask for the signal-catching
routine. Thus specified, this directs the signal-catching routine to block all signals. In
line 21 the receipt of signal SIGUSRL1 is associated with the signal-catching function
signal_catcher. In lines 25 and 26 the process is directed to block any SIGUSR1 signals.
While at first glance this might seem superfluous, as receipt of this signal has been
mapped to signal_catcher, it allows duplicate SIGUSRL1 signals to be pending rather
than discarded. Then, in an endless loop, the program pauses when the sigsuspend
statement is reached, waiting for the receipt of the SIGUSRL1 signal. Once the
SIGUSRL1 signal is received (caught), the signal-catching function is executed. While
in the signal-catching function, all signals that can be blocked are held. A set of
messages indicating the beginning and end of an important section of code are
displayed. When the signal-catching routine is exited, any blocked signals are
released. In summary, the program defers the execution of an interrupt-protected
section of code until it receives a SIGUSRL1 signal. A run of the program produces the

output shown in Eigure 4.12.



Figure 4.12 Output of .

linux$ p4.8 &

Waiting for SIGUSR1 signal
[1] 6277

linux$ kill -USR1 %1
Beginning important stuff
linux$ kill -INT %1

linux$ jobs

[1] + Running p4.8
linux$ Ending important stuff

[1] Interrupt p4.8

The process was first sent a SIGUSR1 signal that caused it to begin the program

function signal_catcher. While it was in the signal_catcher function, an interrupt signal was

sent to the process. This signal did not cause the process to immediately terminate, as

the process had indicated that all signals were to be blocked (held). The jobs

command confirms that the process is still active after the interrupt command was

sent. However, once the blocked signals are released (when the signal-catching

routine is exited), the pending SIGINT signal is acted upon and the process
terminates.

4-12 EXERCISE

Examine carefully. Run programp4.8 and place it in the
background. Experiment with issuing multiple kill -USR1 %1 commands before
you issue the kill -INT %1 command (note, you may need to increase the
sleep time from 10 to something more if you type slowly and want to issue
the signals when the process is in the signal-catching routine). Does the
system process all the blocked SIGUSR1 signals before it responds to the
SIGINT signal. Why or why not?

4-13 EXERCISE

Write a program that generates a parent and child process that solves the
producer/consumer problem presented in . Make the parent




process the producer and the child process the consumer. In place of a lock
file, use signals to coordinate the activities of the processes. One approach
would be to use SIGUSRL1 to indicate the resource is available to be
accessed and use signal SIGUSR2 to indicate a new value is available. Do
signals provide a reliable way of solving the problem? What problems are
inherent in their use?
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4.6 Summary

As we have seen, lock files, the locking of files and signals, can be used as a basic
means of communication between processes. Lock files require the participating
processes to agree upon file names and locations. The creation of a lock file carries
with it a certain amount of system overhead characteristic of all file manipulations. In
addition, the problems associated with the removal of "leftover" invalid lock files and
the implementation of nonsystem-intensive polling techniques must be addressed. On
the positive side, lock file techniques can be used in any UNIX environment that
supports the creat system call, and cooperating processes do not need to be related.

UNIX has predefined routines that can be used to lock a file. We can use the
presence of a lock on a file to indicate that a resource is unavailable. Advisory locking
Is less system-intensive than mandatory locking and is thus more common. As with
lock files, the participating processes using advisory locking must cooperate to
effectively communicate.

Signals provide us with another basic communication technique. While signals do not
carry any information content, they can be, as we have seen, used to communicate
from one process to another. From a system implementation standpoint, signals are
more efficient than using lock files. However, participating processes must have
access to each other's PIDs (in most cases the processes will be parent/child pairs). In
most environments, the number of user-designated signals is limited. Cooperating
processes must agree upon the "meaning" of each signal. When a signal is sent from
one process to another, unless the receiving process acknowledges the receipt of the
signal, there is no way for the sending process to know if its initial signal was received.
Signal manipulation can be tricky, and its implementation from one version of UNIX to
another may vary (this is one of the last areas of UNIX to be standardized). All of
these techniques are easy to understand and to implement but are often difficult to
implement well. However, all approaches have a number of limitations that remove
them from serious consideration when reliable communication between processes is
needed.
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4.7 Key Terms and Concepts

aborting a process
advisory locking
alarm system call
asynchronous
atomic

consumer process
core image

creat system call
fcntl system call
file locking

flock structure
ignoring a signal
interrupt

isatty library function
kill command

kill system call

link system call
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lock file

lockf library call
mandatory locking
nohup command
pause library function
polling

producer process
race condition

raise library function
real-time signals
shlock command
sigaction structure
sigaction system call
signal blocking
signal catcher
signal delivery
signal generation
signal system call
signals

sigpending system call

sigprocmask system call



sigsuspend system call
sleep library function
stopping a process

unlink system call
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Chapter 5. Pipes

READ WRITE
We have discussed . . . ‘:| 'PJ’IPJE:@ ~ | the previous chapter . . .
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5.1 Introduction

We have discussed the nature and generation of processes. In the previous chapter
we addressed primitive techniques for communicating between two or more
processes. These techniques were limited in scope and suffered from a lack of
reliable synchronization. Beginning with this chapter, we explore interprocess
communication techniques using system-designed interprocess facilities. We start with
pipes, which provide processes with a simple, synchronized way of passing
information. By the early 1970s pipes became a standard part of UNIX.

We can think of the pipe as a special file that can store a limited amount of data in a
first in, first out (FIFO) manner. On most systems, pipes are limited to a specific size.
In Linux, the defined constant PIPE_SIZE (which is usually equivalent to the
PAGE_SIZE for the system) establishes the total number of bytes allocated for a pipe.
The defined constant PIPE_BUF (found in <linux/limits.h>, which is included by <limits.h>)
sets the block size for an atomic write to a pipe. On our system the value for
PIPE_BUF is 4096. Generally, one process writes to the pipe (as if it were a file),
while another process reads from the pipe.

As shown in Fiéure Sj, conceptually we can envision the pipe as a conveyor belt
composed of data blocks that are continuously filled at (written to) the "write end" and
emptied (read) from the "read end." The system keeps track of the current location of
the last read/write location. Data is written to one end of the pipe and read from the
other. From an implementation standpoint, an actual file pointer (as associated with a
regular file) is not defined for a pipe, and as such no seeking is supported.

Figure 5.1. Conceptual data access using a pipe.

Writer —— [N [ [H --- E] —» Reader

O
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The operating system provides the synchronization between the writing and reading
processes. By default, if a writing process attempts to write to a full pipe, the system
automatically blocks the process until the pipe is able to receive the data. Likewise, if a
read is attempted on an empty pipe, the process blocks until data is available. In
addition, the process blocks if a specified pipe has been opened for reading, but
another process has not opened the pipe for writing.

In a program, data is written to the pipe using the unbuffered I/O write system call
i able 5.1)).

Table 5.1. Summary of the write System Call.
Include File(s) <unistd.h> Manual Section 2

Summary ssize_t write(int fd, const void *buf,
size_t count);

Success Failure Sets errno

Return Number of bytes written -1 Yes

Using the file descriptor specified by fd, the write system call attempts to write count
bytes from the buffer referenced by buf. If the write system call is successful, the
number of bytes actually written is returned. Otherwise, a —1 is returned and the
global variable errno is set to indicate the nature of the error. As shown in ,
the number of ways in which write can fail is impressive indeed!



Table 5.2. write Error Messages.

# Constant perror Message Explanation
4 EINTR Interrupted system Signal was caught during the system call.
call
5 EIO I/O error Low-level I/O error while attempting read from
or write to file system.
6 ENXIO No such device or O_NONBLOCK | O_WRONLY is set, the
address named file is a FIFO, and no process has the
file open for reading.
9 EBADF Bad file descriptor fd is an invalid file descriptor or is not open for
writing.

11 EAGAIN  Resource * O_NDELAY or O_NONBLOCK is set and the
temporarily file is currently locked by another process.
unavailable

» System memory for raw 1/O is temporarily
insufficient.

* Attempted a write to pipe ofcount bytes, but
less than count bytes is available.

14 EFAULT Bad address buf references an illegal address.

22 EINVAL Invalid argument  fd associated with an object unsuitable for

writing.

27 EFBIG File too large Attempt to write to a file that exceeds the current

system limits.

28 ENOSPC No space left on Device with file has run out of room.
device

32 EPIPE Broken pipe * Attempt to write to a pipe that is not opened for

reading on one end (in this case a SIGPIPE
signal also generated).

 Attempt to write to a FIFO that is not opened
for reading on one end.




34

35

37

63

67

Constant  perror Message Explanation

 Attempt to write to a pipe with only one end
open.

ERANGE Numerical result count value is less than 0 or greater than
out of range system limit.

EDEADLK Resource The write system call would have gone to sleep
deadlock avoided generating a deadlock situation.

ENOLCK No locks available < Locking enabled, but region was previously
locked.

» System lock table is full.

ENOSR Out of streams Attempt to write to a stream, but insufficient
resources stream memory is available.

ENOLINK The link has been The buf value references a remote system that
severed is no longer active.

writeS to a pipe are similar to those for a file except that

® Each file write request is always appended to the end of the pipe.

® write requests of PIPE_BUF size or less are guaranteed to not be interleaved

with other write requests to the same pipe.

[ while write may still work if the number of bytes is greater than
PIPE_BUF, it is best to stay within this limitation to guarantee the
integrity of data.

When the O_ NONBLOCK and O_NDELAY flags are clear, a write request may
cause the process to block. The defined constants O_NONBLOCK and
O_NDELAY are included by the header file <sys/fcntl.h> and can be set with the
fcntl system call. By default, these values are considered to be cleared, thus
write blocks if the device is busy and writes are delayed (written to an internal
buffer, which is written out to disk by the kernel at a later time). Once the write



has completed, it returns the number of bytes successfully written.

® \When the O_NONBLOCK or O_NDELAY flags are set and the request to write
PIPE_BUF bytes or less is not successful, the value returned by the write
system call can be summarized as

O_NONBLOCK O_NDELAY Value Returned
set clear -1
clear set 0

If both O_NONBLOCK and O_NDELAY flags are set, write will not block the
process.

® |f a write is made to a pipe that is not open for reading by any process, a
SIGPIPE signal is generated and the value in errno is set to EPIPE (broken
pipe). The default action (if not caught) for the SIGPIPE signal is termination.

Data is read from the pipe using the unbuffered 1/O read system call summarized in
I-able 5.3.

Table 5.3. Summary of the read System Call.

Include File(s) <unistd.h> Manual Section 2

Summary ssize_t read(int fd, void *buf,
size_t count);

Success Failure Sets errno

Return Number of bytes read -1 Yes

The read system call reads count bytes from the open file associated with the file
descriptor fd into the buffer referenced by buf. If the read call is successful, the number
of bytes actually read is returned. If the number of bytes left in the pipe is less than
count, the value returned by read will reflect this. When at the end of the file, a value of
0 is returned. If the read system call fails, a —1 is returned and the ilobal variable errno

Is set. The values that errno may take when read fails are shown in [Table 5.4



Table 5.4. read Error Messages.

# Constant Perror Message Explanation
4 EINTR Interrupted system  Signal was caught during the system call.
call
5 EIO I/O error Background process cannot read from its
controlling terminal.
6 ENXIO No such device or  File descriptor reference is invalid.
address
9 EBADF Bad file descriptor  fd is an invalid file or is not open for reading.
11 EAGAIN Resource * O_NDELAY or O_NONBLOCK is set, and
temporarily the file is currently locked by another
unavailable process.
» System memory for raw 1/O is temporarily
insufficient.
* O_NDELAY or O_NONBLOCK is set, but
there is no data waiting to be read.
14 EFAULT Bad address buf references an illegal address.
22 EINVAL Invalid argument fd associated with an unsuitable object for
reading.
35 EDEADLK Resource deadlock The read system call would have gone to
avoided sleep generating a deadlock situation.
37 ENOLCK No locks available ¢ Locking enabled, but region was previously
locked.
» System lock table is full.
67 ENOLINK Link has been The buf value references a remote system
severed that is no longer active.
74 EBADMSG Not a data message Message to beread is not a data message.




In other aspects, reads performed on a pipe are similar to those on a file except that
® All reads are initiated from the current position (i.e., no seeking is supported).

® |f both O_NONBLOCK and O_NDELAY flags are clear, then a read system call
blocks (by default) until data is written to the pipe or the pipe is closed.

® |f the pipe is open for writing by another process, but the pipe is empty, then a
read (in combination with the flags O_NDELAY and O_NONBLOCK) will return

the values
O_NONBLOCK O_NDELAY Value Returned
set clear -1
clear set 0

® |f the pipe is not opened for writing by another process, read returns a 0
(indicating the end-of-file condition). Note, this is the same value that is
returned when the O_NDELAY flag has been set, and the pipe is open but
empty.

Pipes can be divided into two categories: unnamed pipes and named pipes. Unnamed
pipes can be used only with related processes (e.g., parent/child or child/child) and
exist only for as long as the processes using them exist. Named pipes actually exist as
directory entries. As such, they have file access permissions and can be used with
unrelated processes.
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5.2 Unnamed Pipes

An unnamed pipe is constructed with the pipe system call (see ).

Table 5.5. Summary of the pipe System Call.

Include File(s) <unistd.h> Manual Section 2
Summary int pipe(int filedes[2]);

Success Failure Sets errno
Return 0 -1 Yes

If successful, the pipe system call returns a pair of integer file descriptors, filedes[0] and
filedes[1]. The file descriptors reference two data streams. Historically, pipes were
unidirectional, and data flowed in one direction only. If two-way communication was
needed, two pipes were opened: one for reading and another for writing. This is still
true in Linux today. However, in some versions of UNIX (such as Solaris) the file
descriptors returned by pipe are full duplex (bidirectional) and are both opened for
reading/writing.

In a full duplex setting, if the process writes to filedes[0], then filedes[1] is used for
reading; otherwise, the process writes to filedes[1], and filedes[0] is used for reading. In a
half duplex setting (such as in Linux) filedes[1] is always used for writing, and filedes[0] iS
always used for reading—an attempt to write to fildes[0] or read from filedes[1] will
produce an error (i.e., bad file descriptor).

If the pipe system call fails, it returns a —1 and sets errno 1 :



Table 5.6. pipe Error Messages.

# Constant perror Message Explanation

23 ENFILE File table overflow System file table is full.

24 EMFILE Too many open Process has exceeded the limit for number of

files open files.

14 EFAULT Bad address filedes is invalid.

As previously noted, data in a pipe is read on a FIFO basis.

Proéram Sj shows a pair

of processes (parent/child) that use a pipe to send the first argument passed on the

command line to the parent as a message to the child. Notice that the pipe is

established prior to forking the child process.

Program 5.1 Parent/child processes communicating via a pipe.

File : p5.1.cxx
| /*Using a pipe to send data from a parent to a child process
|
| #include <iostream>
| #include <cstdio>
+ #include <unistd.h>
| #include <string.h>
| using namespace std;
| int
| main(int argc, char *argv[ ]) {
10 int f_des[2];
| static char message[BUFSIZ];
| if (argc = 2) {
| cerr << "Usage: " << *argv << " message\n”;
| return 1;
+ )
| if (pipe(f_des) ==-1) { /I generate the pipe
| perror("Pipe"); return 2;
|}
| switch (fork()) {
20 case -1:
| perror("Fork"); return 3;
| case O: /I In the child
| close(f_des[1]);
| if (read(f_des|[0], message, BUFSIZ) !=-1) {
+ cout << "Message received by child: [* << message



<<"]" << endl,

cout.flush();
} else {

perror("Read"); return 4;
30 }

| break;

| default: /I In the Parent

| close(f_des[0Q]);

| if (write(f_des[1], argv[1], strlen(argv[1])) !=-1) {
+ cout << "Message sent by parent :["<<
| argv[l] <<"]" << endl;

| cout.flush();

| } else {

| perror("Write"); return 5;
40 }
}

I
| return O;
I

}

In the parent process the "read" pipe file descriptor f_des[0] is closed, and the message
(the string referenced by argv[1]) is written to the pipe file descriptor f_des[1]. In the child
process the "write" pipe file descriptor f_des[1] is closed, and pipe file descriptor f_des[0]
IS read to obtain the message. While the closing of the unused pipe file descriptors is
not required, it is a good practice. Remember that for read to be successful, the
number of bytes of data requested must be present in the pipe or all the write file
descriptors for the pipe must be closed so that an end-of-file can be returned. The
pipe file descriptors f_des[0] in the child and f des[1] in the parent will be closed when

each process exits. The output of Program 5.1 is shown in Eigure 5.2.

Figure 5.2 Output of .

linux$ p5.1 Once_upon_a_starry night
Message sent by parent : [Once_upon_a_starry night]
Message received by child: [Once_upon_a_starry night]

5-1 EXERCISE

Modify Proéram 5.ﬂ so the child, upon receipt of the message, changes its
case and returns the message (via a pipe) to the parent, where it is then

displayed. On a system that does not support duplex pipes, you will need to



generate two pipes prior to forking the child process. ‘

At a command-line level, a pipe is specified by the | symbol. As shown in ,
pipes are used to tie the standard output of one command to the standard input of
another to create a command pipeline.

Figure 5.3. Using pipes on the command line.

ps —ef | grep SUSER |

cmdl —-(D——p cmd2 —ID—-# ...CcmdN

For example, the command line sequence

linux$ ps —ef | grep $USER | cat -n

will execute the ps -ef command (which displays, in full form, the process status of all
users) and pipe its output to the grep $SUSER command. The grep command prints those
lines that contain the contents of the variable $USER—that is, the user's login. A
second pipe passes the output of the grep command to the cat, which (with option —n)
displays its output as a numbered list. The redirection of the output of the ps command
to be the input to the grep command and the output of the grep command to be the
input of the cat command is accomplished with the inclusion of the command-line
specification of a pipe. To achieve a similar arrangement with our parent/child pair, we
need a way to associate standard input and standard output with the pipe we have

created. This can be done either by using the dup or the dup2 system call (Tables 5.7

and

The dup2 call supersedes the dup system call, but both bear discussion. The dup
system call duplicates an original open file descriptor. The new descriptor references
the system file table entry for the next available nonnegative file de scriptor. The new
descriptor will share the same file pointer (offset), have the same access mode as the
original, and share locks. Both will remain open across an exec call, but they do not,
however, share the close-on-exec flag. An important point to consider is that when
called, dup will always return the next lowest available file descriptor.



Table 5.7. Summary of the dup System Call.

Manual 2

Include File(s) <unistd.h> Section
Summary int dup( int oldfd );

Success Failure Sets errmo
Return Next available nonnegative file descriptor -1 Yes

Table 5.8. Summary of the dup2 System Call.

Include File(s)  <unistd.h> Manual Section 2
Summary int dup2( int oldfd, int newfd );

Success Failure Sets errmo
Return newfd as a file descriptor foroldfd -1 Yes

A code sequence of

intf_des[2];

pipe(f_des);

close( fileno(stdout) ); // close standard output
dup(f_des[1]); /I duplicate 1st free descriptor

as write end of pipe

declares and generates a pipe. The file descriptor for standard output (say, file
descriptor 1) is closed. The following dup system call returns the next lowest available
file descriptor, which in this case should be the previously closed standard output file
descriptor (i.e., 1). Thus, any data written to standard output in following statements
would now be written to the pipe. Notice that there are two steps in this sequence:
closing the descriptor and then dup-ing it. There is an outside chance that the
sequence will be interrupted and the descriptor returned by dup will not be the one that
was just closed. This could happen if a signal was caught and the signal-catching
routine closed a file.

Enter the dup2 system call. The dup2 system call closes and duplicates the file



descriptor as a single atomic action. When calling dup2, there is no time at which newfd
Is closed and oldfd has not yet been duplicated. If the file referenced by newfd is already
open, it will be closed before the duplication is performed. For those more stout of
heart, both the dup and dup2 calls can be implemented with the fentl system call (when
passed the proper flag values).

A short program that mimics the last | sort command-line seguence is shown in
Proéram 5.2. The files/pipes for the two processes, once Program 5.3 successfully

executes the fork system call in line 17, are shown in Eigure 5.4.

Figure 5.4 Initial entries for files/pipes.

parent child

0 stdin stdin O
1 stdout stdout 1
2 stderr stderr 2
3 f des[o] f des[o] 3
4 f des[l] f des[l] 4
5 5

6 6

Assuming a fairly standard setting (i.e., stdin = O, stdout = 1, stderr = 2) with both stdout
and stderr mapped to the same device (most likely the terminal), initially both the
parent and child processes reference the same entries in the system file table. After
the child process is generated, we use the dup2 call to close standard output and
duplicate it. The system returns the previous reference for standard output, which is
now associated with the file table entry for f_des[1]. Once this association has been
made, the file descriptors f_des[0] and f_des[1] are closed, as they are not needed by
the child process.

Program 5.2 A last | sort pipeline.

File : p5.2.cxx
| /A home grown last | sort cmd pipeline
|

| #define_ GNU_SOURCE

| #include <iostream>

+ #include <cstdio>

| #include <unistd.h>

| using namespace std;

| enum { READ, WRITE };



I
10 int

| main() {
| int f _des[2];
| if (pipe(f_des) ==-1) {
| perror("Pipe");
+ return 1;
|}
| switch (fork()) {
| case -1:
| perror("Fork");
20 return 2;
| case O: /I In the child
| dup2( f_des[WRITE], fileno(stdout));
| close(f_des[READ] );
| close(f_des[WRITE]));
+ execl("/usr/bin/last", "last", (char *) 0);
I
I
I
I

return 3;
default: /I In the parent

dup2( f_des[READ], fileno(stdin));
close(f_des[READ] );

30 close(f_des[WRITE]);
execl("/bin/sort", "sort", (char *) 0);
return 4,

}

I
I
I
| return O;
+

In the parent process the dup2 call closes standard input and duplicates it as the
reference f des[0]. The entries for the files/pipes would now look like those shown in

Figure 5.9. In the parent process, stdout and stderr have not been modified. However,

stdin is now the read end of the pipe shared with the child. In the child process, stdout
and stderr are their default values. However, stdout has been associated with the write
end of pipe shared with the parent.

Figure 5.5. End entries for files/pipes.

parent child
0 stdin stdin 0
1 stdout stdout 1
2 stderr stderr 2 ™~
3 f des[0] f des[0] 3
4 f des[1] f des[1l] 4
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When running Pro;ram 5.2, the two processes (parent and child) are running
concurrently (at the same time). The sequence in which these processes will be

executed is not guaranteed. For the processes involved, this is not a concern, since

the pipe allows both processes to write/read at the same time.

We can summarize the steps involved for communication via unnamed pipes:

7.

Create the pipe(s) needed.

Generate the child process(es).

Close/duplicate file descriptors to properly associate the ends of the pipe.
Close the unneeded ends of the pipe.

Perform the communication activities.

Close any remaining open file descriptors.

If appropriate, wait for child processes to terminate.

If either dup or du?z fail, they return a -1 and set errno. The error codes for dup and dup2

are shown in [Table 5.9.

Table 5.9. dup/dup2 Error Messages.

# Constant perror Message Explanation
4 EINTR Interrupted system Signal was caught during the system call.
call
9 EBADF Bad file descriptor  The file descriptor is invalid.
24 EMFILE Too many open Process has exceeded the limit for number of

files open files.




# Constant perror Message Explanation

67 ENOLINK The link has been  The file descriptor value references a remote
severed system that is no longer active.

5-2 EXERCISE

Most UNIX-based systems include a utility program called tee that copies
standard input to standard output and to the file descriptor passed on the
command line. Thus, the command sequence

linux$ cat x.c | tee /devi/tty | wc

would cat the contents of the filex.c and pipe the standard output totee. The
tee program would copy its standard input (from thecat command) to the file
/devitty and to its standard out put, where it would be piped to thevc (word
count) program. Using unnamed pipes, write your own version of tee called
my_tee. Hint: If you do not know your terminal device, on most systems the
command stty will display the device. Ifstty does not work, try thewho
command. When passing the name of the terminal device to your my_tee
program, be sure to include the full path for the device.

5-3 EXERCISE

Modify Proéram 5.2 S0 a variable number of commands can be passed to
the program. Each command passed to the program should be connected to
the next command via a pipe. When using this new program, a
three-command sequence such as

linux$ last | sort | more

would be indicated as

linux$ my_p5.2 last sort more




5-4 EXERCISE

Rework the program written for Exercise 4.3 (the producer/consumer
problem in [Chapter 4)) so the producer and consumer now use a pipe to

communicate with one another.

Since the sequence of generating a pipe, forking a child process, duplicating file
descriptors, and passing command execution information from one process to another
via the pipe is relatively common, a set of standard library functions is available to

simplify this task: popen and pclose. See |! ables 5.1d and El;l

Table 5.10. Summary of the popen Library Function.
Include File(s) <stdio.h> Manual Section 3

Summary FILE *popen( const char *command, const,
char *type)

Success Failure Sets errno

Return Pointer to a FILE NULL pointer Sometimes

Table 5.11. Summary of the pclose Library Function.

Include File(s) <stdio.h> Manual Section 3
Summary int pclose( FILE *stream );

Success Failure Sets errno
Return Exit status of command -1 Sometimes\dn9

When successful, the popen call returns a pointer to a file stream (not an integer file

descriptor). The arguments for popen are a pointer to the shell command 2 that will be
executed and an I/O mode type. The 1/0O mode type (read or write) determines how the
process will handle the file pointer returned by the popen call.

I This can be any valid Bourne shell command, including those with 1/0O
redirection. Most often, the command is placed in a doubly quoted



string.

When invoked, the popen call automatically generates a child process. The child
process execs a Bourne shell (/bin/sh), which will execute the passed shell command.
Input to and output from the child process is accomplished via a pipe. If the I/O mode
type for popen is specified as w the parent process can write to the standard input of the
shell command. In other terms, writing to the file pointer reference generated by the
popen in the parent process will enable the child process running the shell command to
read the data as its standard input. Conversely, if the I/O type is r, using the popen file
pointer, the parent process can read from the standard output of the shell command
(run by the child process). By default, the 1/O stream generated by popen is fully
buffered.

If popen fails due to an inability to allocate memory, errno will not be set. However, if the
mode type is specified incorrectly, popen sets errno to EINVAL.

The pclose call is used to close a data stream opened with a popen call. If the data
stream being closed is associated with a popen, pclose returns the exit status of the
shell command referenced by the popen. If the data stream is not associated with a
popen call, the pclose call returns a value of —1. If pclose is unable to obtain the status of
the child process, errno is set to ECHILD.

Program 5.3 shows one way the popen and pclose calls can be used to pipe the output

of one shell command to the input of another.

Program 5.3 Using popen and pclose.

File : p5.3.cxx
| /*Using the popen and pclose I/O commands
|

| #define_GNU_SOURCE

| #include <iostream>

+  #include <cstdio>

| #include <limits.h>

| #include <unistd.h>

| using namespace std;

| int

10 main(int argc, char *argv[ ]) {
| FILE *fin, *fout;

| char buffer[PIPE_BUF];



| int n;

| if (argc < 3) {

+ cerr << "Usage " << argv << "cmdl cmd2" << endl;
| return 1;

|3

| fin = popen(argv[1], "r");

| fout = popen(argv[2], "w");

20 fflush(fout);

| while ((n = read(fileno(fin), buffer, PIPE_BUF)) > 0)
| write(fileno(fout), buffer, n);

| pclose(fin);

| pclose(fout);

+ return O;
I

}

As written, Pro;ram 5.3 requires two command-line arguments: two shell commands
whose standard output/input is redirected via pipes generated when using the popen
call. The first popen call, with the I/O option of r, directs the system to fork a child
process that will execute the shell command referenced by argv[1]. The output of the
command will be redirected so it can be read by the parent process when using the file
pointer reference fin. In a similar manner, the second popen, with the 1/0 option of w
directs the system to fork a second child process. As this child process executes its
shell command (referenced by argv[2]), its standard input will be the data written to the
pipe by the parent process, and its output will go the standard output. The parent
process writes data to the second pipe using the file pointer reference fout and reads
data from the first pipe using the file pointer reference fin. The while loop in the program
Is used to copy the data from the output end of one pipe to the input end of the other.
The call to fflush in line 20 of the program is used to clear buffered output so that it will
not be interleaved with data in the pipe.

Fiéure 5.a depicts the arrangement when the shell command last and more are passed
on the command line to Program 5.3.

Figure 5.6. }Pro;ram 5.3 relationships when invoked as p5.3 last more.
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5-5 EXERCISE

Using just the popen call to generate pipes, can we create a pipeline
consisting of three separate shell commands (e.g., a program that when
passed three shell commands on the command line, would pipe the
commands together in the manner cmd1 | cmd2 | cmd3)? If yes, write a
program that shows how this can be done. If no, give the reason(s) why.

4 Prewious | | MHext hl

(0]
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5.3 Named Pipes

UNIX provides for a second type of pipe called a named pipe, or FIFO (we will use the
terms interchangeably). Named pipes are similar in spirit to unnamed pipes but have
additional benefits. When created, named pipes have a directory entry. With the
directory entry are file access permissions and the capability for unrelated processes
to use the pipe file. Although the FIFO has a directory entry, keep in mind the data
written to the FIFO is passed to and stored by the kernel and is not directly written to
the file system.

Named pipes can be created at the shell level (on the command line) or within a
program. It is instructive to look at the generation of a named pipe at the shell level
before addressing its use in a program. At the shell level the command used to make
a named pipe is mknod. Officially, mknod is a utility command designed to generate
special files. It is most commonly used by the superuser to generate special device
files (e.g., the block, character device files found in the /dev directory). For
nonprivileged users, mknod can only be used to generate a named pipe. The syntax for
the mknod command to make a named pipe is

linux$ mknod PIPE p

The first argument to the mknod command is the file name for the FIFO (this can be
any valid UNIX file name; however, it is common to use an uppercase file name to
alert the user to the special nature of the file). The second argument is a lowercase p,
which notifies mknod that a FIFO file is to be created. If we issue the command shown
above and check the directory entry for the file that it has created, we will find a listing
similar to that shown below:

linux$ Is -1 PIPE
prw-r--r-- 1 gray faculty 0 Feb 26 07:18 PIPE

The lowercase letter p at the start of the permission string indicates the file called PIPE
Is a FIFO. The default file permissions for a FIFO are assigned using the standard
umask arrangement discussed previously. The number of bytes in the FIFO is listed as
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0. As soon as all the processes that are using a named pipe are done with it, any
remaining data in the pipe is released by the system and the byte count for the file
reverts to 0. If we wish to, we can, on the command line, redirect the output from a
shell command to a named pipe. If we do this, we should place the command
sequence in the background to prevent it from hanging. We could then redirect the
output of the same FIFO to be the input of another command.

For example, the command

linux$ cat test_file > PIPE &
[1] 27742

will cause the display of the contents of file test_file to be redirected to the named pipe
PIPE. If this command is followed by

linux$ cat < PIPE

This is test

file to use

with our pipe.

[1] + Done cat test_file > PIPE

the second cat command will read its input from the named pipe called PIPE and
display its output to the screen.

5-6 EXERCISE

As long as there is one active reader and/or writer for a FIFO, the system will
maintain its contents. Is it possible to produce a command sequence that
proves this is so? Try issuing a command that generates a large amount of
outpt (e.g., cat p5.2.cxx) and redirect the output to the FIFO, placing the
command in the background. Follow this command with Is - to see if the pipe
actually has contents. Now try the following command sequence:

linux$ cat p5.2.cxx > PIPE & more < PIPE & Is -| PIPE

How do you explain the differences in output you observe?

While the previous discussion is instructive, it is of limited practical use. Under most
circumstances, FIFOs are created in a programming environment, not on the



command line. The system call to generate a FIFO in a program has the same name
as the system command equivalent: mknod (Table 5.12).

Table 5.12. Summary of the mknod System Call.

Include File(s) <sysltypes.h> Manual Section 2
<sys/stat.h>
<fcntl.h>
<unistd.h>

Summary int mknod(const char *pathname, mode_t

mode, dev_t dev);
Success Failure Sets errno

Return 0 -1 Yes

The mknod system call creates the file referenced athname. The type of the file

created (FIFO, character or block special, director 3 or plain) and its access
permissions are determined by the mode value. Most often the mode for the file is
created by ORing a symbolic constant indicating the file type with the file access

permissions (see the section on umask for a more detailed discussion). Permissible file

types are listed in [Table 5.13.

B3I While most versions of mknod can also be used to generate a directory
(if you are the superuser), the version found in Linux cannot (use the
mkdir system call instead).

Table 5.13. File Type Specification Constants for mknod.

Symbolic Constant File Type
S_IFIFO FIFO special
S IFCHR character special
S_IFDIR directory
S_IFBLK block special

S_IFREG ordinary file




The dev argument for mknod is used only when a character or block special file is
specified. For character and block special files, the dev argument is used to assign the
major and minor number of the device. For nonprivileged users, the mknod system call
can only be used to generate a FIFO. When generating a FIFO, the dev argument
should be left as 0. If mknod is successful, it returns a value of 0. Otherwise, errno IS set
to indicate the error, and a value of —1 is returned.

Table 5.14. mknod Error Messages.

# Constant perror Message Explanation
1 EPERM Operation not The effective ID of the calling process
permitted is not that of the superuser.
4 EINTR Interrupted Signal was caught during the system

system call call.

12 ENOMEM Cannot allocate Insufficient kernel memory was
memory available.

13 EACCES Permission Parent directory (or one of the
denied directories in pathname) lacks write

permission.

14 EFAULT Bad address pathname references an illegal address.

17 EEXIST File exists pathname already exists.

20 ENOTDIR Not a directory Part of the specified pathname is not a

directory.

22 EINVAL Invalid argument  Invalid dev specified.

28 ENOSPC No space lefton  File system has no inodes left for new
device file generation.

30 EROFS Read-only file Referenced file is (or would be) on a
system read-only file system.

67 ENOLINK The link has been The pathname value references a

severed

remote system that is no longer active.




# Constant perror Message Explanation

72 EMULTIHOP Multihop The pathname value requires multiple
attempted hops to remote systems, but file
system does not allow it.

36 ENAMETOOLONG File name too long The pathname value exceeds system
path/file name length.

40 ELOOP Too many levels  The perror message says it all.
of symbolic links

In many versions of UNIX, a C library function called mkfifo simplifies the generation of
a FIFO. The mkfifo library function (Table 5.15) uses the mknod system call to generate

the FIFO. Most often, unlike mknod, mkfifo does not require the user have superuser

privileges.
Table 5.15. Summary of the mkfifo Library Function.
Include File(s) <sys/types.h> Manual Section 3
<sys/stat.h>
Summary int mkfifo (const char *pathname,
mode_t mode)
Success Failure Sets errno

Return 0 -1 Yes

If mkfifo is used in place of mknod, the mode argument for mkfifo refers only to the file
access permission for the FIFO, because the file type, by default, is set to S_IFIFO. If
the mkfifo call fails, it returns a —1 and sets the value in errno. When generating a FIFO,
the errors that may be encountered with mkfifo are similar to those previously listed for
the mknod system call (Table 5.14)). In our examples, we use the more universal mknod
system call when generating a FIFO.

Our next example is somewhat more grand in scope than some of the past examples.
We combine the use of unnamed and named pipes to produce a client—server
relationship. Both the client and server processes will run on the same platform. The
single-server process is run first and placed in the background. Client processes, run



subsequently, are in the foreground. The client processes accept a shell command
from the user. The command is sent to the server via a public FIFO (known to all
clients and the server) for processing. Once the command is received, the server
executes it using the popen—pclose sequence (which generates an unnamed pipe in the
process). The server process returns the output of the command to the client over a
private FIFO where the client, upon receipt, displays it to the screen. Eigure 5.7 shows
the process and pipe relationships.

Figure 5.7. Client—server process relationships.
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More succinctly, the steps taken by the processes involved are as follows:

® Server generates the public FIFO (available to all participating client
processes).

® Client process generates its own private FIFO.
® Client prompts for, and receives, a shell command.

® Client writes the name of its private FIFO and the shell command to the public
FIFO.

® Server reads the public FIFO and obtains the private FIFO name and the shell
command.



® Server uses a popen—pclose sequence to execute the shell command. The
output of the shell command is sent back to the client via the private FIFO.

® Client displays the output of the command.

To ensure that both server and client processes will use the same public FIFO name
and have the same message format, a local header file is used. This header file is

shown in Fiqure 5.8.

Figure 5.8 Header file for client—server example.

File : local.h
|
| local header file for pipe client-server
|
| #include <cstdio>
+ #include <sys/types.h>
| #include <sys/stat.h>
| #include <fcntl.h>
| #include <unistd.h>
| #include <string.h>
10 #include <linux/limits.h>
| #include <stdlib.h>
| using namespace std;
| const char *PUBLIC = "/tmp/PUBLIC"; Q
| constint B_SIZ = (PIPE_BUF/2);
+  struct message {
| char fifo_name[B_SIZ];
| char cmd_line[B_SIZ];
|

h

(1) Establish the name of the common public FIFO.

In this file, a constant is used to establish the name for the public FIFO as /tmp/PUBLIC.
The format of the message that will be sent over the public FIFO is declared with the
struct statement. The message structure consists of two character array members. The
first member, called fifo_name, stores the name of the private FIFO. The second
structure member, cmd_line, stores the command to be executed by the server.

Program 5.4 shows the code for the client process.



Program 5.4 The client process.

File : client.cxx

/* The client process */
#define _GNU_SOURCE

#include "local.h"

int

main( 1

int n, privatefifo, publicfifo;
static char  buffer[PIPE_BUF];
struct message msg;

sprintf(msg.fifo_name, "/tmp/fifo%d", getpid()); @

if (mknod(msg.fifo_name, S_IFIFO | 0666, 0) < 0) {
perror(msg.fifo_name);

return 1;

}
if ((publicfifo = open(PUBLIC, O_WRONLY)) ==-1) { @
perror(PUBLIC);

return 2;

}

while (1) {

write(fileno(stdout), "\ncmd>", 6); <-- 4

memset(msg.cmd_line, 0x0, B_SIZ);

n = read(fileno(stdin), msg.cmd_line, B_SIZ);
if (!strncmp("quit”, msg.cmd_line, n—1))
break;

write(publicfifo, (char *) &msg, sizeof(msg)); K-- 5

if ((privatefifo = open(msg.fifo_name, O_RDONLY)) == -1) {
perror(msg.fifo_name);

.

N

return 3;
} ‘
while ((n = read(privatefifo, buffer, PIPE_BUF)) > 0) { Q
write(fileno(stderr), buffer, n); | }
close(privatefifo);
}

close(publicfifo);
unlink(msg.fifo_name);
return O;

}



(1) Build a unique name for the private FIFO for this process.

(2) Generate the private FIFO.

(3) Open the public FIFO for writing.

(4) Prompt for command; clear space to hold command.

(5) Write command to public pipe for server to process.

(6) Open private FIFO; read what is returned.

Using the sprintf function, the client creates a unique name for its private FIFO by
incorporating the value returned by the getpid system call. The mknod system call is
used next to create the private FIFO with read and write permissions for all. The
following open statement opens the public FIFO for writing. If for some reason the
public FIFO has not been previously generated by the server, the open will fail. In this
case the perror call produces an error message and the client process exits. If the open
Is successful, the client process then enters an endless loop. The client first prompts

where the command will be stored is set to all NULLs using the C library function

the user for a command.= Prior to obtaining the command, the structure member
memset. This action assures that no extraneous characters will be left at this storage
location. Note that using memset is preferable to using the deprecated bzero library
function for clearing a string. The read statement in line 24 obtains the user's input from
standard input and stores it in msg.cmd_line. The input is checked to determine if the
user would like to quit the program. The check is accomplished by comparing the
input to the character string quit. We use n-1 as the number of characters for
comparison to avoid including the \n found at the end of the user's input. If quit was
entered, the while loop is exited via the break statement, the private FIFO is removed,



and the client process terminates. If the user does not want to quit, the entire
message structure, consisting of the private FIFO name and the command the user
entered, is written to the public FIFO (thus sending the information on to the server).
The client process then attempts to read its private FIFO to obtain the output that will
be sent to it from the server. At this juncture, if the server has not finished with its
execution of the client's command, the client process will block (which is the default
for read). Once data is available from the private FIFO, the while loop in the client will
read and write its contents to standard error. The code for the server process is shown

in Program 5.5.

I Notice that all the 1/0 in the program is done with read/write to avoid
buffer flushing problems associated with standard I/O library calls.

Program 5.5 The server process.

File : server.cxx
| /* The server process */
#define _GNU_SOURCE

I

I

| #include "local.h"
+ int
I

I

I

I

main( ){
int n, done, dummyfifo, publicfifo, privatefifo;
struct message msg;
FILE *fin;

10  static char buffer[PIPE_BUF];
mknod(PUBLIC, S_IFIFO | 0666, 0); Q

|

I

I

| if ((publicfifo = open(PUBLIC, O_RDONLY)) ==-1 ||

+ (dummyfifo = open(PUBLIC, O_WRONLY | O_NDELAY)) ==-1){
I

|

I

I

perror(PUBLIC);
return 1;
}

20  while (read(publicfifo, (char *) &msg, sizeof(msg)) > 0) { E--2
| n = done = 0;
I do {
| if ((privatefifo=open(msg.fifo_name, K-- 3
I O_WRONLY|O_NDELAY)) == -1)
+ sleep(3);
|

else {



| fin = popen(msg.cmd_line, "r"); E--4
| write(privatefifo, "\n", 1);
| while ((n = read(fileno(fin), buffer, PIPE_BUF)) > 0) {
30 write(privatefifo, buffer, n); <-- §
| memset(buffer, 0x0, PIPE_BUF);
I }
| pclose(fin);
| close(privatefifo);
+ done =1,
I
I
I
I

}
} while (++n < 5 && !done);
if (done) {
write(fileno(stderr),
40 "\nNOTE: SERVER ** NEVER ** accessed private FIFO\n", 48);
return 2;

}

I
I
I
| return O;
+

(1) Generate public FIFO and open for reading and writing.
(2) Read message (command) from public FIFO.

(3) Open the child's private FIFO.

(4) Server executes the command using popen.

(5) Command output is read and sent to the child.

The server process is responsible for creating the public FIFO. Once created, the
public FIFO is opened for both reading and writing. This may appear to be a little odd,
as the server process only needs to read from the public FIFO. By opening the public



FIFO for writing as well, the public FIFO always has at least one writing process
associated with it. Therefore, the server process will never receive an end-of-file on
the public FIFO. The server process will block on an empty public FIFO waiting for
additional messages to be written. This technique saves us from having to close and
reopen the public FIFO every time a client process finishes its activities.

Once the public FIFO is established, the server attempts to read a message from the
public FIFO. When a message is read (consisting of a private FIFO name and a
command to execute), the server tries to open the indicated private FIFO for writing.
The attempt to open the private FIFO is done within a do-while loop. The O_NDELAY
flag is used to keep the open from generating a deadlock situation. Should the client,
for some reason, not open its end of the private FIFO for reading, the server would,
without the O_NDELAY flag specification, block at the open of the private FIFO for
writing. If the attempt to open the private FIFO fails, the server sleeps three seconds
and tries again. After five unsuccessful attempts, the server displays an informational
message to standard error and continues with its processing. If the private FIFO is
successfully opened, a popen is used to execute the command that was passed in the
message structure. The output of the command (which is obtained from the unnamed
pipe) is written to the private FIFO using a while loop. When all of the output of the
command has been written to the unnamed pipe, the unnamed pipe and private FIFO
Eiéure 5.9

are closed. A sample run of the client-server programs is shown in

Figure 5.9 Typical client-server output.

linux$ server & <-- ]
[1] 27107

$ client Q
cmd>ps

PIDTTY TIME CMD
14736 pts/3  00:00:00 csh
27107 pts/3  00:00:00 server
27108 pts/3  00:00:00 client
27109 pts/3  00:00:00 6

cmd>who

gray pts/3 Feb 27 11:28

cmd>quit Q
linux$ kill -9 27107

[1] Killed server

$



(1) Place the server in the background.

(2) Run a client process in the foreground.

(3) The server process must be removed by sending it a kill signal.

The server process is placed in the background. The client process is then run, and

shell commands (ps and who) are entered in response to the cmd> prompt. The output

of each command (after it is executed by the server process and its output sent back

to the client) is shown. The client process is terminated by entering the word quit. The

server process, which remains in the background even after the client has been
removed, is terminated by using the kil command.

5-7 EXERCISE

There are a number of additions that can be made to the client program to
make it more robust. For example, if the client exits due to the receipt of an
interrupt signal (CTRL+C), the private FIFO is not removed. Use a
signal-catching routine to correct this oversight. When the client process is
initiated, it will fail if the server process is not available. Correct this by
having the client start the server process if it is not active.

5-8 EXERCISE

As written, the server program will process each command request in turn.
Should one of these requests require a long time to execute, all other client
processes must wait to be serviced. Rewrite the server program so that
when the server process receives a message, it forks a child process to carry

out the task of executing the command and returning the output of the




command to the client process. ‘

4 Prewious | | Mext Il

(0]


file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/eBook.Prentice_Hall_PTR-Interprocess_Communications_in_Linux.ShareReactor.chm/23021533.htm

4 Previous | | MNext Irl

5.4 Summary

Pipes provide the user with a more reliable, synchronized means of interprocess
communication. Unnamed pipes can be used only with related processes. The popen
system call provides the user with an easy way to generate an unnamed pipe to
execute a shell command. Named pipes (FIFOs), which exist as actual directory
entries, can be shared by unrelated processes. The amount of data a pipe can contain
Is limited by the system. When a pipe is no longer associated with any processes, its
contents are flushed by the system. The read and write system calls, which can be used
with pipes, provide the user with an easy means of coordinating the flow of data in a
pipe. Care must be taken when using pipes to prevent deadlock situations. Deadlock
can occur when one process opens one end of a pipe for writing and another process
opens the other end of the samipe for writing. Each process in turn is waiting for

the other to complete its action.== Pipes can be used only by processes that are
running on the same platform. Unfortunately, pipes provide no easy way for a reading
process to determine who the writing process was. All processes involved with using

pipes must have forehand knowledge of their existence.

B! As the unnamed pipe generated by popen is done without the user's
direct use of the open system call, should the O_NDELAY or
O_NBLOCK flags need to be set, the fcntl system call must be used.
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5.5 Key Terms and Concepts

bzero library function
dup system call

dup2 system call
FIFO

memset library function
mkdir library function
mkfifo library function
mknod command
mknod system call
named pipe
O_NDELAY flag
O_NOBLOCK flag
pclose library function
pipe

pipe system call
PIPE_BUF

PIPE_SIZE
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popen 1/O function
private FIFO
public FIFO

read system call
tee command
unnamed pipe

write system call
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Chapter 6. Message Queues

4 Previous | | Mt Irl

o



4 Previous | | MNext Irl

6.1 Introduction

The designers of UNIX found the types of interprocess communications that could be
implemented using signals and pipes to be restrictive. To increase the flexibility and
range of interprocess communication, supplementary communication facilities were
added. These facilities, added with the release of System V in the 1970s, are grouped
under the heading IPC (Interprocess Communication). In brief, these facilities are

® Message queues— Information to be communicated is placed in a predefined
message structure. The process generating the message specifies its type and
places the message in a system-maintained message queue. Processes
accessing the message queue can use the message type to selectively read
messages of specific types in a first in first out (FIFO) manner. Message
gueues provide the user with a means of asynchronously multiplexing data
from multiple processes.

® Semaphores— Semaphores are system-implemented data structures used to
communicate small amounts of data between processes. Most often,
semaphores are used for process synchronization.

® Shared memory— Information is communicated by accessing shared process
data space. This is the fastest method of interprocess communication. Shared
memory allows participating processes to randomly access a shared memory
segment. Semaphores are often used to synchronize the access to the shared
memory segments.

All three of these facilities can be used by related and unrelated processes, but these
processes must be on the same system (machine).

Like a file, an IPC resource must be generated before it can be used. Each IPC
resource has a creator, owner, and access permissions. These attributes, established
when the IPC is created, can be modified using the proper system calls. At a system
level, information about the IPC facilities supported by the system can be obtained



with the ipcs command. For example, on our system the ipcs command produces the
following output shown in Fiéure 6.1.

[1] In the context of IPC facilities, the term resource indicates an
instance of the facility.

Figure 6.1 Some ipcs output.

linux$ ipcs

------ Shared Memory Segments ------
key shmid owner perms bytes nattch status Q
0x00000000 25198594 root 666 247264 3

------ Semaphore Arrays ------

key semid owner perms nsems status
0x00000000 65537 root 666 4
0x00000000 98306 root 666 16 Q
0x00000000 131075 root 666 16
0x00000000 163844 root 666 16

—————— Message Queues ------
key msqgid owner perms used-bytes messages [K-- 3

(1) One shared memory segment attached (shared) by three processes.
(2) Four sets of semaphores all owned by root.

(3) No message queues are currently allocated.

The ipcs utility supports a variety of options for specifying a specific resource and the
format of its output. The meaning of each is shown in m.

Additionally, -s, -g, or -m can be used to indicate semaphore, message queue, or
shared memory, and can be followed by -i and a valid decimal ID to display additional



information about a specific IPC resource ).

Table 6.1. ipcs Command Line Options.

Resource Specification Output Format
All (default) Creator
—a —C
Shared memory Limits
_m f—
Message queues Process ID
—-q —P
Semaphores Time
—s —t
Summary

Figure 6.2 Using ipcs to display the details on a specific resource.

linux$ ipcs -s -i 65537

Semaphore Array semid=65537

uid=0 gid=1002 cuid=0 cgid=1002 Q
mode=0666, access_perms=0666
nsems =4

otime = Wed Feb 27 23:00:00 2002
ctime = Fri Jan 4 13:18:00 2002
semnum value ncount zcount pid

0 1 0 0 0
1 1 0 0 20719
2 1 0 0 20797
3 1 0 0 0

(1) Specifics of the four-element semaphore.

The limits for each facility are established when the kernel is generated. The
command

linux$ /shin/sysctl -a



displays all the configurable kernel parameters. On our system, this command
generates a large amount of output. The IPC related information from this command is
as follows:

kernel.sem =250 32000 32 128
kernel. msgmnb = 16384

kernel. msgmni = 16

kernel.msgmax = 8192

kernel.shmmni = 4096

kernel.shmall = 2097152

kernel.shmmax = 33554432

A comparison of this output with that of the ipcs -I (limits) command easily establishes
the role of each value—for example, kernel.msgmni is the maximum number of
message queues systemwide.

IPC resources exist and maintain their contents even after the process that created
them has terminated. An IPC resource can be removed by its owner, using the
appropriate system call within a program or by using the system-level command ipcrm.
The message queue, shown in the output of the previous ipcs command, could be
removed by its owner issuing the command

linux$ ipcrm sem 65537

The sem command-line option tells ipcrm that a semaphore is to be removed, and the
argument 65537 is the ID number of the semaphore. As there are per-user and
systemwide limits to the number of IPC resources available, users should make a
conscientious effort to remove unneeded allocated IPCs. Note that as superuser, it is
unwise to capriciously remove root owned IPC resources.

2] Use shm to indicate a shared memory segment or msg for a message
queue.
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6.2 IPC System Calls: A Synopsis

A set of similar system calls are used to create an IPC resource and manipulate IPC

information.2! Due to their flexibility, the syntax for these calls is somewhat arcane
(the calls appear, like the camel, to have been designed by a committee). The System

V IPC calls are summarized in [Table 6.2.

B Note Linux also supports a nonstandard, nonportable system call
called ipc that can be used to manipulate IPC resources. As this is a
Linux-specific call, its use is best left to Linux system developers.

Table 6.2. Summary of the System V IPC Calls.

Message System Call Shared
Functionality Queue Semaphore Memory
Allocate an IPC resource; gain access to  Msgget Semget Shmget
an existing IPC resource.
Control an IPC resource: obtain/modify ~ msgctl Semctl Shmetl
status information, remove the resource.
IPC operations: send/receive msgsnd Shmat
messages,perform semaphore
ges.p P msgrcv Semop shmdt

operations, attach/free a shared memory
segment.

The get system caII (msgget, semget, and shmget) are used either to allocate a new
IPC resource (which generates its associated system IPC structure) or gain access to
an existing IPC. Each IPC has an owner and a creator, which under most
circumstances are usually one and the same. When a new resource is allocated, the
user must specify the access permissions for the IPC. Like the open system call, the
get system calls return an integer value called an IPC identifier, which is analogous to
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a file descriptor. The IPC identifier is used to reference the IPC. From a system
standpoint, the IPC identifier is an index into a system table containing IPC permission
structure information. The IPC permission structure is defined in <bits/ipc.h> that is
included by the header file <sys/ipc.h>. This structure is defined as

“ The term get (initalics) will be used to reference the group of system
calls.

struct ipc_perm {

__key t__ key; /* Key */

__uid_t uid; /* Owner's user ID. */
___gid_tgid; /* Owner's group ID. */
__uid_t cuid; /* Creator's user ID. */
__gid_t cgid,; /* Creator's group ID. */
unsigned short int mode; /* Access permission. */
unsigned short int __padil;

unsigned short int __seq; [* Sequence number. */

unsigned short int __pad2;
unsigned long int __unused1;
unsigned long int __unused?;

The type definitions for __uid_t, _ gid_t, and so on can be found in the header file
<sys/types.h>. In general, all programs that use the IPC facilities should include the
<sys/types.h> and <sys/ipc.h> files. As will be explained in the discussion of ctl system
calls, some members of the permission structure can be modified by the user.

There are two arguments common to each of the three get system calls. Each get
system call takes an argument of defined type _ key_t (of base type integer). This
argument, known as the key value, is used by the get system call to generate the IPC
identifier. There is a direct, one-to-one relationship between the IPC identifier returned
by the get system call and the key value. While the key can be generated in an arbitrary
manner, there is a library function called ftok that is commonly used to standardize key

production.= By calling ftok with the same arguments, unrelated processes can be

assured of producing the same key value and thus reference the same IPC resource.
The ftok function is summarized in .

B in all honesty, the ftok library function is superfluous, but is presented
for historical and continuity reasons. As long as processes that wish to
access a common IPC resource have a method to communicate the key



value for the IPC (such as in a common header file), ftok can be

avoided.
Table 6.3. Summary of the ftok Library Function.

Include <sysl/types.h> Manual 2
File(s) <sysfipc.h> Section
Summary key_t ftok ( char *pathname, char proj);

Success Failure Sets errno
Return Returns a key_t value for IPCget -1 As in stat system call

system call

The ftok function takes two arguments. The first, path, is a reference to an existing
accessible file. Often the value "." is used for this argument, since in most situations
the self-referential directory entry "." is always present, accessible, and not likely to be
subsequently deleted. The second argument for ftok, proj, is a single-character project
identifier most commonly represented as a literal. The value returned by a successful
call to ftok is of defined type key _t. ftok's underlying algorithm, which uses data returned
by the stat system call for the specified pathname as well as the proj argument value,
does not guarantee a unique key value will be returned. If ftok falils, it returns a —1 and
sets errno in @ manner similar to the stat system call (the stat system call is discussed in

, "File Information."

As demonstrated in Proéram 6.i|, the most significant byte of the value returned by ftok
Is the character proj value, which is passed as the second argument.

Program 6.1 Generating some key values with ftok.

File : p6.1.cxx
|

| Using ftok to generate key values

|

| #include <iostream>

+  #include <sys/types.h>

|  #include <sysl/ipc.h>

| using namespace std;

| int



| main( X

10 key t key;

for (chari="a'";i<="d"; ++i){

key = ftok(".", i);

cout << "proj =" <<i<<"key = [" << hex << key
<< "] MSB =" << char(key >> 24) << end|;

return O;

I
I
I
I
+ )
I
|}

shows the output of Proéram 6.ﬂ when run on a local 32-bit system.
Figure 6.3 Output of .

linux$ p6.1

proj = a key =[61153384] MSB = a Q
proj = b key = [62153384] MSB = b

proj = ¢ key =[63153384] MSB =c¢

proj = d key = [64153384] MSB =d

(1) The proj argument becomes the most significant byte of the value
returned by ftok.

6-1 EXERCISE

As shown in Pro;ram 6.3, the most significant byte offtok's returned key value
is the character value passed as the second argument i.e., the value
assigned to proj. The remaining parts of the key are obtained from
information returned by the stat system call (usingpathname as its argument).
What stat information is used byftok, and what isftok's underlying algorithm?

Write a short program that supports your answer.

The key value for the get system calls may also be set to the defined constant
IPC_PRIVATE. Beneath the covers, IPC_PRIVATE is defined as having a value of 0.
Note that regardless of its argument values, the ftok library function will not return a
value of 0. Specifying IPC_PRIVATE instructs the get system call to create an IPC
resource with a unique IPC identifier. Thus, no other process creating or attempting to



gain access to an IPC resource will receive this same IPC identifier.

An IPC resource created with IPC_PRIVATE is normally shared between related
processes (such as parent/child or child/child) or in client—server settings. In the
related process settings, the parent process creates the IPC resource. When is
performed, an exec, the associated IPC identifier is passed to the child process by way
of the environment or as a command-line parameter. In client—server relationships,
the server process usually creates the IPC using IPC_PRIVATE. The IPC identifier is
then made available to the client via a file. Note that in either scenario, the child/client
process would not specify IPC_PRIVATE when issuing its get system call to gain
access to the existing private resource. Finally, using IPC_PRIVATE does not prohibit
other processes from gaining access to the resource; it only makes it a bit more
difficult for a process to determine the identifier associated with the resource.

The second argument common to all of the IPC get system calls is the message flag.
The message flag, an integer value, is used to set the access permissions when the

IPC resource is created. The lower nine bits of the message flag argument define the

access permissions. [Table 6.4 summarizes the subsequent types of permissions

required for each of the IPC system calls= to perform their functions. The execute bit
Is not relevant for IPC facilities.

[6] The header files for each of the IPC facilities (i.e., <sys/msg.h>,
<sys/sem.h>, and <sys/shm.h>) contain defined constants for read/write
(access) permissions for the facility. As noted previously, using defined
constants does increase the portability of code. However, there is no
free lunch, as the programmer must often take the time to look up the
correct spelling of infrequently used defined constants.

Table 6.4. Required Permissions for IPC System Calls.

Permissions Message
Required Queues Semaphores Shared Memory
msgsnd place semop increase or decrease shmat to write to
message in the a semaphore value the shared

write (alter) gqueue memory segment




Permissions Message

Required Queues Semaphores Shared Memory
msgctl write out semctl set the value of one shmetl write out
modified IPC semaphore or a whole set; modified IPC
status information write out modified IPC status information

status information

msgrcv obtain semop block until a shmat read from
message from semaphore becomes 0 the shared
read queue memory segment

msgctl to retrieve  semctl to retrieve IPC status shmctl to retrieve
IPC status information IPC status
information information

In addition to setting access modes, there are two defined constants, found in
<sysl/ipc.h>, that can be ORed with the access permission value(s) to modify the actions
taken when the IPC is created. The constant IPC_CREAT directs the get system call
to create an IPC resource if one does not presently exist. When IPC_CREAT is
specified, if the resource is already present and it was not created using
IPC_PRIVATE, its IPC identifier is returned. In conjunction with IPC_CREAT, the
creator may also specify IPC_EXCL. Using these two constants together (i.e.,
IPC_CREAT | IPC_EXCL) causes the get system call to act in a no clobber manner.
That is, should there already be an IPC present for the specified key value, the get
system call will fail; otherwise, the resource is created. Using this technique, a process
can be assured that it is the creator of the IPC resource and is not gaining access to a
previously created IPC. In this context, specifying IPC_EXCL by itself has no
meaning.

The ctl system calls (msgctl, semctl, and shmctl) act upon the information in the system
IPC permission structure described previously. All of these system calls require an
IPC identifier and an integer command value to stipulate their action. The values the
command may take are represented by the following defined constants (found in the
header file <sys/ipc.h>):

[ J
IPC_STAT— Return the referenced IPC resource status information. When

specifying IPC_STAT, the ctl system call must pass a pointer to an allocated



structure of the appropriate type to store the returned information.

® |PC_SET— Change the owner, group, or mode for the IPC resource. In
addition, as with IPC_STAT, a pointer to a structure of the appropriate type
(with the changed member information) must be passed.

® |PC_RMID— Destroy the contents of the IPC resource and remove it from the
system.

A process can specify IPC_SET or IPC_RMID only if it is the owner or creator of the
IPC (or if it has superuser privileges). Some of the ctl system calls have additional
functionality, which will be presented in later sections.

The remaining IPC system calls are used for IPC operations. The msgsnd and msgrcv
calls are used to send and receive a message from a message queue. By default, the
system blocks on an msgsnd if a message queue is full, or on an msgrev if the message
gueue is empty. The process will remain blocked until the indicated operation is
successful, a signal is received, or the IPC resource is removed. A process can
specify to not block by ORing in the IPC_NOWAIT flag with the specified operation
flag. The semop system call performs a variety of operations on semaphores (such as
setting and testing). Again, the default is to block when attempting to decrement a
semaphore that is currently at O or if the process is waiting for a semaphore to
become 0. The shmat and shmdt system calls are used with shared memory to
map/attach and unmap/detach shared memory segments. These calls do not block.

For some reason known only to those who authored the documentation, the msgsnd
and msgrcv manual pages (found in Section 2) contain a reference to msgop. However,
there is no system call msgop. Likewise, the shmat and shmdt manual pages make
reference to shmop, which also is not a system call. The manual page for semop only
makes reference to semop (which is indeed a system call). One must only conclude
that the initial intent was to group all of these calls under the general heading of IPC
operations.

We address each set of IPC system calls in detail as we cover message queues,
semaphores, and shared memory.
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6.3 Creating a Message Queue

A message queue is created using the msgget system call 1 :

Table 6.5. Summary of the msgget System Call.

|nclude <SyS/typ65h> Manual
File(s) <sysl/ipc.h> Section 2
<sys/msg.h>
Summary int msgget (key_t key,int msgflg);
Success Failure Sets errno
Return Nonnegative message queue -1 Yes

identifierassociated with key

If the msgget system call is successful, a nonnegative integer is returned. This value is
the message queue identifier and can be used in subsequent calls to reference the
message queue. If the msgget system call fails, the value —1 is returned and the global
variable errno is set appropriately to indicate the error (see ). The value for
the argument key can be specified directly by the user or generated using the ftok
library function (as covered in the previous discussion). The value assigned to key is
used by the operating system to produce a unique message queue identifier. The
low-order bits of the msgfly argument are used to determine the access permissions for
the message queue. Additional flags (e.g., IPC_CREAT, IPC_EXCL) may be Ored
with the permission value to indicate special creation conditions.

A new message queue is created if the defined constant IPC_PRIVATE is used as the

key argument or if the IPC_CREAT flag is ORed with the access permissions and no
previously existing message queue is associated with the key value. If IPC_CREAT is

specified (without IPC_EXCL) and the message queue already exists, msgget will not

fail but will return the message queue identifier that is associated with the key value
I-able 6.6).



Table 6.6. msgget Error Messages.

# Constant perror Message Explanation
2 EOENT No such file or  Message queue identifier does not exist for this
directory key and IPC_CREAT was not set.

12 ENOMEM Cannot allocate Insufficient system memory to allocate the

memory message queue.

13 EACCES Permission Message queue identifier exits for this key, but

denied requested operation is not allowed by current
access permissions.

17 EEXIST  File exists Message queue identifier exists for this key, but
the flags IPC_CREAT and IPC_EXCL are both
set.

28 ENOSPC No space left on System imposed limit (MSGMNI) for the number

device of message queues has been reached.

43 EIDRM Identifier Specified message queue is marked for removal.

removed

Proéram 6.2 generates five message queues with read/write access, uses the ipcs

command (via a pipe) to display message queue status, and then removes the

message queues.

Program 6.2 Generating message queues.

File
I

I
I
I
+

I
I
I
I
10

. p6.2.cxx

[* Message queue generation
*/
#define _GNU_SOURCE
#include <cstdio>

#include <unistd.h>
#include <linux/limits.h>
#include <sys/types.h>
#include <sysl/ipc.h>
#include <sys/msg.h>

using namespace std;



| constint MAX=5;

| int Q

| main(){

| FILE *fin;

+ char buffer[PIPE_BUF], proj = 'A";

| int i, n, mid[MAX];

| key tkey;

| for (i = 0; i < MAX; ++i, ++proj) {

| key = ftok(".", proj);

20 if ((mid[i] = msgget(key, IPC_CREAT | 0660)) == -1) {
perror("Queue create™;
return 1,

}
}

I
I
I
I
+ fin = popen(“ipcs”, "r"); E--2
I
I
I
I

while ((n = read(fileno(fin), buffer, PIPE_BUF)) > 0)
write(fileno(stdout), buffer, n);

pclose(fin);

for (i=0; i < MAX; ++i) K-- 3
30 msgctl(mid[i], IPC_RMID, (struct msqid_ds *) 0);
| return O;
|}

(1) Create five message queues.

(2) Use a named pipe to execute the ipcs command.

(3) Remove the five message queues.

When run on our system, this program produces the output in Eiéure 6.4, indicating
that five message queues have been generated.

Figure 6.4 Output of .

linux$ p6.2



key

shmid owner perms bytes nattch status

0x00000000 25198594 root 666 247264 3

------ Semaphore Arrays ------

key

semid owner perms nsems status

0x00000000 65537 root 666 4

0x00000000 98306 root 666 16
0x00000000 131075 root 666 16
0x00000000 163844 root 666 16

------ Message Queues ------

key msqgid owner perms used-bytes messages
0x41153384 2260992 gray 660 0 0
0x42153384 2293761 gray 660 0

0x43153384 2326530 gray 660 0 0
0x44153384 2359299 gray 660 0 0
0x45153384 2392068 gray 660 0 0

Run

6-2 EXERCISE

Proéram 6.2 several times in rapid succession. Look at the message

qgueue identifiers that are produced. What appears to be the numbering
scheme the system is using? Hint: Look in the header file<linux/msg.h>. Can
you find any rationale for this approach? Now add the statement sleep(5);
after the statement pclose(fin); on line 28. Recompile the program and invoke
the program twice, placing it in the background each time. Assuming the
program is still called p6.2, this can be accomplished by

linux$ p6.2 & p6.2 &

Count the number of message queues generated and explain why there are
not 10 present.

When a message queue is created, a system message-queue data structure called
msqgid_ds iS generated. This structure, maintained by the system, is defined in the
system-dependent header file <bits/msqg.h>, which in turn is included by the header file

<sys/msg.h>. The msqid_ds structure for Linux is defined as

struct msqid_ds {
struct ipc_perm msg_perm,; [* structure describing operation




permission */
__time_t msg_stime; * time of last msgsnd command */
unsigned long int __unused1,;
__time_t msg_rtime; /* time of last msgrcv command */
unsigned long int __unused?;
__time_t msg_ctime; /* time of last change */
unsigned long int ___unused3;
unsigned long int __msg_cbytes; /* current number of bytes on queue */

msggnum_t msg_gnum; /* number of messages currently on queue */
msglen_t msg_qgbytes; /* max number of bytes allowed on queue */
__pid_t msg_lIspid; * pid of last msgsnd() */

__pid_t msg_lIrpid; /* pid of last msgrcv() */

unsigned long int ___unused4;
unsigned long int __unused5;

5

However, conceptually (and in keeping with its original definition), the msqid_ds
structure is considered to be as found in the header file <linux/msg.h>:

struct msqid_ds {
struct ipc_perm msg_perm;
struct msg *msg_first; [* first message on queue, unused */
struct msg *msg_last; /* last message in queue, unused */
__kernel_time_t msg_stime;  /* last msgsnd time */
__kernel_time_t msg_rtime;  /* last msgrcv time */
__kernel_time_tmsg_ctime;  /* last change time */
unsigned long msg_lIcbytes; /* Reuse junk fields for 32 bit */
unsigned long msg_lgbytes;  /* ditto */
unsigned short msg_cbytes;  /* current # of bytes on queue */
unsigned short msg_gnum; /* number of messages in queue */
unsigned short msg_gbytes;  /* max number of bytes on queue */
__kernel_ipc_pid_t msg_Ispid; /* pid of last msgsnd */
__kernel_ipc_pid_t msg_lIrpid; /* last receive pid */

h

But, if we investigate even further, we find that what is actually implemented by the
kernel is different still. A check of the kernel source code msg.c (usually found in
lusr/src/linux-XX.XX.XX/ipc where XX are the version numbers for the particular operating
system) for message queue implementation defines a kernel structure called

msg_queue:

struct msg_queue {
struct kern_ipc_perm g_perm;
time_t gq_stime; /* last msgsnd time */



time_t q_rtime; /* last msgrcv time */

time_t q_ctime; /* last change time */

unsigned long g_cbytes; [* current number of bytes on queue */
unsigned long g_gnum,; /* number of messages in queue */
unsigned long q_gbytes; /* max number of bytes on queue */
pid_t g_lspid; /* pid of last msgsnd */

pid_t q_lIrpid; [* last receive pid */

struct list_head q_messages;
struct list_head g_receivers;
struct list_head q_senders;

While this all may seem a bit confusing at first, there is some commonality (e.g., the
permission structure and reference to the message queue list). The discussion that
follows is based on the conceptual definition as found in the header file <linux/msg.h>.

The first member of the msqid_ds structure is the IPC permission structure discussed
earlier. When the resource is allocated, the system sets, respectively, the
msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid members to the effective
user and group ID of the invoking process. The low-order nine bits of msgfig (taken
from the msgget call) are used to set the value in msg_perm.mode.

Next, in the msqid_ds structure are two pointers to the first and last messages in the
queue. From a conceptual standpoint, the individual messages in the queue are
structures of type msg, defined as

struct msg {
struct msg  *msg_next;  /* ptr to next message on q */

long msg_type; /* message type */
ushort msg_ts; /* message text size */
short msg_spot; [* address of text message */

Individual messages are placed in a linked list by the system. Each msg structure
contains four members: a reference to the next msg in the list, a long integer,
user-assigned value denoting the message type, a short integer value indicating the
size in bytes of the message (maximum 8192 bytes), and a reference to the actual
message. When the message queue is created the system sets the msqid_ds members
msg_gnum, msg_lspid, msg_lIrpid, msg_stime, and msg_rtime to 0. The member msg_ctime is
set to the current time, and msg_gbytes is set to the system limit. Thusj conce?tually,

we can envision a message queue with N items as being similar to Eigure 6.5.



Figure 6.5. A message queue with N items.
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6.4 Message Queue Control

The ownership and access permissions, established when the message queue was
created, can be examined and modified using the msgctl system call (seei: able 6.7)).

R

The msgctl system call references the message queue indicated by the msgid argument.
The value of the cmd argument is used to indicate the action that msgctl should take.
The following defined constants/actions can be specified:

Table 6.7. Summary of the msgget System Call.

Include File(s) <sys/types.h> Manual Section
<sysl/ipc.h> 2

<sys/msg.h>

Summary int msgget (int msqid,int cmd, struct
msqid_ds *buf);

Success Failure Sets errno

Return 0 -1 Yes

® |PC_STAT— Return the current values for each member of the msqid_ds data
structure (remember that this also contains the permission structure). When
using the IPC_STAT flag, the user must provide a location to store the returned
information. The address of the storage location for the information is passed
as the third argument to the msgctl system call. Of course, the calling process
must have read-access privileges for the message queue.

® |PC_SET— With this flag, the user (creator, owner, or superuser) can modify a
limited number of msqid_ds structure member values. The following members
can be modified:

msg_perm.uid, msg_perm.gid, msg_perm.mode, and msg_qgbytes
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Similar to IPC_STAT, the user must first generate a structure of type
msqid_ds, modify the appropriate structure members, and then call msgctl with
the IPC_SET flag and pass the address of the modified structure. A successful
update will also update the msg_ctime member.

® |PC_RMID— Immediately removes all associated message queue structures.
When specifying IPC_RMID, the third argument to msgctl is not considered and
thus may be left out. However, wanting to leave nothing to chance, most
programmers enter the third argument as a NULL value cast to be a pointer to
an msaqid_ds structure.

If the msgctl system call fails, it returns a -1 and sets errno; otherwise, it returns a O

ndicating success. The value that errno may be assigned when msgctl fails is given in
Table 6.3.

Proéram 6.3 creates a message queue, uses the msgctl system call to obtain the
message queue structure information, and displays pertinent data to the screen.



Table 6.8. msgctl Error Messages.

# Constant perror Message Explanation

1 EPERM Operation not
® c¢md is IPC_RMID and the calling

process permitted is not the owner or
superuser.

® c¢mdis IPC_SET and non-superuser
process is attempting to increase
msg_gbytes beyond the system limit

(MSGMNB).
13 EACCES Permission cmd is IPC_STAT, but operation is forbidden
denied by the current access permissions (i.e., lacks

read access).

14 EFAULT Bad address cmd is setto IPC_SET or IPC_STAT, butouf
references a bad address.

22 EINVAL Invalid argument
® Message queue identifier is invalid.
® cmd is invalid.
® cmdis IPC_SET, butmsg_perm.uid or
msg_perm.gid value is invalid.
43 EIDRM Identifier The message queue was removed.
removed

75 EOVERFLOW Valuetoolarge cmdis IPC_STAT and location referenced by
for defined data  buf is too small to hold theuid or gid values.

type

Program 6.3 Using msgctl.

File : p6.3.cxx
|/~



| Displaying message queue status information
|

| #include <iostream>

+ #include <cstdio>

| #include <sys/types.h>

| #include <sys/ipc.h>

| #include <sys/msg.h>

| using namespace std;

if ((mid = msgget(key, IPC_CREAT | 0660)) == -1) {
perror("Queue create");
return 1,

20 }

| msgcti(mid, IPC_STAT, &buf);

| cout << "Message Queue *Permission* Structure Information" << endl;
| cout<<"Owner'suserID \t"<<buf.msg perm.uid << endl;

| cout << "Owner's group ID \t" << buf.msg_perm.gid << endl;

+ cout << "Creator's user ID \t" << buf.msg_perm.cuid << endl;
I

I

I

I

N\
1
I
N

10 int

| main(){

| int mid;

| key_t key;

|  struct msqid_ds buf; <-- 1
. (S
| key = ftok(".", 'z");

I

I

I

cout << "Creator's group ID\t" << buf.msg_perm.cgid << endl;
cout << "Access mode in HEX\t" << hex << buf.msg_perm.mode << endl;
cout << "\nAdditional Selected Message Queue Structure Information\n";
cout << "Current # of bytes on queue \t" << dec
30 << buf.__msg_chytes << endl;
| cout << "Current # of messages on queue\t" << buf.msg_gnum << endl;
| cout << "Maximum # of bytes on queue \t" << buf.msg_gbytes << endl;
| msgcti(mid, IPC_RMID, (struct msqid_ds *) 0);
| returnO;
+

(1) The structure buf will store the returned information on the message
queue.

(2) Generate the message queue.

Run locally, Program 6.3 produces the output shown in .



Figure 6.6 Output of .

linux$ p6.3
Message Queue *Permission* Structure Information
Owner's user ID 500

Owner's group ID 1000
Creator's user ID 500
Creator's group ID 1000
Access mode in HEX  1b0

Additional Selected Message Queue Structure Information
Current # of bytes on queue 0

Current # of messages on queue 0

Maximum # of bytes on queue 16384

As shown, when first generated, the creator of the message queue and the owner are
the same. If we convert the displayed hexadecimal access mode value to binary:

1B0; = 110 110 000,

and examine the lower nine bits of the binary number, we see the access permissions
are indeed 0660 as we specified. The value for the maximum number of bytes on the
message queue, shown here as 16384, is one of several system-imposed message
queue limits. Additional message queue limit information can be found in the header

file <linux/msg.h>.

6-3 EXERCISE

It is not possible to create and initialize message queue members
atomically. Is this a design flaw or a feature? Support your answer with an

example.
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6.5 Message Queue Operations

Message queues are used to send and receive messages. An actual message, from
the system's standpoint, is defined by the msgbuf structure found in the header file
<sys/msg.h> as

struct msgbuf {
long int mtype; * type of received/sent message */
char mtext[1]; [* text of the message */

h

This structure is used as a template for the messages to be sent to and received from
the message queue.

The first member of the msgbuf structure is the message type. The message type,
mtype, IS a long integer value and is normally greater than 0. The message type,
generated by the process that originates the message, is used to indicate the kind
(category) of the message. The type value is used by the msgrcv system call to
selectively retrieve messages falling within certain boundary conditions. Messages are
placed in the message queue in the order they are sent and not grouped by their
message type.

Following mtype is the reference to the body of the message. As shown, this is defined
as a character array with one element: mtext[1]. In actuality, any valid structure
member(s), character arrays or otherwise, that make up a message can be placed
after the requisite mtype entry. The system assumes a valid message always consists
of a long integer followed by a series of O or more bytes (the organization of the data
bytes is the programmer's prerogative). It is the address of the first structure member

after mtype that the system uses as its reference when manipulating the msg structure
(discussed in [Section 6.3). Therefore, users can generate their own message

structures to be placed in the message queue so long as the first member (on most
systems this is the first four bytes) is occupied by a long integer.

Messages are placed in the message queue (sent) using the system call msgsnd



(|I able 6.9).

Table 6.9. Summary of the msggnd System Call.

Include File(s) <sys/types.h> Manual Section 2
<syslipc.h>

<sys/msg.h>

Summary int msgsnd (int msgqid, struct msgbuf *msgp,
size_tmsgsz, int msgflg);

Success Failure Sets errno

Return 0 -1 Yes

The msgsnd system call requires four arguments. The first argument, msqid, is a valid
message queue identifier returned from a prior msgget system call. The second
argument, msgp, iS a pointer to the message to be sent. As noted, the message is a
structure with the first member being of the type long integer. The message structure
must be allocated (and hopefully initialized) prior to its being sent. The third argument,
msgsz, IS the size (number of bytes) of the message to be sent. The size of the
message is the amount of storage allocated for the message structure minus the
storage used for the message type (stored as a long integer). The message size can
be from 0O to the system-imposed limit. The fourth argument to msgsnd, msgflg, is used
to indicate what action should be taken if system limits for the message queue (e.g.,
the limit for the number of bytes in a message queue) have been reached. The msgfig
can be set to IPC_NOWAIT or to 0. If set to IPC_NOWAIT and a system limit has
been reached, msgsnd will not send the message and will return to the calling process
immediately with errno set to EAGAIN. If msgflg is set to 0, msgsnd will block until the limit
IS no longer at system maximum (at which time the message is sent), the message
gueue is removed, or the calling process catches a signal. The system uses the msgsz
argument to msgsnd as its msg.msg_ts value, the msgbuf.mtype value as its msg.msg_type,
and the msgbuf.mtext reference as msg.msg_spot.

If msgsnd is successful, it returns a value of 0; otherwise, it returns a value of -1 and

sets errno to indicate the nature of the error. See [Table 6.10.



Table 6.10. msgsnd Error Messages.

# Constant perror Message Explanation
4 EINTR Interrupted system  When sleeping on a full message queue, the
call process received an interrupt.

11 EAGAIN Resource Message cannot be sent (msg_gbyte limit
temporarily exceeded) and IPC_NOWAIT was specified.
unavailable

12 ENOMEM Cannot allocate Insufficient system memory to copy message.
memory

13 EACCES Permission denied  Calling process lacks write access for the

message queue.

14 EFAULT Bad address msgp references a bad address.

22 EINVAL Invalid argument

® Message queue identifier is invalid.

® mtype iS honpositive.

® msgsz is less than O or greater than
system limit.

43 EIDRM Identifier removed Message queue has been removed.

Messages are retrieved from the message queue using the system call msgrev,

summarized in [Table 6.11|.



Table 6.11. Summary of the msgrcv System Call.

Include File(s) <sys/types.h> Manual Section
<syslipc.h> 2

<sys/msg.h>
Summary ssize_t msgrev (int msqid, struct msgbuf *msgp,
size_t msgsz, long msgtyp, int
msgflg);

Success Failure Sets errno

Return Number of bytes actually received -1 Yes

The msgrev system call takes five arguments. The first, as for the msgsnd system call, is
the message queue identifier. The second, msgp, is a pointer to the location (structure)
where the received message will be placed. The receiving location should have as its
first field a long integer to accommodate the message type information. The third
argument, msgsz, is the maximum size of the message in bytes. This value should be
equal to the longest message to be received. Truncation of the message will occur if
the size value is incorrectly specified, and depending upon the value for msgflg (see
following section), an error may be generated. The fourth argument, msgtyp, is the type
of the message to be retrieved. The message type information is interpreted by the

msgrcv System call, as shown in[Table 6.12.

Table 6.12. Actions for msgrcv as Indicated by msgtyp Values.

When
msgtyp value
is msgrcv takes this action
0 Retrieve the first message ofany msgtyp.
>0 Retrieve the first message equal to msgtyp if MSG_EXCEPT is not

specified. If MSG_EXCEPT is specified, the first message that is not
equal to the msgtyp.

<0 Retrieve the first message of the lowest type less than or equal to
absolutevalue of msgtyp.

Using the type argument judiciously, a user can, with minimal effort, implement a



priority-based messaging arrangement whereby the message type indicates its
priority.

The fifth and final argument, msgflg, is used to indicate what actions should be taken if
a given message type is not in the message queue, or if the message to be retrieved
is larger in size than the number of bytes indicated by msgsz. There are three
predefined values that msgfig can take. IPC_NOWAIT is used to indicate to msgrev that
it should not block if the requested message type is not in the message queue. If
MSG_EXCEPT is specified and the msgtyp value is greater than 0, msgrcv returns the
first message not equal to msgtyp. MSG_NOERROR directs msgrev to silently truncate
messages to msgsz bytes if they are found to be too long. If MSG_NOERROR is not
specified and msgrcv receives a message that is too long, it returns a -1 and sets the
value in errno to E2BIG to indicate the error. In don't-care situations, the value for

msgflg can be set to 0. When msarcv is successful, it returns the number of bytes
actually retrieved. See [Table 6.13.

Table 6.13. msgrcv Error Messages.

# Constant perror Message Explanation

4 EINTR Interrupted system When sleeping on a full message queue, the
call process received an interrupt.

7 E2BIG Argument listtoo  mtext is greater thanmsgsz and
long MSG_NOERROR is not specified.

13 EACCES Permission denied Attempt made to read a message, but the
calling process does not have permission.

14 EFAULT Bad address msgp references a bad address.

22 EINVAL Invalid argument
® Message queue identifier is invalid.

® msgsz is less than O or greater than the
system limit.

42 ENOMSG No message of Message queue does not have a message of
desired type type msgtyp, and IPC_NOWAIT is set.




# Constant perror Message Explanation

43 EIDRM Identifier removed Message queue has been removed.

4 Frevious | | Mext I*l

(0]



4 FPrevious | | Meaxt Il

6.6 A Client—Server Message Queue Example

At this point we can use what we have learned about message queues to write a pair
of programs that establish a client—server relationship and use message queues for
bidirectional interprocess communication. The client process obtains input from the
keyboard and sends it via a message queue to the server. The server reads the
message from the queue, manipulates the message by converting all alphabetic text
in the message to uppercase, and places the message back in the queue for the client
to read. By mutual agreement, the client process identifies messages designated for
the server by placing the value 1 in the message type member of the message

structure.H n addition, the client includes its process ID (PID) number in the
message. The server uses the PID number of the client to identify messages it has
processed and placed back in the queue. Labeling the processed messages in this
manner allows the server to handle messages from multiple clients.

"I This works nicely, as in multiple client situations, because not every
client has initial access to the PID of the server.

For example, if the client process with a PID of 17 placed each word in the statement
"The anticipation is greater than the realization.”" into_separate messages, the current state of
Ei;ure 6.7

the message queue would be as depicted in . As shown, the messages

placed in the queue by the client (PID 17) are labeled as a message type of 1 (for the
server).

Figure 6.7. Conceptual view of message queue after the client has sent all seven messages
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When the server reads the queue, it obtains the first message of type 1. In our

example this is the message containing the word The. The server processes the
message, changes the message type to that of the client, and puts t

he message back
in Eiqure 6.9

on the queue. This leaves the message queue in the state shown in

Figure 6.8. Conceptual view of message queue after the first client message has been processed.
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To accomplish this task, both the client and server programs need to access common
include files and data structures. These items are placed in a local header file called

local.h, whose contents are shown in

igure 6.9. An examination of this file reveals that



the messages placed in the queue consist of a structure with three members. The first
member (which must be of type long if things are to work correctly) acts as the
message type (mtype) member. Here we call this member msg_to, since it contains a
value that indicates the process to whom we are addressing the message. We use the
value of 1 to designate a message for the server process, and other positive PID
values to indicate a message for a client. The second member of the message
structure, called msg_fm (which is also a long integer), contains the ID of the process
that is sending the message. In the program example, if the message is sent by a
client, this value will be the client PID. If the message is sent by the server, this value
will be set to 1. The third member of the message structure is an array of a fixed size
that will contain the text of the actual message.

Figure 6.9 Local header file for message queue example.

File : local.h
|/

| Common header file for 2nd Message Queue Example

|

| #define _GNU_SOURCE

+ #include <cstdio>

| #include <cstring>

| #include <sys/types.h>

| #include <sys/ipc.h>

| #include <sys/msg.h>

10 #include <unistd.h>

| constchar SEED ='M; /I Common seed for ftok

| constlong int SERVER=1L,; I/l Message type for server

| typedef struct {

| long int msg_to; /l Message in queue for this type

+ long int msg_fm; /I Placed in the queue by this type
| char buffer[BUFSIZ]; /I The actual message

| }IMESSAGE;

I

using namespace std;

The client program, shown as Program 6.4, begins by obtaining its PID. This value is
used later to mark messages sent to the server, identifying them as coming from a
particular client process. The ftok library function is used to produce a key. When the
client process is invoked, we want it to create the message queue if one does not
already exist. Further, if the server process is not present, we want the client to start it.
We will assume that if the message queue is not present, the server process is not
present as well. To accomplish this the initial call to msgget, mid=msgget(key, 0) in line



19, is tested to determine if the call has failed. If the message queue is not found (the
call fails), the message queue is created by the second call to msgget. If this occurs,
the client process forks a child process and overlays it with a call to exec to run the
server process. The server is passed the message queue identifier via the command
line. As all command-line arguments are strings, the sprintf string function is used to
put the message queue identifier in the correct format.

Once the message queue is created, the client program enters an endless loop,
prompting for user input, placing the input in the message queue for the server to
process, retrieving the processed input, and displaying the results to standard output.
If the user enters a message of 0 bytes (i.e., enters CTRL+D from the keyboard), the
client exits its loop and sends the server a special 0-byte-length message (see line 47)
indicating it is done.

Program 6.4 The client.

File : client.cxx
|/
| CLIENT ... sends messages to the server
|
|  #include "local.h"
+ #include <cstdio>
| using namespace std;
|
I
I

int
main( ){
key t key;
10 pid_t cli_pid;
int mid, n;

I

| MESSAGE msg;

| static char m_key[10];

| cli_pid = getpid();

+ if (key = ftok(".", SEED)) ==-1) { Q
| perror(“Client: key generation™);

| return 1;

|}

| if ((mid=msgget(key, 0)) ==-1){ E-24
20 mid = msgget(key,IPC_CREAT | 0660);
| switch (fork()) {

| case -1:

| perror("Client: fork™);
| return 2;

+ case O:




sprintf(m_key, "%d", mid); <-- 3

execlp("./server", "server", m_key, "&", 0);
perror("Client: exec");

return 3;
30 }
}
while (1) {
msg.msg_to = SERVER;
msg.msg_fm = cli_pid; £-4

memset(msg.buffer, 0x0, BUFSIZ);
if ( (n=read(fileno(stdin), msg.buffer, BUFSIZ)) ==0)
break;
n += sizeof(msg.msg_fm); Q
40 if (msgsnd(mid, &msg, n, 0) ==-1) {
perror("Client: msgsend");

I
I
I
I
+ write(fileno(stdout), "cmd> ", 6);
I
I
I
I

I

| return 4;

I }

| if( (n=msgrcv(mid, &msg, BUFSIZ, cli ﬁO)) 1=-1)
+ write(fileno(stdout), msg.buffer, n); L

|}

| msgsnd(mid, &msg, 0, 0);

| return O;

I

}

(1) Generate a key for the message queue.

(2) If the message queue is not present, create the queue.

(3) Turn message queue ID into a string to pass to the server via the
command line.

(4) Label message as to receiving and originating process.



(5) The message size is the size of the second member (the first is
assumed) of the structure plus the number of bytes in the message.

(6) Server will pause, waiting for messages to be added to the message
gueue. Once a message is retrieved, it is written to standard output.

The server process (shown as Program 6.5) begins by checking the number of

command-line arguments. If three command-line arguments are not found, an error
message is generated and the server program exits. Otherwise, the contents of argv[1]
are converted to an integer value to be used as the message queue identifier. The
server then enters into a loop. It first attempts to receive a message of type SERVER
(1) from the queue. If the number of bytes returned by msgrev is 0, the server assumes
that the client process is done. In this case, the loop is exited and the server removes
the message queue with a msgctl system call (line 35) and exits. However, if a
message is successfully retrieved from the message queue, it is processed (in the
function process_msg) and placed back on the queue so the client process can retrieve
it.

Program 6.5 The server.

File : server.cxx
|
| SERVER-receives messages from clients
|
| #include "local.h"
+  #include <iostream>
| #include <cstdio>
| #include <ctype.h>
| #include <stdlib.h>
| using namespace std;
10 int
| main(int argc, char *argv[ ]) {
| int  mid, n;
| MESSAGE msg;
| void process_msg(char *, int); <-- 1
+ if (argc 1= 3) {
I
I
I

cerr << "Usage: " << argv[0] << " msq_id &" << endl;
return 1;

}



I
20

I
I
I
I
+
I
I
I
I
30
I
I
I
I
+
I
I
I
I
40

I
I
I
I
+
I

mid = atoi(argv[1]);
while (1) {
memset( msg.buffer, 0x0, BUFSIZ ); K-- 2
if ((n=msgrcv(mid, &msg, BUFSIZ, SERVER, 0)) ==-1) {
perror("Server: msgrcv');
return 2;

} else if (n == 0) break; -3
process_msg(msg.buffer, strlen(msg.buffer));
msg.msg_to = msg.msg_fm;
msg.msg_fm = SERVER,;
n += sizeof(msg.msg_fm);

if (msgsnd(mid, &msg, n, 0) ==-1){ k-4
perror("Server: msgsnd");
return 3;
}
}
msgctl(mid, IPC_RMID, (struct msqid_ds *) 0); @
exit(0);

/*

Convert lowercase alphabetics to uppercase
*/

void
process_msg(char *b, int len){

for (inti=0;i<len; ++i)
if (isalpha(*(b + i)))
*(b + i) = toupper(*(b + i));

(1) Check number of command-line arguments.

(2) Retrieve message from queue; wait if no messages are present.

(3) If a zero-length message, exit the loop.

(4) Reassign the to and from fields for the message. Process the



message and put it back in the message queue.

(5) Remove the message queue.

Entering the name of the client program on the command line executes the program.
The client creates the message queue and invokes the server process (which must
reside locally). A prompt is placed on the screen, requesting input. Each time the user
enters a string of characters and presses return, the client places the input in the
message queue for processing. After the message has been processed, the client
retrieves the message from the message queue and displays it to the screen. Entering
CTRL+D from the keyboard terminates the client process. As implemented, multiple
copies of the client process can run/communicate with the server at the same time.
One way to try this is to open multiple windows and run multiple copies of the client.
An alternate approach is to place the executable version of the client and server
programs in /tmp (be sure to change the permissions so that all users have access to
them). Then cd to /tmp and run the client program. Ask another user to do the same
(again, remember this is all done on the same machine). Each of you should be able
to run the client program and receive processing service. In either scenario, just one
message queue will be generated.

6-4 EXERCISE

As written, the server program removes the message queue when any client
sends a message of length 0. Modify the server program so that it only
removes the message queue after all client processes are done with it. One
approach might be for the server to keep track of the client processes using
the message queue and exit only when the last one sends a message of
length 0.
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6.7 Message Queue Class

As the functionality of and syntax for message queues is somewhat complex, they are
ideal candidates for incorporation into a C++ class. A message queue class would
define the relationships between message queue data and the functions (methods)
that manipulate this data. A declaration of a simplified message queue class called

Message_que iS shown in .

Figure 6.10 Header file for a basic message queue class.

File : Message_que.h
|
| A VERY simplified message queue class for use in a std UNIX
| environment. See the text for instructions on how to use
| this class. Copyright (c) 2002 J. S. Gray
+
I
I
I
I

Exit codes for class operations:
1 - Unable to create queue 2 - Cannot access queue
3 - Enque has failed 4 - Deque has failed
10 5 - Unable to remove queue
*/

I

| #ifndef Message_que_h

| #define Message _que_h

| #define _GNU_SOURCE

+  #include <iostream>

| #include <cstring>

| #include <sys/types.h>

| #include <sysl/ipc.h>

| #include <sys/msg.h>

20 #include <stdlib.h>
#include <unistd.h>

class Message_que {

public:
void Remove(); /I Remove the queue

I
I
I
I
+ Message_que (const char ='M’); // Constructor
I
I

void Enque( void *, int); /l Place a message in the queue



| int Deque( void *, int, int); // Obtain a message from queue

| bool Exist( const char ='M"); // True if the queue exists

30 void Create( ); /I Create the queue

| void Acquire( ); /I Acquire access to the queue
| private:

| int  msqid; /I 1D of message queue

| key t ipckey; /I Key from ftok

+ %

| #endif

As defined, the Message_que class has seven public methods and three private data

members. The functionality of each method is shown in[Table 6.14,.

The C++ code that implements the message queue class is found in the program file

Message que.cxx

Program 6.5). As shown, the code is bare bones—little is done to

handle errors, and only basic message queue functionality is addressed.

Table 6.14. Message_que Class Methods.

Method
name

Explanation

Message_que

Remove

Enque

Deque

Exist

Create

This is the class constructor. This method takes one argument, which,
if specified, defaults to the value M. The constructor generates the
message queue ID.

This method removes the message queue from the system.

Enque is used to add a message to the message queue. This method
is passed a reference to the message and the message size (in
bytes).

The Deque method removes a single message from the message
gueue. This method has three arguments: a reference to a structure
to store the returned data, the maximum size of a returned message,
and the message type.

This method returns a true or false as to whether or not the message
gueue exists.

Create (generate) a new message queue.




Method Explanation
name

Acquire Gains access to the existing message queue.

Program 6.5a Program code for the Message Queue Class.

File : Message_que.cxx
|~
| Message queue implementation—Copyright (¢c) 2002 J. S. Gray
|
| #include "Message_que.h"
+ #include <cstdio>
I
I
I
I

/l Message queue constructor.
Message que::Message que( const char the_key ¥
ipckey = ftok( ".", the_key );
10 msqid =-1;
|}
| // Remove the message queue (if this process created it)
| void
| Message que::Remove( ) {
+ if ( msgctl( msqid, IPC_RMID, (struct msqgid_ds *) 0) ==-1)
| exit( 5);
|}
| // Place a message in the message queue.
| void
20 Message_que::Enque( void *msg, int msg_size X
if ( msgsnd( msqid, msg, msg_size,0) ==-1)

I

| exit( 3);

|}

| // Return a message from the message queue.

+ int

| Message_que::Deque( void *msg, int msg_size, int msg_type X
| intn;

| memset( msg, 0x0, msg_size ); Il clear space

| if ( (h=msgrcv( msqid, msg, msg_size, msg_type, IPC_NOWAIT)) ==-1)
30 exit(4);

| return n;

|}

| /I True if message queue exists else false.

| bool

+ Message_que::Exist( const char the_key ){

I

return (msgget(ipckey, 0) !=-1);



}

I
| // Generate a new message queue.
| void
40 Message_que::Create( ){
if ( (msqid=msgget(ipckey, IPC_CREAT|0660)) ==-1)
exit(1);
}

I

I

I

| /I Acquire (gain access to) existing message queue.
+ void

| Message_que::Acquire( ){

| if ( (msqid=msgget(ipckey, 0)) ==-1)

| exit( 2);

|}

To use this class, the files Message_que.h and Message_que.cxx should reside locally.
The Message_que class is compiled into object code with the command line

linux$ g++ Message_que.cxx —C
At the top of the source file that will use a Message_que object, add the statement

#include "Message_que.h"

to make the class definition available to the compiler. When compiling the source file,
include the message queue object code file

linux$ g++ your_file_name.cxx Message_que.o

Proéram 6.& demonstrates the use of a message queue object. This program allows
command-line manipulation of a message queue. As such, the message queue could
be used as a drop off and retrieval site for messages.

Program 6.6 A command-line message queue manipulation utility.

File : p6.6.cxx
|/

| A message queue manipulation utility

|

| #include "Message_que.h" Q

+  #include <iostream>

| #include <cstdlib>

| #include <unistd.h>

| using namespace std;



I
10 typedef struct {

| long int m_type;

| char m_text[1024];

| }MESSAGE;

| externchar *optarg;

+ externint  optind, opterr, optopt;
I

I

I

I

int
main(int argc, char *argv[ ]){
int C;
char optstring] = "srim; k-3

20 opterr = 0;
| bool snd_msg=false, get msg=false, rmv_que=false;
| char *the_message;

| 1 Allocate msg - clear text

| MESSAGE my_msg;

+ memset( my_msg.m_text, 0x0, 1024 );

| 1 Allocate - acquire msg queue

| Message_que MQ('M");

| if (IMQ.Exist('M"))

| MQ.Create();

30 else

| MQ.Acquire();

| 1 Process command line args
| while ((c = getopt(argc, argv, optstring)) != -1)

| switch (c) {

+ case's"

| snd_msg=true;

| break;

| case "

| get_msg=true;

40 break;

| case 'i"

| my_msg.m_type=atol(optarg);

| break; @

| case 'm'

+ strcpy(my_msg.m_text,optarg);
I

I

I

I

}

if (snd_msg && my_msg.m_type >0 A
MQ.Enque( &my_msg, strlen(my_msg.m_text)+1);
cerr << "Added : " << my_msg.m_text << endl;

50 }else if (get_msg && my_msg.m_type > 0 ¥
MQ.Deque(&my_msg, 1024, my_msg.m_type);
cerr << "Message: " << my_msg.m_text << endl;

} else
cerr << "Invalid command line option(s)" << endl;



+ return O;

|}

(1) Include the Message_que class definition.

(2) Acceptable command-line options:

(3) Use the optarg reference to obtain the actual command-line data.

In line 4 of the program, the definition of the Message_que class is included. At line 10,
the format of a message queue message is defined. Within the function main, the
acceptable command-line options are assigned to the optstring array. The program
accepts two standard-format command-line options. The -s option indicates a
message is to be sent to the message queue, while -r means a message should be
read from the message queue. Theremaining two options of the program require
arguments. The —i option is to be followed with the message queue ID (type), and the
—-m option is to be followed with an actual message. If the message is more than one
word, it should be surrounded with quotes.

A while loop and the getopt library function are used to parse command-line options. If
the user indicates a message is to be sent, the message type (-i) and the actual
message (-m) must be specified. If a message is to be retrieved, then just the
message type (-i) must be indicated. The program informs the user of its activity,

including a message that indicates when an improper set of command-line options
has been passed. Fiéure 6.1ﬂ demonstrates the use of Program 6.6.

Figure 6.11 Manipulating a message queue from the command line.

linux$ ipcs -q
—————— Message Queues ------ <-- 1

key msqgid owner perms used-bytes messages

linux$ p6.6 -i 98 -s -m "Don't forget the fish!" K-- 9
Added : Don't forget the fish!




linux$ p6.6 -i 98 -s -m "See you Wednesday -jg @
Added : See you Wednesday -jg

linux$ p6.6 -s -i 72 -m "Paper due on the 16th" @
Added : Paper due on the 16th

linux$ ipcs -q
—————— Message Queues ------ E-2
key msqgid owner perms used-bytes messages
0x4d15ae86 4718592 gray 660 67 3

linux$ p6.6 -r -i 98
Message: Don't forget the fish! <-- 3

linux$ p6.6 -r -i 98
Message: See you wednesday -jg

linux$ ipcs -q

------ Message Queues ------

key msqgid owner perms used-bytes messages
0x4d15ae86 4718592 gray 660 22 1

linux$ ipcs -q -i 4718592
Message Queue msqid=4718592 <-- 4
uid=500 gid=1000 cuid=500 cgid=1000 mode=0660
cbytes=22  qgbytes=16384 gnum=1 Ispid=17306 Irpid=17309
send_time=Sun Mar 10 17:06:40 2002

rcv_time=Sun Mar 10 17:06:40 2002

change_time=Sun Mar 10 17:06:40 2002

(1) At the start, no message queues in the system.

(2) Add some messages to the message queue.

(2) Three messages now in the queue.



(3) Retrieve the first two messages of type 98.

(4) What the system knows about this message queue.

6-5 EXERCISE

Program 6.6 has a great deal of room for improvement. For example, when
a message is retrieved, it is removed from the message queue. In addition,
the user is unable to remove the message queue (without resorting to the

ipcrm command). ModifyProgram 6.6 to support the nondestructive reading
of messages and the removal of the message queue from the system.

6-6 EXERCISE

Modify the client—server programs to implement a rudimentary chat program
that allows users to interactively talk to one another (sort of a poor man's
talk). One way to do this is to have the server examine the first character of
the text portion of a SERVER message. If the character is, say, a ".", then
the message is assumed to be a command the server should act on. For
example, if the sequence is .lo, then the server records the PID of the client
as logged in. If the sequence is .who, the server returns the list of the PIDs of

all logged-in (attached) clients. The PID information can then be used to

connect the two processes so that interactive communication can occur.
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6.8 Summary

Message queues are one of three interprocess communication facilities added to
UNIX with the release of System V. Once created, a message queue is maintained by
the system. Unrelated processes, executing at different times, can use a message
gueue to pass information. Each message has an associated type that can be used to
implement a rudimentary form of data multiplexing when multiple producers are
involved. Message queues are created and accessed using the msgget system call.
Messages are placed in the message queue with the msgsnd system call and retrieved
from the queue with the msgrev system call. Additional message queue manipulations
are carried out with the msgctl system call. The msgctl system call returns information
about the message queue, permits modification of access permissions, and allows the
owner to remove the message queue facility.
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6.9 Key Terms and Concepts

ftok library function
IPC facility

IPC key

IPC resource
IPC_CREAT
IPC_EXCL
IPC_NOWAIT
ipc_perm structure
IPC_PRIVATE
IPC_RMID
IPC_SET
IPC_STAT

ipcs command

iprm command
message queue class
message queues

message type



msg structure
MSG_EXCEPT
MSG_NOERROR
msgbuf structure
msgget system call
MSGMNB
MSGMNI

msgrcv System call
msgsnd system call
msqid_ds structure
semaphore

shared memory
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Chapter 7. Semaphores
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7.1 Introduction

Conceptually, a semaphore is a data structure that is shared by several processes.
Semaphores are most often used to synchronize operations when multiple processes
access a common, non-shareable resource. By using semaphores, we attempt to
avoid starvation (which occurs when a process is habitually denied access to a
resource it needs) and deadlock (which occurs when two or more processes each
hold a resource that the other needs while waiting for the other process to release its
resource). When used to synchronize the access to a resource, a semaphore is
initially set to the number of available resources. Each time a process wants to obtain
the resource, the associated semaphore is tested. A positive, nonzero semaphore
value indicates the resource is available. To indicate it has gained access to the
resource, the process decrements the semaphore. For events to progress correctly,
the test and decrement operation on the semaphore must be atomic (i.e.,
noninterruptible/indivisible). If the tested semaphore is zero, indicating the resource is
not available, the requesting process must wait. When a process is finished with a
semaphore-associated resource, the process indicates the return of the resource by
incrementing the semaphore. Once a resource is returned, other processes that have
been waiting for the resource are notified by the system. Semaphores that control
access to a single resource, taking the value of O (resource is in use) or 1 (resource is

. . 2 .
available), are often called binary semaphores.= Semaphores controlling access to
multiple resources, thus assuming a range of nonnegative values, are frequently
called counting semaphores.

™ in this chapter we concentrate on semaphores as they relate to

processes. In Chaéter 1ﬂ, we revisit semaphores and address their use
with threads.

2l in function, binary semaphores are similar to the lock files discussed

in Chapter 4. Unfortunately, semaphores can only be used by
processes residing on the same system, while, with some stretching,
lock files can be implemented in a networked environment. Of course,



semaphores are much faster and more reliable than lock files.

E. W. Dijkstra (1965) did much of the early work describing the use of semaphores to
coordinate access to shared resources. Most college-level operating systems
textbooks—for example, Silberschatz and Peterson (1989), Tanenbaum (2001), Nutt
(2002), Stallings (2001), and Deitel (1990)—contain excellent discussions on the
theory and use of semaphores for process synchronization.

Implementation-wise, a semaphore is a nonnegative integer that is stored in the
kernel. Access to the semaphore is provided by a series of semaphore system calls.
The semaphore system calls assure the user the test and decrement operations on
the semaphore will be atomic. Likewise, the semaphore system calls, by default,
cause the invoking process to block if the semaphore value indicates the resource is
not available (i.e., the semaphore is a 0). When the resource becomes available and
the semaphore becomes nonzero, the system notifies the queued, waiting processes
of this event. To increase their flexibility, in UNIX semaphores are generated as sets
(arrays) consisting of one or more semaphores. Operations acting upon individual
semaphores within the set or upon the entire semaphore set are provided.
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7.2 Creating and Accessing Semaphore Sets

Before a semaphore set can be used, it must be created. The creation of the
semaphore set generates a unique data structure that the system uses to identify and
manipulate the semaphores. The definition of system semaphore data structure is
found in the system-dependent include file <bits/sem.h>. This file is not directly
referenced by the programmer, since the standard include file <sys/sem.h> includes this
file.

struct semid_ds {

struct ipc_perm sem_perm; /* operation permission struct */
__time_t sem_otime; * last semop() time */

unsigned long int __unused1;

__time_t sem_ctime; /* last time changed by semctl() */
unsigned long int __unused?;

unsigned long int sem_nsems; /* number of semaphores in set */

unsigned long int __unuseds3;
unsigned long int ___unused4;

In keeping with its origins, and for System V compatibility, the semid_ds structure is
also defined in <linux/sem.h> as

struct semid_ds {

struct ipc_perm sem_perm,; [* permissions .. see ipc.h */
__kernel_time_t sem_otime; /* last semop time */
__kernel_time_t sem_ctime; [* last change time */

struct sem  *sem_base,; [* ptr to first semaphore in array */

struct sem_queue *sem_pending;  /* pending operations to be processed */
struct sem_queue **sem_pending_last;/* last pending operation */

struct sem_undo *undo; /* undo requests on this array */

unsigned short sem_nsems; /* no. of semaphores in array */

As with message queues, there is a bit of a disconnect between the way we view and
discuss semaphores and the way they may actually be implemented at a system level.
Additional system-specific details can be found in the source code for semaphore
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implementation in the kernel source directory /usr/src/linux-XX.XX.XX/ipc (where XX is the
appropriate version number). On our system the files sem.c and util.h contain additional
semaphore implementation details.

Using the <linux/sem.h> definition as our reference, the system semaphore data
structure semid_ds contains a permission structure of type ipc_perm, which is used to
specify the access permissions for the semaphore set. The access permission
structure is followed by two time members. These store the time of the last operation
on the semaphore (sem_otime) and the time of its last modification (sem_ctime). The
next member is a reference, sem_base, to an array (set) of structures of type sem. The
sem structure contains the semaphore value and the ID of the last process to operate
on the semaphore. Here is the definition of a sem structure:

struct sem {
int  semval, [* current value */
int  sempid; /* pid of last operation */

Following the pointer to the base of the semaphore array are three additional pointers.
The sem_pending member references a linked list (treated as a queue) of pending
semaphore operations. Normally, semaphore operations are done immediately, so
requests are only added to this list if for some reason the request cannot processed
immediately. The sem_pending_last member references the end of the same list. The
sem_undo member references a list of undo operations. These operations, stored when
a semaphore operation sets the SEM_UNDO flag, can be used to undo requested
semaphore operations to return the semaphore to its previous state. The kernel uses
the undo list information to reverse semaphore operations when a process exits
without releasing its allocated semaphores. This action helps reduce the chance of
deadlock. The system semaphore data structure also keeps track of the number of
semaphores in the set (sem_nsems).

A conceptual arrangement of a system semaphore structure for a newly allocated set
of three semaphores is shown in Eigure 7.1l.

Figure 7.1. Data structures for a set of three semaphores.
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To create a semaphore or gain access to one that exists, the semget system call,
shown in[Table 7.1, is used.

Table 7.1. Summary of the semget System Call.
Include File(s) <sysltypes.h> Manual Section 2
<sysl/ipc.h>
<sys/sem.h>

Summary int semget (key_t key,intnsems,int semflg);
Success Failure Sets erro
Return The semaphore identifier -1 Yes

The semget system call takes three arguments. The first argument, key, is used by the
system to generate a unique semaphore identifier. The second argument, nsems, is
the number of semaphores in the set. The system uses the nsems value when
allocating the array of sem structures. Remember, as with all arrays in C/C++, the
array of sem structures that represents the set of semaphores is indexed starting at O.
The nsems value should be less than or equal to the SEMMSL value, which sets the
upper boundary for the number of semaphores for a given semaphore ID. The third
argument, semflg, is used to specify access permission and/or special creation
conditions. The low-order bits of the semflg value are used to specify the access
permissions for the owner, group, and other. Read and write permissions control
reading and alteration of the semaphore; execute permission settings are ignored.
The flags IPC_CREAT and IPC_EXCL may be ORed with the permission value.

If the semget system call is successful, a nonnegative integer, the semaphore identifier,
Is returned. If the value for key is IPC_PRIVATE or the value for key does not have a



semaphore identifier associated with it, and IPC_CREAT has been specified, a new
set of semaphores is created. When created, the semaphore set represented by the
array of sem structures is not initialized. If IPC_CREAT is specified (but not
IPC_EXCL) and the semaphore set for the indicated key value already exists, the
semget system call returns the associated semaphore identifier. When using semget to
access an established semaphore set (such as in a client process), the value of nsems
can be set to 0 (a don't-care value).

When the semaphore is created, the system sets, respectively, the semid_ds members
sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and sem_perm.gid to the effective user and
group ID of the invoking process. The member sem_otime is set to 0, and sem_ctime IS
assigned the current time. The nsems member stores the number of semaphores in the
semaphore set.

If the semget system call fails, it returns a -1 and sets the value stored in errno. Error
messages for semget are shown in[Table 7.2.

Table 7.2. semget Error Messages.

# Constant perror Explanation
Message

2 EOENT No such file or Semaphore identifier does not exist for this key, and

directory IPC_CREAT was not set.

12 ENOMEM Cannot Insufficient system memory to allocate the
allocate semaphore set.
memory

13 EACCES Permission Semaphore identifier exists for this key, but
denied requested operation is not allowed by current

access permissions.

17 EEXIST  File exists Semaphore identifier exists for this key, but the
flags IPC_CREAT and IPC_EXCL are both set.

28 ENOSPC No space left  System-imposed limit (SEMMNI) for the number of
on device semaphore sets or systemwide maximum number
of semaphores (SEMMNS) has been reached.




# Constant perror Explanation
Message

43 EIDRM Identifier Specified semaphore set is marked for removal.

removed

Proéram 7.i| attempts to create several semaphore sets, each containing three
semaphores.

Program 7.1 Creating semaphore sets.

File : p7.1.cxx

| /* Creating sets of semaphores */
| #include <iostream>
| #include <cstdio>
| #include <sys/types.h>
+  #include <sys/ipc.h>
| #include <sys/sem.h>
| using namespace std;
I
I

int
main( }{
10 int  seml, sem2, sem3;
key t ipc_key;

I
| ipc_key = ftok(".", 'S");

| if ((sem1 = semget(ipc_key, 3, IPC_CREAT | 0666)) == -1) {

| cerr << "semget: IPC_CREAT | 0666" << endl;

+ )

| cout << "sem1 identifier " << seml << endl;

| if ((sem2 = semget(ipc_key, 3, IPC_CREAT|IPC_EXCL|0666)) == -1) {
| cerr << "semget: IPC_CREAT | IPC_EXCL | 0666" << endl;
|}
20 cout << "sem?2 identifier " << sem2 << endl;

| if ((sem3 = semget(IPC_PRIVATE, 3, 0600)) ==-1) {

| cerr << "semget: IPC_PRIVATE" << end];

|}

| cout << "sem3 identifier " << sem3 << endl;

+ return O;

I

The first call to semget, provided the system limits have not been reached, creates a

set of three semaphores. The permissions for the set are read and alter (write) for the

owner, group, and others (world). The value of the semaphore identifier is tied to the

key value that is produced by the call to ftok. The second call to semget attempts to



create a second set of three semaphores. The call uses the same key value as the
first but includes the specification IPC_EXCL. With the IPC_EXCL flag set and the
previous successful creation of the semaphore set using the same key value, this
invocation of semget will fail. The third call to semget creates a three-semaphore set
used by specifying IPC_PRIVATE instead of using the ftok key value. The semaphore
identifier generated for this set will be private to this process.

When the program is run twice consecutively, the output generated will be similar to
that shown in Eigure 7.2.
Figure 7.2 Two consecutive runs of .

linux$ p7.1

seml identifier 9797637

semget: IPC_CREAT | IPC_EXCL | 0666: File exists
sem?2 identifier -1

sem3 identifier 9830406

linux$ p7.1

seml identifier 9797637

semget: IPC_CREAT | IPC_EXCL | 0666: File exists
sem?2 identifier -1

sem3 identifier 9863175

Notice that when the program is run the second time, the same semaphore identifier
(9797637) is returned from the initial call to semget. Without the IPC_EXCL flag, the
semget system call will not fail if the semaphore set has already been created, but will
instead return the associated semaphore identifier. The creation of a second private
semaphore set by the second invocation of the program produces another unique
semaphore identifier (9863175), which is different from the first private semaphore
identifier (9830406). The output of the ipcs command, shown in , verifies the
presence and permissions of the three semaphore sets that were created by the user
gray. Notice that the key for each of the private semaphore sets is 0.

Figure 7.3 ipcs output.

linux$ ipcs -s

key semid owner perms nsems status
0x53157f08 9797637 gray 666 3



0x00000000 9830406 gray 600 3
0x00000000 9863175 gray 600 3

As written, Pro;ram 7.ﬂ does not remove the semaphore sets it creates. Semaphores,
like message queues, are a limited resource. In a programming setting, semaphores
can be removed with the semctl system call (see the following section). Semaphores
may also be removed at the command-line level using the ipcrm command (as

discussed in Chapter 6, [Section 6.1). If there are several semaphores to remove, a

shell script, such as that shown in Program 7.;’, can be used to automate the removal
process.

Program 7.2 A Korn shell script to remove all semaphores for a user.

File : clean
|  #!bin/ksh
| #
| # Korn Shell script to remove all existing semaphores for a user
| #
+  list=$(ipcs -s | grep "$USER" | cut -d' ' -f2)
| count=0
| for semaphore in $list
| do
| ipcrm sem $semaphore > /dev/null
10  ((count=count+1))
| done
| print "$count semaphore(s) for SUSER removed"

/-1 EXERCISE

Rewrite the shell script shown as Pro;ram 7.2 to permit the user to specify
four command-line options: -q to remove message queues,-s to remove
semaphores, -m to remove shared memory segments, and-a to remove all
IPC facilities. If the script is run by root, a warning message and request for
verification should be included.

7-2 EXERCISE



Write a program that determines by trial and error the maximum number of
semaphores per semid and semaphore sets. If you complete,

you may find your script to be of help in removing allocated semaphores.
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7.3 Semaphore Control

The semget system call (II able 7.3) is used to create or gain access to a set of
semaphores. The semctl system call allows the user to perform a variety of generalized
control operations on the system semaphore structure, on the semaphores as a set,
and on individual semaphores. Additional manipulative operations on s?ecific

semaphores within a set are covered in the following section on gemaphore
E;eration; Section 7.4).

Table 7.3. Summary of the semctl System Call.

Include File(s) <sysltypes.h> Manual Section 2
<sysl/ipc.h>

<sys/sem.h>

Summary int semctl(int semid, int semnum, int cmd,
union semun arg);

Success Failure Sets errno

Return 0 or the value requested -1 Yes

The semctl system call takes four arguments. The first argument, semid, is a valid
semaphore identifier that was returned by a previous semget system call. The second
argument, semnum, is the number of semaphores in the semaphore set. In most cases,
this value is greater than 0 but less than the system limit. However, we will see
occasions when the value for semnum is set to 0. These occasions arise when we ask
semctl to perform an operation for which the number of semaphores in the set is not
relevant. The third argument to semctl, cmd, is an integer command value (usually
expressed as one of the symbolic constants found in the header files <sys/ipc.h> or
<sys/sem.h>). As discussed in detail in |§ection 7.3.;], "Semaphore Control Details," the
cmd value directs semctl to take one of several control actions. Each action requires

specific access permissions to the semaphore control structure (i.e., read or alter). The
fourth argument to semctl, arg, is a union of type semun. Given the action specified by


file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/eBook.Prentice_Hall_PTR-Interprocess_Communications_in_Linux.ShareReactor.chm/23021533.htm

the preceding cmd argument, the data in arg can be one of any of the following four
values:

1. An integer used with SETVAL to indicate a specific value for a particular
semaphore within the semaphore set.

2. A reference to a semid_ds structure where information is returned when
IPC_STAT or IPC_SET is specified.

3. Areference to an array of type unsigned short integers; the array is used either
to initialize the semaphore set (such as when stipulating SETALL) or as a
return location when specifying GETALL.

4. A reference to a seminfo structure when IPC_INFO is requested.

In some versions of UNIX the definition of the semun union is found in the include files
required by semctl. However, technically the user should define the union. To this end,
the manual page for semctl contains the following cryptic reference.

#if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)
/* union semun is defined by including <sys/sem.h> */
#else
[* according to X/OPEN we have to define it ourselves */
union semun {
int val; * value for SETVAL */
struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */
unsigned short int *array; /* array for GETALL, SETALL */
struct seminfo *__buf;  /* buffer for IPC_INFO */

5
#endif

This sequence of preprocessor directives determines whether the programmer
defines the semun union. If __GNU_LIBRARY___ has been defined (is nonzero), and
_SEM_SEMUN_UNDEFINED has not been defined, the definition of the union semun
is found in the include file <sys/sem.h>. Otherwise, the user defines the union. To be
safe, this set of preprocessor directives should be placed at the top any program that
will make use of the fourth argument of the semctl call. Its omission may cause the
semctl system call to fail, returning the value EFAULT (bad address). Further, when
specifying arg as the fourth argument to semctl, the value for arg should be explicitly
assigned (e.qg., arg.buf=ptr_to_my_structure). This assignment must be done prior to the



calling of semctl (see Program 7.3).

7.3.1 Semaphore Control Details

The following cmd values cause semctl to act upon the system semaphore structure
(semid_ds):

® |PC_STAT— Return the current values of the semid_ds structure for the
indicated semaphore identifier. The returned information is stored in a
user-generated structure referenced by the fourth argument to semctl. To
specify IPC_STAT, the process must have read permission for the semaphore
set associated with the semaphore identifier.

® |PC_SET— Modify a restricted number of members in the semid_ds structure.
The members sem_perm.uid, sem_perm.gid and sem_perm.mode (in the permissions
structure within semid_ds) can be changed if the effective ID of the accessing
process is that of the superuser or is the same as the ID value stored in
sem_perm.cuid Or sem_perm.uid. TO make these changes, a structure of the type
semid_ds must be allocated. The appropriate members' values are then
assigned, and a reference to the modified structure is passed as the fourth
argument to the semctl system call.

® |PC_RMID— Remove the semaphore set associated with the semaphore
identifier.

When specifying IPC_STAT, IPC_SET, or IPC_RMID, the value for semnum (the
number of semaphores in the set) is not considered and can be set to O.

The following cmd values cause semctl to act upon the entire set of semaphores:

® GETALL— Return the current values of the semaphore set. The values are
returned via the array reference passed as the fourth argument to semctl. The
user is responsible for allocating the array of the proper size and type prior to
passing its address to semctl. Read permission for the semaphore set is required
to specify GETALL. When specifying GETALL, the argument semnum is
ignored.



® SETALL— Initialize all semaphores in a set to the values stored in the array
referenced by the fourth argument to semctl. Again, the user must allocate the
initializing array and assign values prior to passing the address of the array to
semctl. The process must have alter access for the semaphore set to use
SETALL. When specifying SETALL, the sem_ctime member of the system
semaphore data structure is updated.

The last set of semctl cmd values acts upon individual semaphores or upon specific
members in the semid_ds structure. All of these commands require read permission
except for SETVAL, which requires alter permission:

® GETVAL— Return the current value of the individual semaphore referenced by
the value of the semnum argument (remember, arrays in C/C++ are zero-based,;
thus, the first semaphore of a set is at index 0).

® SETVAL— Set the value of the individual semaphore referenced by the semnum
argument to the value specified by the fourth argument to semctl (e.g., the value
stored in arg.val).

® GETPID— Return the PID from the sem_perm structure within the semid_ds
structure.

® GETNCNT— Return the number of processes waiting for the semaphore
referenced by the semnum argument to increase in value.

® GETZCNT— Return the number of processes waiting for the semaphore
referenced by the semnum argument to become 0.

If semctl is successfully issues any of these commands, the requested integer value is
returned: the value of semncnt for GETNCNT, the value of sempid for GETPID, the value
of semval for GETVAL, or the value of semzent for GETZCNT. If semctl fails, it returns a
value of -1 and sets errno to indicate the specific error. The errors returned by semct

with an explanation of their meaning are shown in [Table 7.4



Table 7.4. semctl Error Messages.

# Constant perror Message Explanation

1 EPERM  Operation not Value for cmd is IPC_RMID or IPC_SET and the

permitted calling process in not the owner or superuser.

13 EACCES Permission The requested operation is not allowed by the
denied current access permissions for this process.

14 EFAULT Bad address The fourth argument to semctl contains a reference

to an illegal address (the union semun may not
have been declared).

22 EINVAL Invalid argument
® The semaphore identifier is invalid.

® The number of semaphores specified is
less than 0 or greater than the number in
the semaphore set.

® The value forcmd is invalid.

® The value for cmd is IPC_SET, but the
value for sem_perm. uid Or sem_perm.gid iS
invalid.

34 ERANGE Numerical result The value for cmd is SETVAL or SETALL, and the
out of range value to be assigned is greater than the system
maximum or less than O.

43 EIDRM Identifier Specified semaphore set is marked for removal.
removed

Proéram 7.; uses the semctl system call to perform a number of semaphore control
operations.

Program 7.3 Using semctl.

File : p7.3.cxx
|/



Using the semctl system call
*/
#include <iostream>
#include <cstdio>
#include <sysl/ipc.h>
#include <sys/sem.h>
#include <time.h>

#define NS 3 Q

#if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED)

/I definition in <sys/sem.h>

#else
union semun { /[l We define:
int val; /I value for SETVAL
struct semid_ds *buf; // buffer for IPC_STAT, IPC_SET
unsigned short int *array; /l array for GETALL, SETALL
struct seminfo *__buf; /I buffer for IPC_INFO
%
#endif
using namespace std;
int
main( ){
int sem_id, sem_value, i;
key t ipc_key;

struct semid_ds sem_buf;

unsigned short int sem_array[NS] = {3, 1, 4}
union semun  arg;

ipc_key = ftok(".", 'S");

if ((sem_id = semget(ipc_key, NS, IPC_CREAT | 0660)) == -1) {
perror("semget: IPC_CREAT | 0660");

return 1;
}
cout << "Semaphore identifier " << sem_jid << endl;
arg.buf = &sem_buf; <-- 2

if (semctl(sem_id, 0, IPC_STAT, arg) ==-1) {
perror("semctl: IPC_STAT");

return 2;
}

cout << "Created " << ctime(&sem_buf.sem_ctime) << end];
arg.array = sem_array; <-- 3

if (semctl(sem_id, 0, SETALL, arg) ==-1) {
perror("semctl: SETALL");
return 3;

}

for (i=0;i < NS; ++i) {
if ((sem_value = semctl(sem_id, i, GETVAL, 0)) ==-1) {



| perror("semctl: GETVAL");
| return 4;
50 }
cout << "Semaphore " << i << " has value of " << sem_value << endl;

I

|}

| if (semctl(sem_id, 0, IPC_RMID, 0) == -1) {
| perror("semctl: IPC_RMID");
+ return 5;
|}

I

I

return O;

}

(1) Do we need to define semun union?
(2) Set arg to be the address of the storage for the returned values.

(3) Set arg to be the address of the initializing vector.

Proéram 7.3 creates a set of three semaphores. The semaphore identifier for the set
Is printed. In line 35, the address of sem_buf is assigned to the appropriate member of
arg. The union arg now contains the location where the returned data will be stored.
Then, by specifying IPC_STAT and passing the proper address, semctl obtains the
current values of the system semaphore structure. The date and time the semaphore
was created are displayed using the library function ctime. Using similar syntax, other
members of the semid_ds structure could be displayed. However, there is another way
to obtain the entire contents of the semid_ds structure (albeit on a temporary basis). To
do this, compile Program 7.3 with the -g option and then use the debugger, gdb, to
examine the semid_ds structure. This can be accomplished by invoking gdb with the
executable program name, such as linux$ gdb p7.3. When in gdb, direct gdb to stop at

the correct line (say, break 40). The program is then run, and when gdb stops at line 40,
it is asked to print the contents of the structure using the gdb command: print sem_buf.
The output of such a sequence will display the contents of the entire sem_buf structure.

On our system, Program 7.3 run in gdb produces the output shown in Eigure 7.4



Figure 7.4 dbx output of .

N
1
1
=

linux$ g++ -g -0 p7.3 p7.3.cxx
linux$ gdb p7.3

GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty"” for details.
This GDB was configured as "i386-redhat-linux"...

(gdb) break 40 K-- 2
Breakpoint 1 at 0x8048890: file p7.3.cxx, line 40.
(gdb) run

Starting program: /home/faculty/gray/revision/07/p7.3

Semaphore identifier 10027013

Breakpoint 1, main () at p7.3.cxx:40

40 cout << "Created " << ctime(&sem_buf.sem_ctime) << end];

Current language: auto; currently c++

(gdb) print sem_buf

$1 ={sem_perm ={ _key = 1393917704, uid = 500, gid = 1000, cuid = 500,
cgid = 1000, mode =432, padl =0, seq=306, pad2=0,
__unusedl =0, ___unused2 =0}, sem_otime =0, __unusedl =0,
sem_ctime = 1016545082, unused2 = 0, sem_nsems = 3, __unused3 =0,
__unused4 = 0}

(gdb)

(1) Compile the program with the —g option.

(2) Stop at line 40 of the program.

Notice, as would be expected, that the number of semaphores in the set, three, has
been stored in the sem_nsems member.

Program 7.3 uses the semctl system call to initialize the three-semaphore set to the

values stored in the array sem_array. Again, notice that prior to calling semctl the
address of the initializing vector (see line 41) is assigned to the proper member of arg.
Once the values are assigned to the semaphore set, the program uses a loop to

display to the screen the value stored in each semaphore. The last action of Program



7.3 is to use the semctl system call with the IPC_RMID flag to remove the semaphore

set.

When run outside of gdb, the output of Program 7.3 should be similar to that shown in

igure 7.5.

Figure 7.5 Output of .

linux$ p7.3
Semaphore identifier 10027013
Created Tue Mar 19 08:38:02 2002

Semaphore 0 has value of 3
Semaphore 1 has value of 1
Semaphore 2 has value of 4

7-3 EXERCISE

After generating a set of, say, three semaphores, can semctl be used to alter
the values of sem_nsems to indicate an increase or decrease in the number of
semaphores in a set? Is this a bug or a feature? Provide a program segment

that supports your answer

7-4 EXERCISE

In earlier IPC implementations, the base address of the semaphore set was
stored in the member sem_base. In current versions, the user does not have
access to this address. Why do you suppose the developers removed the
ability to access the semaphore set directly?

4 Previous | | Hext Pl
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7.4 Semaphore Operations

Additional operations on individual semaphores are accomplished by using the semop

system call, shown in [Table 7.5.

The semop system call requires three arguments and returns an integer value. If
successful, semop returns a 0; otherwise it returns a -1 and sets errno to indicate the
source of the error (see |I able 7.9 for details). The first argument for semop, semid, is
the semaphore identifier returned by a previous successful call to semget. The second

argument, sops, is a reference to the base address of an array of semaphore
operations that will be performed on the semaphore set associated with by the semid
value. The semop system call will attempt to perform, in an all-or-nothing manner, all of
the semaphore operations indicated by sops. The third argument, nsops, is the number
of elements in the array of semaphore operations.

Table 7.5. Summary of the semop System Call.

Include File(s) <sys/types.h> Manual Section 2
<syslipc.h>

<sys/sem.h>

Summary int semop(int semid, struct sembuf *sops,
unsigned nsops);

Success Failure Sets errno

Return 0 -1 Yes

Each element of the semaphore operation array is a structure of type sembuf.

/*
User semaphore template for semop system calls.
*/

struct sembuf {
unsigned short int sem_num; // semaphore #: 0 = first
short int sem_op; /I semaphore operation



short int sem_flg; /[ operation flags

h

The first member of the sembuf structure, sem_num, is the semaphore number
(remember, the first semaphore is 0, the second 1, etc.). The second member of
sembuf, sem_op, iS the operation to be performed on the semaphore. A positive integer
value means to increment the semaphore (in general, indicating a release or return of
a resource), a negative value for sem_op means to decrement the semaphore (an
attempt to acquire a resource), and a value of 0 means to test if the semaphore is
currently at O (in use, all resource(s) allocated). Additional details on semaphore
operations will be provided in a subsequent section. The third member of sembuf is an
operation flag. These flags are

® |IPC_NOWAIT— If the semaphore operation cannot be performed (such as
when attempting to decrement a semaphore or test if it is equal to 0), the call
returns immediately. No other semaphores in the set are modified if one of the
specified semaphore operations fails with the IPC_NOWAIT flag.

® SEM_UNDO— If IPC_NOWAIT has not been indicated, the SEM_UNDO flag
allows an operation to be undone if a blocked operation (one waiting for a
specific condition) subsequently fails. The system keeps track of the
adjustment values needed for each semaphore set. The adjustment values are
kept on a per-process basis and actually indicate how many resources are
being held, while the systemwide semaphore value indicates how many
resources are currently free.

Fiéure 7.& shows a relationship of an arbitrary three-element semaphore operation
array to an N element set of semaphores.

Figure 7.6. Three-semaphore operations for an N element set of semaphores.

Set of N Semaphores

semval

sempid

/ 0 1 2 N
sem base / \4




/ ST

sem_num 1 N 2

sem_op -1 2 0

sem_flag SEM_UNDO SEM_NOWAIT SEM_UNDO
0 1 2

7.4.1 Semaphore Operation Details

When the sem_op value is negative, the process specifying the operation is attempting
to decrement the semaphore. The decrement of the semaphore is used to record the
acquisition of the resource affiliated with the semaphore. When a semaphore value is
to be modified, the accessing process must have alter permission for the semaphore

set. The actions taken bf the semop system call when the value for sem_op is negative

are summarized in [Table 7.6.

When the sem_op value is positive, the process is adding to the semaphore value. The
addition is used to record the return (release) of the resource affiliated with the

semaphore. Again, when a semaphore value is to be modified, the accessing process
must have alter permission for the semaphore set. The actions taken bf the semop

system call when the value for sem_op is positive are summarized in [Table 7.7

When the sem_op value is zero, the process is testing the semaphore to determine if it
Is at 0. When a semaphore is at 0, the testing process can assume that all the
resources affiliated with the semaphore are currently allocated (in use). For a
semaphore value to be tested, the accessing process must have read permission for
the semaphore set. The action taken by the semop system call when the value for

sem_op IS 0 is summarized in |I able 7.8.

Table 7.6. Actions Taken by semop when the Value for sem_op is Negative.

Condition Flag Set Action Taken by semop
semval >= Subtract abs(sem_op) from semval.
abs(semop)

semval >= SEM_UNDO  Subtract abs(sem_op) from semval and update the




Condition Flag Set Action Taken by semop

abs(semop) undo counter for the semaphore.
semval < Increment semncnt for the semaphore and wait
abs(semop) (block) until

* semval >= abs(semop), then adjust semncnt and
subtract as noted in the previous two rows of table.

* semid IS removed, then return -1 and seterrno to
EIDRM.

* A signal is caught, then adjust semncnt and seterrno
to EINTR.

semval < IPC_NOWAIT Return -1 immediately and seterrno to EAGAIN.
abs(semop)

Table 7.7. Actions Taken by semop when the Value for sem_op Is Positive.

Condition  Flag Set Action Taken by semop

Add sem_op to semval.

SEM_UNDO Add sem_op tosemval and update the undo counter for the
semaphore.

The errors returned by semop, with an explanation of their meaning, are shown in
able 7.9.

If semop is successful, for each of the semaphores modified/referenced, semop sets the
value of sempid to that of the calling process for each semaphore specified in the array
referenced by sops. Additionally, both the sem_otime and sem_ctime members are set to
the current time.

Program 7.4 demonstrates the use of the semop system call. Two semaphores are

used to coordinate concurrent producer and consumer processes. The producer
process generates (at its own pace) an integer value. The value is stored in a



non-shareable resource (in this case a file in the local directory). The consumer
process, once a new value has been generated, retrieves the value from the same file
and displays the value to the screen. Two semaphores are used by the producer
process to prevent it from overwriting a previously stored integer value before the
consumer process has retrieved it (should the producer process be speedier than the
consumer process). The consumer process uses the two semaphores to prevent it
from retrieving the same value multiple times (should the producer process be slow in
generating new values). The semaphores, which we will arbitrarily call READ and
MADE, are treated in a binary manner. By convention, the MADE semaphore is set to
1 by the producer process once the producer has stored its newly created integer
value in the file. The READ semaphore is set to 1 by the consumer process once the
consumer has read the value stored in the file by the producer. If the number has yet
to be made by the producer or the number has not been read by the consumer, the
corresponding semaphore value will be 0. The producer will gain access to the file to
store the generated number only if the number currently in the file has been
consumed. Likewise, the consumer can gain access to the file to read the stored

number only if a new value has been made. Eigure 7.7 shows the contents of the two
semaphores in the producer and consumer processes and their relationship to one
another. At the start we indicate that the current stored number has been read (we set
READ to 1) and that a new number has not been generated (we set MADE to 0).

Figure 7.7. Semaphore values in the producer and consumer processes.

Producer Consumer
READ MADE READ MADE
Acquire READ 1 0 0 1 Acquire MADE
Critical Region 0 0 0 0 Critical Region
Release MADE 0 1 1 0 Release READ

Table 7.8. Actions Taken by semop when the Value for sem_op is Zero.

Condition Flag Set Action Taken by semop

semval == 0 Return immediately.

semval =0 |pC_NOWAIT Return -1 immediately and setermo to EAGAIN.




Condition

semval =0

Flag Set Action Taken by semop

Increment semzcent for the semaphore and wait (block)
until

® semval == 0, then adjustsemzcnt and return.

® semid is removed, then return -1 and seterrno to
EIDRM.

® A signal is caught, then adjust semzcnt and set
errno to EINTR.




Table 7.9. semop Error Messages.

# Constant

perror Message

Explanation

4 EINTR

7 E2BIG

11 EAGAIN

12 ENOMEM

13 EACCES

14 EFAULT

22 EINVAL

27 EFBIG

34 ERANGE

43 EIDRM

Interrupted system
call

Argument list too
long

Resource
temporarily
unavailable

Cannot allocate
memory

Permission denied

Bad address

Invalid argument

File too large

Numerical result
out of range

Identifier removed

While in a wait queue for the semaphore, a
signal was received by the calling process.

The value for nsops is greater than the system
limit.

The requested operation would cause the
calling process to block, but IPC_NOWAIT was
specified.

The limit for number of processes requesting
SEM_UNDO has been exceeded.

The requested operation is forbidden by the
current access permissions.

The value for sops references an illegal address.

® The semaphore identifier is invalid.

® The number of semaphores requesting
SEM_UNDO is greater than the system
limit.

The value for sem_num is < 0 or >=to the number
of semaphores in the set.

The requested operation would cause the
system semaphore adjustment value to exceed
its limit.

The semaphore set associated with semid value
has been removed.

A high-level algorithm for the producer and consumer processes would be as follows:

Producer



While 10 new numbers not generated

® Generate a new number

® |f the current stored number has not been read, then wait

® Store the new number in the fil

e

® |ndicate that a new number has been made

Consumer

Forever

® |f a new number has not been made, then wait

® Retrieve the new number from

the file

® |ndicate new number has been read

® Display the retrieved number

For discussion purposes, the program (which actually resides in a single file) has been

divided into three sections, shown as

Programs /7.4A

7.48, and

7.4Q. The first part of

the program, which establishes the operations that will be performed on the

semaphores, creates the set of two semaphores and initializes them, is shown in

Program 7.4A.

Program 7.4A The first section of the producer/consumer problem.

File : p7.4.cxx
|
The producer/consumer problem
*/

#include <iostream> /I Section ONE

#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sysl/ipc.h>

10 #include <sys/sem.h>

| #define BUFFER "./buffer"

I
I
I
+  #include <cstdio>
I
I
I
I



I
I
I
+
I
I
I
I
20
I
I
I
I
+
I
I
I
I
30
I
I
I
I
+
I
I
I
I
40
I
I
I
I
+
I
I
I
I

50

#if defined(__GNU_LIBRARY_ ) && !defined(_SEM_SEMUN_UNDEFINED)
/I definition in <sys/sem.h>

#else
union semun { /[l We define:
int val; /l value for SETVAL
struct semid_ds *buf; [/l buffer for IPC_STAT, IPC_SET
unsigned short int *array; /l array for GETALL, SETALL
struct seminfo *__ buf; /I buffer for IPC_INFO
%
#endif
using namespace std;
int
main(int argc, char *argv[ ]) {
FILE *fptr;

static struct sembuf acquire = {0, -1, SEM_UNDO}, Eg--1i
release = {0, 1, SEM_UNDO};

pid_t c_pid;
key t ipc_key;
static unsigned short start_val[2] = {1, 0};
int semid, producer = 0, i, n, p_sleep, c_sleep;

union semun  arg;

enum { READ, MADE };

if (argc '=2) {
cerr << argv[0] << " sleep_time" << endl;
return 1;

}

ipc_key = ftok(".", 'S");

if ((semid=semget(ipc_key, 2, IPC_CREAT|IPC_EXCL|0660)) !=-1) {

producer = 1;

arg.array = start_val;

if (semctl(semid, 0, SETALL, arg) ==-1) {
perror("semctl--producer--initialization");
return 2;

}

} else if ((semid = semget(ipc_key, 2, 0)) ==-1) {
perror("semget--consumer--obtaining semaphore");
return 3;

}
cout << (producer==1 ? "Producer" : "Consumer" )

<< " starting” << endl;

(1) Define the two operations that can be done on a semaphore.



The program uses the symbolic constant BUFFER to reference a local file named
Jbuffer. This file acts as the non-shareable resource to be accessed by the producer
and consumer processes. Following this definition is the declaration of the union semun
as an argument of type semun is required for the semctl system call.

Using the sembuf structure as a template, the program defines two operations—acquire
and release—that can be used with either of the semaphores. For both operations the
value for the member sem_num has been set to 0. This value acts as a placeholder and
will be changed dynamically to indicate which of the two semaphores within the set we
are referencing. The sem_op member of each is set to -1 and 1 for acquire and release
respectively. The value of -1 is used when we want to acquire a resource that is
associated with a semaphore (indicated by decrementing the semaphore). The value
1 is used when we want to indicate the return of the resource (thus incrementing the
associated semaphore). In either case, we set the value for sem_figto SEM_UNDO to
allow rollback. The variable arg, of type union semun, is declared and used as the fourth
argument to the semctl system call. The values in the array start_val (1, 0) are used to
set the initial values for the two semaphores. The enumerated constants READ and
MADE act as indices to reference which of the two semaphores we are using.

The program begins by checking the command line to determine if an argument has
been passed. The program expects a small integer value to be passed. This value is
used to indicate the number of seconds the process should sleep in its processing
cycle. The inclusion of sleep allows the producer and consumer process to progress at
different rates, thus providing the user with an easy way to check the integrity of the
semaphore arrangement.

The semget system call is used to create/gain access to the semaphore set. The flag
combination IPC_CREAT | IPC_EXCL insures that the first time the program is run it
will create the two-semaphore set. As written, the first invocation of the program is
considered to be the producer (the process that will generate the integer values). The
variable producer is set to 1 in the producer process to indicate this. Once the
semaphore set is successfully created, the program uses the semctl system call to

initialize the semaphore set to the values stored in start_val. 2l \When the program is run
a second time, the resulting process is considered to be a consumer (a process that
will obtain the stored integer value). In the second program invocation, the initial
semget system call, which is within the if statement, fails, as the semaphore set has
already been generated by the producer. The else-if branch of the same if statement



invokes semget a second time without any flags set. This second invocation of semget

allows the consumer process to gain access to the previously generated semaphore

set.

3] Notice that the union member arg.array is assigned the base address
of the array start_val prior to invoking semctl.

The second section of the program, which contains the logic executed by the

producer, is shown in Program 7.4é.

Program 7.4B The second section of the producer/consumer problem—the producer logic.

_— 4y — — — —

60

—_— f — — — —

70

—_—— 4y = — — —

80

/I Section TWO

switch (producer) {
case 1: // The PRODUCER

p_sleep = atoi(argv[1]);
srand((unsigned) getpid());
for (i=0;i<10;i++){
sleep(p_sleep);
n=rand() % 99 + 1,
cout << "A. The number [" << n <<"] generated by producer" << endl;
acquire.sem_num = READ;
if (semop(semid, &acquire, 1) ==-1) {
perror("semop -producer- waiting for consumer to read number");
return 4,
}
if ((fptr = fopen(BUFFER, "w")) == NULL ¥
perror(BUFFER);
return 5;

Critical Region

}

fprintf(fptr, "%d\n", n);
fclose(fptr);

release.sem_num = MADE;

cout << "B. The number [" << n <<"] deposited by producer" << endl;

if (semop(semid, &release, 1) ==-1) {
perror("semop -producer- indicating new number has been made");
return 6;
}
}
sleep(5);

if (semctl(semid, 0, IPC_RMID, 0) == -1) {
perror("semctl —producer-");



return 7;

}

cout << "Semaphore removed" << endl;
break;

As noted, the first time the program is run, the value of the variable producer is set to 1.
When producer contains a 1, the case 1: section of program code, the producer logic, is
executed. The small integer value passed on the command line to indicate the
number of seconds the process should sleep is converted by the library function atoi
and stored for future reference in the variable p_sleep. Following this, the random
number generator is initialized using the value of the current PID. A for loop that
produces 10 random integer values in the range 1 to 99 is entered. After the program
sleeps, a random number is generated and displayed to the screen (this allows the
user to verify the activity of the program). Following this, the sem_num member of the
acquire operation is set to the value READ. This directs the following semop system call
to reference the READ semaphore, which is the first semaphore of the set. We use a
value of 1 for the READ semaphore to indicate the current stored number has been
read (consumed) and a value of O to indicate the number has not been read. As the
initial value for the READ semaphore is 1, the very first time the producer tests the
READ semaphore with the semop system call, the producer can acquire the
semaphore. Once this occurs, the producer continues on to the next section of code
where it opens the file, stores the generated value, and closes the file. In later passes
through this code, the producer may or may not find the READ semaphore at 1. If the
semaphore is at O (indicating the consumer has not read the value), the producer, by
default, blocks (waits) for this event to occur. Once the produced value has been
written to the file, the producer process, using the release operation, increments the
MADE semaphore. By incrementing the MADE semaphore, the producer indicates a
new number is now available for the consumer. When all 10 numbers have been
generated, the producer exits the for loop and, after sleeping 5 seconds to allow for the
consumption of the last produced value, it removes the semaphore set with the semctl
system command. If needed, the unlink call can be used to remove the temporary file.

The logic for the consumer is shown in Program 7.4C,.

Program 7.4C The third section of the producer/consumer problem—the consumer logic.

+ case O: I/l Section THREE
| c_sleep = atoi(argv[1]); /l The CONSUMER

| c_pid = getpid();



| while (1) {
| sleep(c_sleep);
90 acquire.sem_num = MADE;
if (semop(semid, &acquire, 1) ==-1) {
perror("semop -consumer- waiting for new number to be made");
return 8;
}
if ( (fptr = fopen(BUFFER, "r")) == NULL ){
perror(BUFFER);
return 9;

—_— f = — — —

Critical Region

| }
| fptr = fopen(BUFFER, "r");
100 fscanf(fptr, "%d", &n);
fclose(fptr);
release.sem_num = READ;
if (semop(semid, &release, 1) ==-1) {
perror("semop -consumer- indicating number has been read");
return 10;
}
cout << "C. The number [" << n <<] obtained by consumer "
<< c_pid << endl;
}
110 }
| return O;

|}

—_——— i = — — —

The consumer process, like the producer, converts the value passed on the command
line into an integer value by using the library function atoi. The consumer then obtains
its PID using the getpid system call. The PID is used to identify individual consumer
processes when more than one consumer process is present. The consumer then
enters an endless loop. It sleeps c_sleep seconds and then tests the MADE
semaphore. To accomplish this, the sem_num member of the acquire operation structure
is set to MADE. The call to semop, which is passed the reference to acquire, causes the
consumer to block (wait) if the semaphore is at 0. Once the MADE semaphore
becomes 1, the consumer opens the file where the number was written, reads the
number, and closes the file. The consumer then indicates that it has read the number.
The release structure member, sem_num, is set to READ to reference the second
semaphore of the set. The following semop system call causes the contents of the
READ semaphore to be incremented. The consumer then displays a short message
to the screen indicating the value retrieved and its PID value. The consumer continues
to consume values until the call to semop fails due to the removal of the semaphore set



by the producer.

We can run the program to simulate a number of conditions. We begin by making the

producer process slower than a single consumer process. The output in Eigure 7.8

shows how this is accomplished.

Figure 7.8 A single slow producer with a single consumer.

linux$ p7.42 & p7.40

Producer starting

[1] 31223

Consumer starting

. The number [79] generated by producer

. The number [79] deposited by producer

. The number [79] obtained by consumer 31224
. The number [17] generated by producer

. The number [17] deposited by producer

. The number [17] obtained by consumer 31224

Ol >» O >

. The number [53] obtained by consumer 31224

. The number [15] generated by producer

. The number [15] deposited by producer

. The number [15] obtained by consumer 31224

Semaphore removed

semop -consumer- waiting for new number to be made: Identifier removed
[1] + Done p7.4 2

O w>» 0

In this example the program p7.4 is run twice on the command line. The first invocation

of the program, which will be the producer,= is passed the value 2. This directs the
producer process to sleep 2 seconds each time it cycles through the for loop. The
producer process is placed in the background by specifying & after the command-line
sleep value. In the second invocation of the program, the consumer is passed the
value 0 as the sleep value. The system responds to the command sequence by
displaying the PID of the commands that were placed in background. The display of

4 This may be an invalid assumption on some systems, as process
scheduling may allow the program invoked second to be run first and
thus become the producer. If your output indicates this is happening,
enter the two commands on separate lines—do not forget to add the &



after the first command to place it in the background.

[1] 31223

means that, for this invocation, the producer PID is 31223. As the two processes
execute, we can clearly see from the output that the producer must first generate and
deposit the value in the file before the consumer can obtain it. As the producing
process is slower than the consuming process, the consumer process spends a
portion of its time waiting for the producer to deposit a number. When all of the
numbers have been produced, the producer process removes the semaphore set.
When this happens, the consumer process exits. If we run this command sequence
several times, we should find it behaves in a consistent manner. Although the
consumer process is faster than the producer process, the consumer should never
read the same value twice from the file (unless, by chance, the same number was
generated twice by the producer).

We can reverse the conditions and make the producer process faster than the
Eiéure 7.9

consumer process. The output shown in shows how this can be

accomplished.

Figure 7.9 A producer with a single slow consumer.

linux$ p7.4 0 & p7.4 2

[1] 31229

Producer starting

A. The number [28] generated by producer

B. The number [28] deposited by producer

A. The number [69] generated by producer
Consumer starting

C. The number [28] obtained by consumer 31230
B. The number [69] deposited by producer

A. The number [83] generated by producer

C. The number [69] obtained by consumer 31230

A. The number [29] generated by producer

C. The number [65] obtained by consumer 31230

B. The number [29] deposited by producer

C. The number [29] obtained by consumer 31230

Semaphore removed

semop -consumer- waiting for new number to be made: Identifier removed



[1] + Done p7.4 0

This output sequence is slightly different from the previous one. Notice, as before, the
producer generates and deposits the number. The producer, being faster than the
consumer, then goes on to generate another number. However, this number is not
deposited until the slower consumer process has read the existing stored value. If we
run this command sequence several times, we should again be able to confirm that
the producer process never overwrites the existing stored value until the consumer
process has read it.

7-5 EXERCISE

What if there are several competing consumer processes? Will the current
set of semaphores handle things correctly? Will competing consumer
processes alternate their access to the produced values? Will some
consumer processes starve? Try the following command sequences
(several times each) and explain what happens and why for each.

A) linux$ p7.42 & p7.41&p7.40
B) linux$ p7.40&p7.41&p7.41&p7.41

C) linux$ p7.42 & p7.4 1 & p7.40 & p7.4 1

7-6 EXERCISE

As shown by the code listed below, we can add another operation for semop
(called zero) that can be used to determine if a specified semaphore is at 0
(see for the actions taken bysemop when the value forsem_op is
zero).

static struct sembuf
acquire ={0, -1, SEM_UNDO},
release = {0, 1, SEM_UNDO},
zero ={0, 0, SEM_UNDOY},

Modify Program 7.4], incorporating the zero operation, so the producer can




use this operation on the appropriate semaphore to determine if it should
continue its processing. To verify that your solution is not rapidly passing
through the producer loop, comment out the producer's call to sleep (line 78).
Once you are positive your implementation is solid, uncomment the call to
sleep. Generate sufficient output to assure the user that the producer process
never overwrites a value that has not been consumed and that a consumer
process never consumes the same value twice.

/-7 EXERCISE

Modify Program 7.4 to support multiple producers as well as multiple
consumers accessing a single non-shareable resource. Hint: You may need

additional semaphores to coordinate activities.

4 Prewious | | MHext hl

(0]
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7.5 Semaphore Class

As with message queues, the syntax and manipulation of semaphores is somewhat
complex, making them a prime candidate for incorporation into a C++ class. A
semaphore class would define the relationships between semaphore data and the
functions (methods) that manipulate this data. A declaration of a simplified semaphore

class called SSemaphore is shown in .

Bl The name SSemaphore (with the extra's') was chosen to minimize any
conflicts with existing semaphore definitions.

Figure 7.10 Header file for a basic semaphore class.

File : SSemaphore.h

|/
A VERY simplified semaphore class for use in a std UNIX
environment. See the text for instructions on how to use
this class. Copyright (¢) 2002 J. S. Gray

Exit codes for class operations:

1 - Semaphore allocation failure 2 - Unable remove semaphore
3 - Unable to LOCK semaphore 4 - Unable to UNLOCK semaphore
10 5 - Failure on wait for ZERO 6 - Unable to assign value
7 - Unable to return value
*

I
I
I
+
I
I
I
I

I

I

I

| #ifndef SSemaphore_h
+ #define SSemaphore_h
| #define _GNU_SOURCE
| #include <iostream>

| #include <cstdio>

| #include <sys/types.h>
20 #include <sys/ipc.h>

| #include <sys/sem.h>

|  #include <stdlib.h>

| #include <unistd.h>



using namespace std;

I

+

| class SSemaphore {
I

I

I

public:

SSemaphore (); /I Constructor

~SSemaphore(); // D